Skip to main content

Advertisement

Log in

Green-Inspired Fabrication of Silver Nanoparticles and Examine its Potential In-Vitro Cytotoxic and Antibacterial Activities

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The present work demonstrates the non-hazardous and environmentally benevolent green fabrication of silver nanoparticles using Terminalia chebula (T. chebula) seed extract. Characterization of silver nanoparticles was carried out by UV–Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), atomic force microscopic (AFM) analysis, scanning electron microscopic (SEM) and transmission electron microscopic (TEM). The appearance of surface plasmon resonance peak at 440 UV–Vis spectra revealed the production of silver nanoparticles. The XRD analysis exhibited that the silver nanoparticles were crystalline. The SEM and AFM analysis represented that the synthesized silver nanoparticles were polydispersed with size ranges from 30 to 150 nm. TEM observations showed the production of differently shaped silver nanoparticles includes hexagonal and spherical. The LC–MS data revealed phenolic acids like ellagic acid, gallic acid, chebulic acid, and corilagin in the seed extract of T. chebula. The T. chebula seed extract fabricated silver nanoparticles displayed potent activity against Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Helicobacter pylori. Besides, the cytotoxic activity of the silver nanoparticles was examined against the McCoy fibroblast cell line. Herein, the viability of cells was highly inhibited at 100 µg/ml, and the IC50 value was obtained at 67.26 μg/ml. The apoptosis and nuclear fragmentation induction of silver nanoparticles was identified by DAPI staining assay.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.D. Saratale, R.G. Saratale, D.S. Kim, D.Y. Kim, H.S. Shin, Exploiting fruit waste grape pomace for silver nanoparticles synthesis, assessing their antioxidant, antidiabetic potential and antibacterial activity against human pathogens: a novel approach. Nanomaterials 10, 1457 (2020)

    CAS  PubMed Central  Google Scholar 

  2. S. Iravani, Green synthesis of metal nanoparticles using plants. Green Chem. 13, 2638–2650 (2011)

    CAS  Google Scholar 

  3. S.J. Lee, T. Begildayeva, S. Yeon, S.S. Naik, H. Ryu, T.H. Kim et al., Eco-friendly synthesis of lignin mediated silver nanoparticles as a selective sensor and their catalytic removal of aromatic toxic nitro compounds. Environ. Pollut. 269, 116174 (2021)

    CAS  PubMed  Google Scholar 

  4. Y.J. Lee, Y. Park, Green synthetic nanoarchitectonics of gold and silver nanoparticles prepared using quercetin and their cytotoxicity and catalytic applications. J. Nanosci. Nanotechnol. 20, 2781–2790 (2020)

    CAS  PubMed  Google Scholar 

  5. M. Rahimi, E.B. Noruzi, E. Sheykhsaran, B. Ebadi, Z. Kariminezhad, M. Molaparast et al., Carbohydrate polymer-based silver nanocomposites: recent progress in the antimicrobial wound dressings. Carbohydr. Polym. 231, 115696 (2020)

    CAS  PubMed  Google Scholar 

  6. R. Singh, V.Y. Patade, Sanchita, A. Singh, Antimicrobial potential of silver nanoparticles biosynthesized using aerial yam bulbils for control of selected phytopathogens. Arch. Phytopathol. Pflanzenschutz (2021). https://doi.org/10.1080/03235408.2021.1929690

    Article  Google Scholar 

  7. O. Albulym, M.S. Hussien, M. Kilany, H.Y. Zahran, R.A. Eid, I.S. Yahia et al., 5-minute synthesis of gelatinous silver nanoparticles using microwave radiation: plasmonic optical spectroscopy and antimicrobial activity. Optik 228, 166139 (2021)

    CAS  Google Scholar 

  8. M. Shepida, O. Kuntyi, M. Sozanskyi, Y. Sukhatskiy, Sonoelectrochemical synthesis of antibacterial active silver nanoparticles in rhamnolipid solution. Adv. Mater. Sci. Eng. 2021, 1–9 (2021)

    Google Scholar 

  9. Z. Khan, J.I. Hussain, A.A. Hashmi, S.A. Al-Thabaiti, Preparation and characterization of silver nanoparticles using aniline. Arab. J. Chem. 10, S1506–S1511 (2017)

    CAS  Google Scholar 

  10. P.R. Garcia, O. Prymak, V. Grasmik, K. Pappert, W. Wlysses, L. Otubo et al., An in situ SAXS investigation of the formation of silver nanoparticles and bimetallic silver–gold nanoparticles in controlled wet-chemical reduction synthesis. Nanoscale Adv. 2, 225–238 (2020)

    CAS  Google Scholar 

  11. R. Gengan, K. Anand, A. Phulukdaree, A. Chuturgoon, A549 lung cell line activity of biosynthesized silver nanoparticles using Albizia adianthifolia leaf. Colloids Surf B: Biointer. 105, 87–91 (2013)

    CAS  Google Scholar 

  12. K. Venugopal, H. Ahmad, E. Manikandan, K.T. Arul, K. Kavitha, M. Moodley, K. Rajagopal, R. Balabhaskar, M. Bhaskar, The impact of anticancer activity upon Beta vulgaris extract mediated biosynthesized silver nanoparticles (ag-NPs) against human breast (MCF-7), lung (A549) and pharynx (Hep-2) cancer cell lines. J Photochem. Photobiol. B: Biol 173, 99–107 (2017)

    CAS  Google Scholar 

  13. S. Saeed, A. Iqbal, M.A. Ashraf, Bacterial-mediated synthesis of silver nanoparticles and their significant effect against pathogens. Environ. Sci. Pollut. Res. 27, 37347–37356 (2020)

    CAS  Google Scholar 

  14. Q.A. Naseer, X. Xue, X. Wang, S. Dang, S.U. Din, J. Jamil, Synthesis of silver nanoparticles using Lactobacillus bulgaricus and assessment of their antibacterial potential. Braz. J. Biol. 82, e232434 (2021)

    CAS  PubMed  Google Scholar 

  15. S. Shanthi, B.D. Jayaseelan, P. Velusamy, S. Vijayakumar, C.T. Chih, B. Vaseeharan, Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microb. Pathogen. 93, 70–77 (2016)

    CAS  Google Scholar 

  16. R.M. Kumari, V. Kumar, M. Kumar, N. Pareek, S. Nimesh, Assessment of antibacterial and anticancer capability of silver nanoparticles extracellularly biosynthesized using Aspergillus terreus. Nano Express 1, 030011 (2020)

    Google Scholar 

  17. K.S. Almaary, S.R. Sayed, O.H. Abd-Elkader, T.M. Dawoud, N.F. El Orabi, A.M. Elgorban, Complete green synthesis of silver-nanoparticles applying seed-borne Penicillium duclauxii. Saudi J. Biol. Sci. 27, 1333–1339 (2020)

    CAS  PubMed  Google Scholar 

  18. A.M. Soliman, W. Abdel-Latif, I.H. Shehata, A. Fouda, A.M. Abdo, Y.M. Ahmed, Green approach to overcome the resistance pattern of Candida spp. using biosynthesized silver nanoparticles fabricated by Penicillium chrysogenum F9. Biol. Trace Elem. Res. 199, 800–811 (2021)

    PubMed  Google Scholar 

  19. H.A. Ammar, A.A. Abd El Aty, S.A. El Awdan, Extracellular myco-synthesis of nano-silver using the fermentable yeasts Pichia kudriavzevii HA-NY2 and Saccharomyces uvarum HA-NY3, and their effective biomedical applications. Bioprocess Biosyst. Eng. 44, 841–854 (2021)

    CAS  PubMed  Google Scholar 

  20. H. Korbekandi, S. Mohseni, R.M. Jouneghani, M. Pourhossein, S. Iravani, Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artifi. Cells Nanomed. Biotechnol. 44, 235–239 (2016)

    CAS  Google Scholar 

  21. B.Y. Ozturk, B.Y. Gursu, I. Dag, Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochem. 89, 208–219 (2020)

    Google Scholar 

  22. D. Acharya, S. Satapathy, P. Somu, U.K. Parida, G. Mishra, Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from marine algae Chaetomorpha linum extract against human colon cancer cell HCT-116. Biol. Trace Elem. Res. 199, 1812–1822 (2021)

    CAS  PubMed  Google Scholar 

  23. K. Paulkumar, G. Gnanajobitha, M. Vanaja, S. Rajeshkumar, C. Malarkodi, K. Pandian, G. Annadurai, Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci. World J. 2014, 1–9 (2014)

    Google Scholar 

  24. M. Nigam, A.P. Mishra, A. Adhikari-Devkota, A.I. Dirar, M.M. Hassan, A. Adhikari et al., Fruits of Terminalia chebula Retz.: a review on traditional uses, bioactive chemical constituents and pharmacological activities. Phytother. Res 34, 2518–2533 (2020)

    CAS  PubMed  Google Scholar 

  25. A.R. Afshari, H.R. Sadeghnia, H. Mollazadeh, A review on potential mechanisms of Terminalia chebula in Alzheimer’s disease. Adv. Pharmacol. Sci. (2016). https://doi.org/10.1155/2016/8964849

    Article  PubMed  PubMed Central  Google Scholar 

  26. A. Bag, S.K. Bhattacharyya, N.K. Pal, R.R. Chattopadhyay, In vitro antimicrobial potential of Terminalia chebula fruit extracts against multidrug–resistant uropathogens. Asian Pac. J. Trop. Biomed. 2, S1883–S1887 (2012)

    Google Scholar 

  27. D. Gopinath, U. Dimri, Y. Ajith, P.M. Deepa, M.I. Yatoo, A. Gopalakrishnan, E. Madhesh, The anti-oxidant and the anti-diabetic effects of Terminalia chebula and Withania somnifera in subclinically diabetic dogs. Indian J. Anim. Res. (2021). https://doi.org/10.18805/IJAR.B-4355

    Article  Google Scholar 

  28. A.H. Shaik, S.N. Rasool, A.V.K. Reddy, M.A. Kareem, G.S. Krushna, K.L. Devi, Cardioprotective effect of HPLC standardized ethanolic extract of Terminalia pallida fruits against isoproterenol-induced myocardial infarction in albino rats. J. Ethnopharmacol. 141, 33–40 (2012)

    CAS  PubMed  Google Scholar 

  29. J. Mathiyazhagan, G. Kodiveri Muthukaliannan, Combined Zingiber officinale and Terminalia chebula induces apoptosis and modulates mTOR and hTERT gene expressions in MCF-7 cell line. Nutr. Cancer 73, 1207–1216 (2021)

    CAS  PubMed  Google Scholar 

  30. M.P. Singh, A. Gupta, S.S. Sisodia, Wound healing activity of Terminalia bellerica Roxb. and gallic acid in experimentally induced diabetic animals. J. Complement. Integr. Med. 17, 1–10 (2020)

    Google Scholar 

  31. R. Singh, C. Hano, G. Nath, B. Sharma, Green biosynthesis of silver nanoparticles using leaf extract of Carissa carandas L. and their antioxidant and antimicrobial activity against human pathogenic bacteria. Biomolecules 11, 299 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. S. Vallinayagam, K. Rajendran, V. Sekar, Green synthesis and characterization of silver nanoparticles using Naringi crenulate leaf extract: key challenges for anticancer activities. J. Mol. Struct. 1243, 130829 (2021)

    CAS  Google Scholar 

  33. S. Mortazavi-Derazkola, A. Yousefinia, A. Naghizadeh, S. Lashkari, M. Hosseinzadeh, Green synthesis and characterization of silver nanoparticles using Elaeagnus angustifolia bark extract and study of its antibacterial effect. J. Polym. Environ. (2021). https://doi.org/10.1007/s10924-021-02122-5

    Article  Google Scholar 

  34. R. Ghosh, S. Sarkhel, K. Saha, P. Parua, U. Chatterjee, K. Mana, Synthesis, characterization & evaluation of venom neutralization potential of silver nanoparticles mediated Alstonia scholaris Linn bark extract. Toxicol. Rep. 8, 888–895 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. S.A. Dhar, R.A. Chowdhury, S. Das, M.K. Nahian, D. Islam, M.A. Gafur, Plant-mediated green synthesis and characterization of silver nanoparticles using Phyllanthus emblica fruit extract. Mater. Today: Proc. 42, 1867–1871 (2021)

    CAS  Google Scholar 

  36. Y. Gavamukulya, E.N. Maina, A.M. Meroka et al., Green synthesis and characterization of highly stable silver nanoparticles from ethanolic extracts of fruits of Annona muricata. J. Inorg. Organomet. Polym. Mater. 30, 1231–1242 (2020)

    CAS  Google Scholar 

  37. M. Kamaraj, T.G. Nithya, P. Santhosh et al., Rapid Green synthesis of silver nanoparticles using ethiopian cactus pear fruit peel infusions and evaluation of its in vitro clinical potentials. J. Inorg. Organomet. Polym. Mater. 30, 3832–3836 (2020)

    CAS  Google Scholar 

  38. M.A. Kakakhel, I. Saif, N. Ullah, S. Faisal, Z. Anwar, S.Z.U. Din, Waste fruit peel mediated synthesis of silver nanoparticles and its antibacterial activity. BioNanoScience 11, 469–475 (2021)

    Google Scholar 

  39. S.N.A. Mat Yusuf, C.N.A. Che Mood, N.H. Ahmad, D. Sandai, C.K. Lee, V. Lim, Optimization of biogenic synthesis of silver nanoparticles from flavonoid-rich Clinacanthus nutans leaf and stem aqueous extracts. Royal Soc. Open Sci. 7, 200065 (2020)

    Google Scholar 

  40. M. Mahiuddin, P. Saha, B. Ochiai, Green synthesis and catalytic activity of silver nanoparticles based on Piper chaba stem extracts. Nanomaterials 10, 1777 (2020)

    CAS  PubMed Central  Google Scholar 

  41. G. Suriyakala, S. Sathiyaraj, A.D. Gandhi, K. Vadakkan, U.M. Rao, R. Babujanarthanam, Plumeria pudica Jacq. flower extract-mediated silver nanoparticles: characterization and evaluation of biomedical applications. Inorg. Chem. Commun. 126, 108470 (2021)

    CAS  Google Scholar 

  42. S. Devanesan, M.S. AlSalhi, Green synthesis of silver nanoparticles using the flower extract of Abelmoschus esculentus for cytotoxicity and antimicrobial studies. Int. J. Nanomedicine 16, 3343 (2021)

    PubMed  PubMed Central  Google Scholar 

  43. U.T. Khatoon, G.N. Rao, K.M. Mohan, A. Ramanaviciene, A. Ramanavicius, Antibacterial and antifungal activity of silver nanospheres synthesized by tri-sodium citrate assisted chemical approach. Vacuum 146, 259–265 (2017)

    CAS  Google Scholar 

  44. U.T. Khatoon, G.N. Rao, K.M. Mohan, A. Ramanaviciene, A. Ramanavicius, Comparative study of antifungal activity of silver and gold nanoparticles synthesized by facile chemical approach. J. Environ. Chem. Eng. 6, 5837–5844 (2018)

    CAS  Google Scholar 

  45. S. Gaikwad, A. Ingle, A. Gade, M. Rai, A. Falanga, N. Incoronato, L. Russo, S. Galdiero, M. Galdiero, Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int. J. Nanomed. 8, 4303–4314 (2013)

    Google Scholar 

  46. J.T. Poolman, A.S. Anderson, Escherichia coli and Staphylococcus aureus: leading bacterial pathogens of healthcare associated infections and bacteremia in older-age populations. Expert Rev. Vaccines 17, 607–618 (2018)

    CAS  PubMed  Google Scholar 

  47. K. Saravanakumar, R. Chelliah, D. MubarakAli, D.H. Oh, K. Kathiresan, M.H. Wang, Unveiling the potentials of biocompatible silver nanoparticles on human lung carcinoma A549 cells and Helicobacter pylori. Sci. Rep. 9, 1–8 (2019)

    CAS  Google Scholar 

  48. A.K. Miller, S.M. Williams, Helicobacter pylori infection causes both protective and deleterious effects in human health and disease. Genes Immun. (2021). https://doi.org/10.1038/s41435-021-00146-4

    Article  PubMed  Google Scholar 

  49. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Met. 65, 55–63 (1983)

    CAS  Google Scholar 

  50. E.S. Priya, P.S. Selvan, B. Ajay, Tannin rich fraction from Terminalia chebula fruits as Anti-inflammatory agent. J. Herbs Spices Med. Plants 24, 74–86 (2018)

    Google Scholar 

  51. Z. Sheng, J. Zhao, I. Muhammad, Y. Zhang, Optimization of total phenolic content from Terminalia chebula Retz. fruits using response surface methodology and evaluation of their antioxidant activities. PLoS ONE 13(8), e0202368 (2018)

    PubMed  PubMed Central  Google Scholar 

  52. D. Runyoro, O. Ngassapa, K. Vagionas, N. Aligiannis, K. Graikou, I. Chinou, Chemical composition and antimicrobial activity of the essential oils of four Ocimum species growing in Tanzania. Food Chem. 119, 311–316 (2010)

    CAS  Google Scholar 

  53. P. Mulvaney, Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12, 788–800 (1996)

    CAS  Google Scholar 

  54. L. Maretti, P.S. Billone, Y. Liu, J.C. Scaiano, Facile photochemical synthesis and characterization of highly fluorescent silver nanoparticles. J. Am. Chem. Soc. 131, 13972–13980 (2009)

    CAS  PubMed  Google Scholar 

  55. A.K. Mishra, K.N. Tiwari, R. Saini, P. Kumar, S.K. Mishra, V.B. Yadav, G. Nath, Green Synthesis of silver nanoparticles from leaf extract of Nyctanthes arbor-tristis L. and assessment of its antioxidant, antimicrobial response. J. Inorg. Organomet. Polym. Mater. 30, 2266–2278 (2020)

    CAS  Google Scholar 

  56. D. Das, M.S. Haydar, P. Mandal, Impact of physical attributes on proficient phytosynthesis of silver nanoparticles using extract of fresh mulberry leaves: characterization, stability and bioactivity assessment. J. Inorg. Organomet. Polym. Mater. 31, 1527–1548 (2021)

    CAS  Google Scholar 

  57. K.S. Aiswariya, V. Jose, Photo-mediated facile synthesis of silver nanoparticles using Curcuma zanthorrhiza rhizome extract and their in vitro antimicrobial and anticancer activity. J. Inorg. Organomet. Polym. Mater. 31, 3111–3124 (2021)

    CAS  Google Scholar 

  58. E. Gharibshahi, E. Saion, Influence of dose on particle size and optical properties of colloidal platinum nanoparticles. Int. J. Mol. Sci. 13, 14723–14741 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  59. L. Gharibshahi, E. Saion, E. Gharibshahi, A. Shaari, K. Matori, Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method. Materials 10, 402 (2017)

    PubMed Central  Google Scholar 

  60. R. Renuka, K.R. Devi, M. Sivakami, T. Thilagavathi, Solanum torvum mediated synthesis and characterization of silver nanoparticles for antibacterial activities. J. Plant Biochem. Biotechnol. (2021). https://doi.org/10.1007/s13562-021-00650-8

    Article  Google Scholar 

  61. A. Singh, J. Sheikh, Cleaner functional dyeing of wool using Kigelia Africana natural dye and Terminalia chebula bio-mordant. Sustain. Chem. Pharm. 17, 100286 (2020)

    Google Scholar 

  62. J. Park, S.-H. Cha, S. Cho, Y. Park, Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction. J. Nanoparticle Res. 18, 1–13 (2016)

    Google Scholar 

  63. M.R. Shaik, M. Khan, M. Kuniyil, A. Al-Warthan, H.Z. Alkhathlan, M.R.H. Siddiqui et al., Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. Extract and their microbicidal activities. Sustainability 10, 913 (2018)

    Google Scholar 

  64. H. Yousaf, A. Mehmood, K.S. Ahmad, M. Raffi, Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Mater. Sci. Eng. C. 112, 110901 (2020)

    CAS  Google Scholar 

  65. P. Kanniah, J. Radhamani, P. Chelliah, N. Muthusamy, E. Joshua Jebasingh Sathiya Balasingh Thangapandi et al., Green synthesis of multifaceted silver nanoparticles using the flower extract of Aerva lanata and evaluation of its biological and environmental applications. ChemistrySelect 5, 2322–2331 (2020)

    CAS  Google Scholar 

  66. A. Salayova, Z. Bedlovicova, N. Daneu, M. Balaz, Z. Lukacova Bujnakova, L. Balazova, L. Tkacikova, Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: morphology and antibacterial efficacy. Nanomaterials 11, 1005 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  67. P. Punniyakotti, R. Aruliah, S. Angaiah, Facile synthesis of reduced graphene oxide using Acalypha indica and Raphanus sativus extracts and their in vitro cytotoxicity activity against human breast (MCF-7) and lung (A549) cancer cell lines. 3 Biotech 11, 157 (2021)

    PubMed  Google Scholar 

  68. B.A. Bello, S.A. Khan, J.A. Khan, F.Q. Syed, Y. Anwar, S.B. Khan, Antiproliferation and antibacterial effect of biosynthesized AgNps from leaves extract of Guiera senegalensis and its catalytic reduction on some persistent organic pollutants. J. Photochem. Photobiol. B Biol. 175, 99–108 (2017)

    CAS  Google Scholar 

  69. S. Donga, S. Chanda, Facile green synthesis of silver nanoparticles using Mangifera indica seed aqueous extract and its antimicrobial, antioxidant and cytotoxic potential (3-in-1 system). Artif. Cells Nanomed. Biotechnol. 49, 292–302 (2021)

    CAS  PubMed  Google Scholar 

  70. I. Lashin, A. Fouda, A.A. Gobouri, E. Azab, Z.M. Mohammedsaleh, R.R. Makharita, Antimicrobial and in vitro cytotoxic efficacy of biogenic silver nanoparticles (Ag-NPs) fabricated by callus extract of Solanum incanum L. Biomolecules 11, 341 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Q.H. Xia, Y.J. Ma, J.W. Wang, Biosynthesis of silver nanoparticles using Taxus yunnanensis callus and their antibacterial activity and cytotoxicity in human cancer cells. Nanomaterials 6, 160 (2016)

    PubMed Central  Google Scholar 

  72. X. Liu, K. Shan, X. Shao, X. Shi, Y. He, Z. Liu et al., Nanotoxic effects of silver nanoparticles on normal HEK-293 cells in comparison to cancerous HeLa cell line. Int. J. Nanomed. 16, 753 (2021)

    Google Scholar 

  73. M. Buttacavoli, N.N. Albanese, G. Di Cara, R. Alduina, C. Faleri, M. Gallo et al., Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation. Oncotarget 9, 9685–9705 (2018)

    PubMed  Google Scholar 

  74. A.A. Alfuraydi, S. Devanesan, M. Al-Ansari, M.S. AlSalhi, A.J. Ranjitsingh, Eco-friendly green synthesis of silver nanoparticles from the sesame oil cake and its potential anticancer and antimicrobial activities. J. Photochem. Photobiol. B Biol. 192, 83–89 (2019)

    CAS  Google Scholar 

  75. D. Zhang, G. Ramachandran, R.A. Mothana, N.A. Siddiqui, R. Ullah, O.M. Almarfadi et al., Biosynthesized silver nanoparticles using Caulerpa taxifolia against A549 lung cancer cell line through cytotoxicity effect/morphological damage. Saudi J. Biol. Sci. 27, 3421–3427 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  76. B. Pannerselvam, D. Thiyagarajan, A. Pazhani, K.P. Thangavelu, H.J. Kim, S.K. Rangarajulu, Copperpod plant synthesized AgNPs enhance cytotoxic and apoptotic effect in cancer cell lines. Processes 9, 888 (2021)

    Google Scholar 

  77. B.H. Mao, J.C. Tsai, C.W. Chen, S.J. Yan, Y.J. Wang, Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology 10, 1021–1040 (2016)

    CAS  PubMed  Google Scholar 

  78. T. Bruna, F. Maldonado-Bravo, P. Jara, N. Caro, Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. 22, 7202 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  79. H.I. Gomes, C.S. Martins, J.A. Prior, Silver nanoparticles as carriers of anticancer drugs for efficient target treatment of cancer cells. Nanomaterials 11, 964 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  80. K.C. Hembram, R. Kumar, L. Kandha, P.K. Parhi, C.N. Kundu, B.K. Bindhani, Therapeutic prospective of plant-induced silver nanoparticles: application as antimicrobial and anticancer agent. Artif. Cells Nanomed. Biotechnol. 46, S38–S51 (2018)

    PubMed  Google Scholar 

  81. Z. Zarei, D. Razmjoue, J. Karimi, Green synthesis of silver nanoparticles from Caralluma tuberculata extract and its antibacterial activity. J. Inorg. Organomet. Polym. Mater. 30, 4606–4614 (2020)

    CAS  Google Scholar 

  82. F.J. Osonga, A. Akgul, I. Yazgan, A. Akgul, G.B. Eshun, L. Sakhaee, O.A. Sadik, Size and shape-dependent antimicrobial activities of silver and gold nanoparticles: a model study as potential fungicides. Molecules 25, 2682 (2020)

    CAS  PubMed Central  Google Scholar 

  83. K. Zawadzka, A. Felczak, M. Nowak, A. Kowalczyk, I. Piwoński, K. Lisowska, Antimicrobial activity and toxicological risk assessment of silver nanoparticles synthesized using an eco-friendly method with Gloeophyllum striatum. J. Hazard. Mater. 418, 126316 (2021)

    CAS  PubMed  Google Scholar 

  84. A.K.M.R. Uddin, M.A.B. Siddique, F. Rahman et al., Cocos nucifera leaf extract mediated green synthesis of silver nanoparticles for enhanced antibacterial activity. J. Inorg. Organomet. Polym. Mater. 30, 3305–3316 (2020)

    CAS  Google Scholar 

  85. P.K. Rao, S. Srinivasulu, B.V. Babu, M.S. Reddi, A.R. Krishna, Anticancer and antibacterial activity of green synthesized silver nanoparticles using Adina cordifolia. Mater. Today: Proc. 43, 1700–1706 (2021)

    Google Scholar 

  86. Y.N. Slavin, J. Asnis, U.O. Hafeli, H. Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15, 1–20 (2017)

    Google Scholar 

  87. E. Sanchez-Lopez, D. Gomes, G. Esteruelas, L. Bonilla, A.L. Lopez-Machado, R. Galindo et al., Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials 10, 292 (2020)

    CAS  PubMed Central  Google Scholar 

  88. G. Sampath, D.J. Shyu, N. Rameshkumar, M. Krishnan, P. Sivasankar, N. Kayalvizhi, Synthesis and characterization of pyrogallol capped silver nanoparticles and evaluation of their in vitro anti-bacterial, anti-cancer profile against AGS cells. J. Clust. Sci. 32, 549–557 (2021)

    CAS  Google Scholar 

  89. V. Gopalakrishnan, E. Masanam, V.S. Ramkumar, V. Baskaraligam, G. Selvaraj, Influence of N-acylhomoserine lactonase silver nanoparticles on the quorum sensing system of Helicobacter pylori: a potential strategy to combat biofilm formation. J. Basic Microbiol. 60, 207–215 (2020)

    CAS  PubMed  Google Scholar 

  90. M. Beldjilali, K. Mekhissi, Y. Khane, W. Chaibi, L. Belarbi, S. Bousalem, Antibacterial and antifungal efficacy of silver nanoparticles biosynthesized using leaf extract of Thymus algeriensis. J. Inorg. Organomet. Polym. Mater. 30, 2126–2133 (2020)

    CAS  Google Scholar 

  91. S.A. Ahmad, S.S. Das, A. Khatoon, M.T. Ansari, M. Afzal, M.S. Hasnain, A.K. Nayak, Bactericidal activity of silver nanoparticles: a mechanistic review. Mater. Sci. Energy Technol. 3, 756–769 (2020)

    Google Scholar 

  92. O.M. Bondarenko, M. Sihtmae, J. Kuzmiciova, L. Rageliene, A. Kahru, R. Daugelavicius, Plasma membrane is the target of rapid antibacterial action of silver nanoparticles in Escherichia coli and Pseudomonas aeruginosa. Int. J. Nanomed. 13, 6779 (2018)

    CAS  Google Scholar 

  93. I.X. Yin, J. Zhang, I.S. Zhao, M.L. Mei, Q. Li, C.H. Chu, The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 15, 2555 (2020)

    CAS  Google Scholar 

  94. I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J. Colloid Interf. Sci. 275, 177–182 (2004)

    CAS  Google Scholar 

  95. A. Hamad, K.S. Khashan, A. Hadi, Silver nanoparticles and silver ions as potential antibacterial agents. J. Inorg. Organomet. Polym. 30, 4811–4828 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

Author Muthusamy Natarajan thanks UGC for providing the fellowship through BSR-SRF (F.4-7/2008(BSR)/11-14/2008(BSR)) and authors acknowledge VIT, Vellore for AFM analysis, SAIF, IIT Bombay for TEM analysis, Kalasalingam Academy of Research and Education, Krishnankoil for XRD and Sathyabama Institute of Science and Technology, Chennai for SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umamaheswari Sankaran.

Ethics declarations

Conflict of interest

The authors confirm that the manuscript has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1934 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthusamy, N., Kanniah, P., Vijayakumar, P. et al. Green-Inspired Fabrication of Silver Nanoparticles and Examine its Potential In-Vitro Cytotoxic and Antibacterial Activities. J Inorg Organomet Polym 31, 4693–4709 (2021). https://doi.org/10.1007/s10904-021-02082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02082-2

Keywords

Navigation