Skip to main content
Log in

Interdependence of the Hammett and isokinetic relationships: a numerical simulation approach

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Many homologous reaction series present linear correlations between the enthalpy (\(\Delta H_{{ \ne {\text{,i}}}}^{{\text{o}}}\)) and entropy (\(\Delta S_{{ \ne {\text{,i}}}}^{{{\text{ o}}}}\)) of activation (kinetic compensation effect), the slope being the isokinetic temperature of the series (Tiso), so that at T = Tiso, all the reactions of the family share the same value of the rate constant. However, the random errors committed in the laboratory in the determination of \(\Delta H_{{ \ne {\text{,i}}}}^{{\text{o}}}\) and \(\Delta S_{{ \ne {\text{,i}}}}^{{{\text{ o}}}}\) are interrelated, and so tend to produce false isokinetic relationships. As a result, the existence of physically meaningful isokinetic relationships is a topic of lasting controversy. Here, it is shown that both the LFER (linear free energy relationships)-type and isokinetic linear correlations are direct consequences of two other correlations, those of \(\Delta H_{{ \ne {\text{,i}}}}^{{\text{o}}}\) vs. \(\sigma _{{\text{i}}}\) and \(\Delta S_{{ \ne {\text{,i}}}}^{{{\text{ o}}}}\) vs. \(\sigma _{{\text{i}}}\), where the abscissa is the Hammett (or Taft) substituent parameter. A mathematical model has been developed, according to which Tiso can be interpreted as the temperature at which the reaction constant obtained as the slope of the LFER-type straight line takes a zero value (ρ = 0). Moreover, the numerical simulations performed indicated that the \(\log {\text{ }}k_{{{\text{ T}}}}\) vs. \(\sigma _{{\text{i}}}\) and \(\Delta H_{{ \ne {\text{,i}}}}^{{\text{o}}}\) vs. \(\Delta S_{{ \ne {\text{,i}}}}^{{{\text{ o}}}}\) linear plots can be visualized as two faces of the same coin, since, if the kinetic data obey the first with a correlation coefficient high enough, the probability of fulfillment of the second will be very high. Finally, it has been found that values of Tiso and Tδ (the slope of the linear correlation between the enthalpy–entropy deviations) very close to the mean working temperature, as well as correlation coefficients of the \(\Delta H_{{ \ne {\text{,i}}}}^{{\text{o}}}\) vs. \(\Delta S_{{ \ne {\text{,i}}}}^{{{\text{ o}}}}\) linear plots much higher than those corresponding to the \(\Delta H_{{ \ne {\text{,i}}}}^{{\text{o}}}\) vs. \(\sigma _{{\text{i}}}\) and \(\Delta S_{{ \ne {\text{,i}}}}^{{{\text{ o}}}}\) vs. \(\sigma _{{\text{i}}}\) plots, are all indicative of false isokinetic relationships, highly contaminated by the statistical correlation between the enthalpy and entropy experimental errors.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gonzalez G, Lahuerta P, Martinez M, Peris E, Sanau M (1994) J Chem Soc Dalton Trans (4):545

  2. Perez-Benito JF, Martinez-Cereza G (2018) J Phys Chem A 122:7962

    Article  CAS  PubMed  Google Scholar 

  3. Bhooshan M, Rajanna KC, Govardhan D, Venkanna P, Kumar MS (2019) Int J Chem Kinet 51:445

    Article  CAS  Google Scholar 

  4. Vlasov VM (2018) Monatsh Chem 149:2161

    Article  CAS  Google Scholar 

  5. Petersen RC, Markgraf JH, Ross SD (1961) J Am Chem Soc 83:3819

    Article  CAS  Google Scholar 

  6. Leffler JE (1955) J Org Chem 20:1202

    Article  CAS  Google Scholar 

  7. Akhtar MA, Li CZ (2020) Fuel 263:116632

    Article  CAS  Google Scholar 

  8. Cao HQ, Duan QL, Chai H, Li XX, Sun JH (2020) J Hazard Mater 384:121297

    Article  CAS  PubMed  Google Scholar 

  9. Linert W (1987) Chem Phys 114:457

    Article  CAS  Google Scholar 

  10. Sugihara G, Shigematsu DS, Nagadome S (2000) Langmuir 16:1825

    Article  CAS  Google Scholar 

  11. Davidovits P, Jayne JT, Duan SX, Wornsop DR, Zahinser MS, Kolb CE (1991) J Phys Chem 95:6337

    Article  CAS  Google Scholar 

  12. Nathanson GM, Davidovits P, Wornsop DR, Kolb CE (1996) J Phys Chem 100:13007

    Article  CAS  Google Scholar 

  13. Chen YF, Pu WF, Li YB, Liu XL, Jin FY, Hui J, Gong XL, Guo C (2018) Energy Fuels 32:12308

    Article  CAS  Google Scholar 

  14. Shimakawa K, Aniya M (2013) Monatsh Chem 144:67

    Article  CAS  Google Scholar 

  15. Sagotra AK, Chu D, Cazorla C (2019) Phys Rev Mater 3:035405

    Article  CAS  Google Scholar 

  16. Sedivy L, Belas E, Grill R, Musiienko A, Vasylchenko I (2019) J Alloys Compd 788:897

    Article  CAS  Google Scholar 

  17. Wang LF, Sun B, Liu HF, Lin DY, Song HF (2019) J Nucl Mater 526:151762

    Article  CAS  Google Scholar 

  18. Crine JP (2013) Monatsh Chem 144:11

    Article  CAS  Google Scholar 

  19. Crandall RS (1991) Phys Rev B 43:4057

    Article  CAS  Google Scholar 

  20. Srivastava A, Sharma SD, Metha N (2018) Ceram Int 44:20827

    Article  CAS  Google Scholar 

  21. Engstrom O (2013) Monatsh Chem 144:73

    Article  CAS  Google Scholar 

  22. Rosenberg B, Bhowmik BB, Harder HC, Postow E (1968) J Chem Phys 49:4108

    Article  CAS  Google Scholar 

  23. Ashraf IM, El-Zahhar AA (2018) Results Phys 11:842

    Article  Google Scholar 

  24. He Q, Xu X, Gu Y, Cheng X, Xu J, Jiang Y (2018) ACS Appl Nano Mater 1:6959

    Article  CAS  Google Scholar 

  25. Kumar A, Mehta N (2018) J Phys Chem Solids 121:49

    Article  CAS  Google Scholar 

  26. Biswas D, Singh LS, Das AS, Bhattacharya S (2019) J Non-Cryst Solids 510:101

    Article  CAS  Google Scholar 

  27. Braun A, Chen Q, Yelon A (2019) Chimia 73:936

    Article  CAS  PubMed  Google Scholar 

  28. Wojcik NA, Kupracz P, Barczynski RJ (2019) Solid State Ion 341:115055

    Article  CAS  Google Scholar 

  29. Moyano PC, Zuñiga RN (2004) J Food Eng 63:57

    Article  Google Scholar 

  30. McBane GC (1998) J Chem Educ 75:919

    Article  CAS  Google Scholar 

  31. Sharp K (2001) Prot Sci 10:661

    Article  CAS  Google Scholar 

  32. Cornish-Bowden A (2002) J Biosci 27:121

    Article  PubMed  Google Scholar 

  33. Starikov EB, Norden B (2007) J Phys Chem B 111:14431

    Article  CAS  PubMed  Google Scholar 

  34. Cornish-Bowden A (2017) J Biosci 42:665

    Article  CAS  PubMed  Google Scholar 

  35. Krug RR, Hunter WG, Grieger RA (1976) Nature 261:566

    Article  CAS  Google Scholar 

  36. Krug RR, Hunter WG, Grieger RA (1976) J Phys Chem 80:2335

    Article  CAS  Google Scholar 

  37. Krug RR, Hunter WG, Grieger RA (1976) J Phys Chem 80:2341

    Article  CAS  Google Scholar 

  38. Barrie PJ (2012) Phys Chem Chem Phys 14:318

    Article  CAS  PubMed  Google Scholar 

  39. Perez-Benito JF (2013) Monatsh Chem 144:49

    Article  CAS  Google Scholar 

  40. Barrie PJ (2012) Phys Chem Chem Phys 14:327

    Article  CAS  PubMed  Google Scholar 

  41. Koudriavtsev AB, Linert W (2013) Match-Commun Math Co 70:7

    CAS  Google Scholar 

  42. Perez-Benito JF, Mulero-Raichs M (2016) J Phys Chem A 120:7598

    Article  CAS  PubMed  Google Scholar 

  43. Liu L, Guo QX (2001) Chem Rev 101:673

    Article  CAS  PubMed  Google Scholar 

  44. Keane MA, Larsson R (2009) Catal Lett 129:93

    Article  CAS  Google Scholar 

  45. Keane MA, Larsson R (2012) React Kinet Mech Catal 106:267

    Article  CAS  Google Scholar 

  46. Larsson R (2013) Monatsh Chem 144:21

    Article  CAS  Google Scholar 

  47. Larsson R (2015) Molecules 20:2529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Larsson R (2018) Catalysts 8:97

    Article  CAS  Google Scholar 

  49. Yelon A, Movaghar B, Crandall RS (2006) Rep Prog Phys 69:1145

    Article  CAS  Google Scholar 

  50. Yelon A, Sacher E, Linert W (2011) Catal Lett 141:954

    Article  CAS  Google Scholar 

  51. Abdel-Wahab F, Yelon A (2013) J Appl Phys 114:023707

    Article  CAS  Google Scholar 

  52. Yelon A (2017) MRS Adv 2:425

    Article  CAS  Google Scholar 

  53. Linert W (1986) Aust J Chem 39:199

    Article  CAS  Google Scholar 

  54. Linert W, Sapunov VN (1988) Chem Phys 119:265

    Article  CAS  Google Scholar 

  55. Harifi-Mood AR, Khorshahi H (2019) Int J Chem Kinet 51:511

    Article  CAS  Google Scholar 

  56. Meadows MK, Sun XL, Kolesnichenko IV, Hinson CM, Johnson KA, Anslyn EV (2019) Chem Sci 10:8817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Perez-Benito JF, Lee DG (1987) J Org Chem 52:3239

    Article  CAS  Google Scholar 

  58. Oh H, Ching WM, Kim J, Lee WZ, Hong S (2019) Inorg Chem 58:12964

    Article  CAS  PubMed  Google Scholar 

  59. Perez-Benito JF (1987) Chem Scr 27:433

    CAS  Google Scholar 

  60. El Guesmi N, Boubaker T, Goumont R (2010) Int J Chem Kinet 42:203

    Article  CAS  Google Scholar 

  61. Kumar MS, Rajanna KC, Venkateswarlu M, Rao KL (2016) Int J Chem Kinet 48:171

    Article  CAS  Google Scholar 

  62. Srinivas P, Suresh M, Rajanna KC, Krishnaiah G (2017) Int J Chem Kinet 49:209

    Article  CAS  Google Scholar 

  63. Manjari PS, Suresh M, Reddy CS (2011) Transition Met Chem 36:707

    Article  CAS  Google Scholar 

  64. Manjunatha AS, Dakshayani S, Vaz N, Puttaswamy (2016) Korean J Chem Eng 33:697

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquin F. Perez-Benito.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Benito, J.F., Clavero-Masana, A. Interdependence of the Hammett and isokinetic relationships: a numerical simulation approach. Monatsh Chem 152, 939–949 (2021). https://doi.org/10.1007/s00706-021-02804-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-021-02804-9

Keywords

Navigation