Skip to main content
Log in

Pyrolysis of Complexes of Metallosulphophthalocyanines with Chitosan for Obtaining Graphite-Like Structures

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The pyrolysis of chitosan and its polymeric complexes with metal phthalocyanines was studied by thermochemical and spectral methods. At all stages of thermal degradation, the decomposition products of chitosan and polymer complexes with metal phthalocyanines were determined by the mass spectral method, the chemistry of the process was proposed. The pyrolysis of chitosan and its polymer complexes with metal sulphophthalocyanines leads to the formation of carbonizates with a wide variety of graphite-like structures with different contents of polyconjugated carbon–carbon bonds, the presence of which was confirmed by IR spectroscopy. It was shown that the introduction of copper(II)tetrasulphophthalocyanine into the composition of the polymer complex with chitosan results in an increase in the content of aliphatic structures in carbonizates, and the introduction of cobalt(II)tetrasulphophthalocyanine leads to aromatic compounds content increase. The possibility of changing the structures of chitosan carbonizates to obtain graphite-like structures by complexation with metal phthalocyanines has been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Sarmento, J. Neves, Das Chitosan-Based Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics (2012)

  2. M.N.V.R. Kumar, R.A.A. Muzzarelli, C. Muzzarelli, H. Sashiwa, A.J. Domb, Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. (2004). https://doi.org/10.1002/chin.200511296

    Article  PubMed  Google Scholar 

  3. S.A. Agnihotri, N.N. Mallikarjuna, T.M. Aminabhavi, Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Controll. Release 100(1), 5–28 (2004)

    Article  CAS  Google Scholar 

  4. R. Riva, H. Ragelle, A. Des. Rieux, N. Duhem, C. Jérôme, V. Préat, Chitosan and chitosan derivatives in drug delivery and tissue engineering. Adv. Polym. Sci. (2011). https://doi.org/10.1007/12_2011_137

    Article  Google Scholar 

  5. G. Kratz, C. Arnander, J. Swedenborg, M. Back, C. Falk, I. Gouda, O. Larm, Heparin-chitosan complexes stimulate wound healing in human skin. Scand. J. Plast. Reconstr. Surg. Hand Surg. 31(2), 119–123 (1997)

    Article  CAS  PubMed  Google Scholar 

  6. R. Yang, H. Li, M. Huang, H. Yang, A. Li, A review on chitosan-based flocculants and their applications in water treatment. Water Res. 95, 59–89 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. Y. Liu, Y. Li, J. Lv, G. Wu, J. Li, Graft copolymerization of methyl methacrylate onto chitosan initiated by potassium ditelluratocuprate(III). J. Macromol. Sci. - Pure Appl. Chem. 42(9), 1169–1180 (2005)

    Article  CAS  Google Scholar 

  8. A. El-Shafei, S. Shaarawy, A. Hebeish, Graft copolymerization of chitosan with butyl acrylate and application of the copolymers to cotton fabric. Polym. – Plast. Technol. Eng. 44(8), 1523–1535 (2005)

    Article  CAS  Google Scholar 

  9. M.A.M. Adnan, B.L. PHOON, N.M. Julkapli, Mitigation of pollutants by chitosan/metallic oxide photocatalyst: a review. J. Clean. Prod. 261, e121190 (2020)

    Article  CAS  Google Scholar 

  10. H.K. No, S.P. Meyers, W. Prinyawiwatkul, Z. Xu, Applications of chitosan for improvement of quality and shelf life of foods: a review. J. Food Sci. 72(5), 87–100 (2007)

    Article  CAS  Google Scholar 

  11. P.K. Dutta, S. Tripathi, G.K. Mehrotra, J. Dutta, Perspectives for chitosan based antimicrobial films in food applications. Food Chem. (2009). https://doi.org/10.1515/epoly.2008.8.1.1082

    Article  Google Scholar 

  12. I. Aranaz, N. Acosta, C. Civera, B. Elorza, J. Mingo, C. Castro, M. de Gandía, L. los, A.H. Caballero, Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers 10(2), e213 (2018)

    Article  PubMed  CAS  Google Scholar 

  13. S.H. Lim, S.M. Hudson, Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J. Macromol. Sci. – Polym. Rev. 43(2), 223–269 (2003)

    Article  CAS  Google Scholar 

  14. C.K.S. Pillai, W. Paul, C.P. Sharma, Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. (Oxford) 34(7), 641–678 (2009)

    Article  CAS  Google Scholar 

  15. M. Bengisu, E. Yilmaz, Oxidation and pyrolysis of chitosan as a route for carbon fiber derivation. Carbohydr. Polym. 50(2), 165–175 (2002)

    Article  CAS  Google Scholar 

  16. M.N.V. Ravi Kumar, A review of chitin and chitosan applications. React. Funct. Polym. 46(1), 1–27 (2000)

    Article  Google Scholar 

  17. R.H. de Diego Almeida, F. Monroy-Guzmán, C.R.A. Juárez, J.M. Rocha, E.B. Bustos, Electrochemical detector based on a modified graphite electrode with phthalocyanine for the elemental analysis of actinides. Chemosphere 276, e130114 (2021)

    Article  CAS  Google Scholar 

  18. A. Pandey, A.N. Raja, Recent development in chitosan-based electrochemical sensors and its sensing application. International J. Biol. Macrom. (2020)

  19. J.H. Yang, H.R. Kim, J.H. Lee, J.-H. Jin, H.U. Lee, S.W. Kim, Electrochemical properties of enzyme electrode covalently immobilized on a graphite oxide/cobalt hydroxide/chitosan composite mediator for biofuel cells. Int. J. Hydrogen Energy 46, 3251–3258 (2021)

    Article  CAS  Google Scholar 

  20. J.H. Zagal, I. Kruusenberg, K. Tammeveski, J. Recio, K. Muñoz, R. Venegas, Encyclopedia of Interfacial Chemistry (Elsevier, Oxygen Reduction on Carbon-Supported Metallophthalocyanines and Metalloporphyrins, 2018)

    Google Scholar 

  21. A.B. Sorokin, F. Quignard, R. Valentin, S. Mangematin, Chitosan supported phthalocyanine complexes: bifunctional catalysts with basic and oxidation active sites. Appl. Catal. A 309, 162–168 (2006)

    Article  CAS  Google Scholar 

  22. F.X. Tang, H.C. Li, X.D. Ren, Y. Sun, W. Xie, C.Y. Wang, B.Y. Zheng, M.R. Ke, J.D. Huang, Preparation and antifungal properties of monosubstituted zinc(П) phthalocyanine-chitosan oligosaccharide conjugates and their quaternized derivatives. Dyes Pigm. 159, 439–448 (2018)

    Article  CAS  Google Scholar 

  23. F. Ali, S.B. Khan, T. Kamal, Y. Anwar, K.A. Alamry, A.M. Asiri, Anti-bacterial chitosan/zinc phthalocyanine fibers supported metallic and bimetallic nanoparticles for the removal of organic pollutants. Carbohyd. Polym. 173, 676–689 (2017)

    Article  CAS  Google Scholar 

  24. L.L.R. Cavalcante, A.C. Tedesco, L.A.U. Takahashi, F.A. Curylofo-Zotti, A.E. Souza-Gabriel, S.A.M. Corona, Conjugate of chitosan nanoparticles with chloroaluminium phthalocyanine: Synthesis, characterization and photoinactivation of Streptococcus mutans biofilm. Photodiagnosis and Photodynamic Therapy 30, e101709 (2020)

    Article  CAS  Google Scholar 

  25. J.H. Zagal, S. Specchia, P. Atanassov, Mapping transition metal-MN4 macrocyclic complex catalysts performance for the critical reactivity descriptors. Curr. Opin. Electrochem. 27, e100683 (2021)

    Article  CAS  Google Scholar 

  26. G. Savage, G. Savage, The Properties of Carbon-Carbon Composites (In Carbon-Carbon Composites, Springer, Netherlands, 1993)

    Book  Google Scholar 

  27. N.S. Lebedeva, S.S. Guseinov, E.S. Yurina, Y.A. Gubarev, O.I. Koifman, Thermochemical research of chitosan complexes with sulfonated metallophthalocyanines. Int. J. Biol. Macromol. 137, 1153–1160 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. A. Hirai, H. Odani, A. Nakajima, Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym. Bull. 26(1), 87–94 (1991)

    Article  CAS  Google Scholar 

  29. G.P. Shaposhnikov, V.P. Kulinich, V.E. Maizlish, Modifitsirovannye ftalotsianiny i ikh strukturnye analogi. Liquid Crystals and Their Application), Moscow: Krasand (2012)

    Google Scholar 

  30. J. Zawadzki, H. Kaczmarek, Thermal treatment of chitosan in various conditions. Carbohydrate Polym. 80(2), 394–400 (2010)

    Article  CAS  Google Scholar 

  31. C. Ou, S. Chen, Y. Liu, J. Shao, S. Li, T. Fu, W. Fan, H. Zheng, Q. Lu, X. Bi, Study on the thermal degradation kinetics and pyrolysis characteristics of chitosan-Zn complex. J. Anal. Appl. Pyrolysis 122, 268–276 (2016)

    Article  CAS  Google Scholar 

  32. M. Mucha, A. Pawlak, Complex study on chitosan degradability. Polimery/Polymers 47(7), 509–516 (2002)

    CAS  Google Scholar 

  33. Y.S. Nam, W.H. Park, D. Ihm, S.M. Hudson, Effect of the degree of deacetylation on the thermal decomposition of chitin and chitosan nanofibers. Carbohydr. Polym. 80(1), 291–295 (2010)

    Article  CAS  Google Scholar 

  34. G.S. Lal, E.R. Hayes, Determination of the amine content of chitosan by pyrolysis-gas chromatography. J. Analyt. Appl Pyrolysis 6(2), 183–193 (1984)

    Article  CAS  Google Scholar 

  35. J. Mattai, E.R. Hayes, Characterization of chitosan by pyrolysis-mass spectrometry. J. Analyt. Appl. Pyrolysis 3(4), 327–334 (1982)

    Article  CAS  Google Scholar 

  36. H. Sato, S. Mizutani, S. Tsuge, H. Ohtani, K. Aoi, A. Takasu, M. Okada, S. Kobayashi, T. Kiyosada, S. Shoda, Determination of the degree of acetylation of chitin/chitosan by pyrolysis-gas chromatography in the presence of oxalic acid. Anal. Chem. 70, 7–12 (1998)

    Article  CAS  PubMed  Google Scholar 

  37. J.M. Nieto, C. Peniche-Covas, Padro ́n, G. , Characterization of chitosan by pyrolysis-mass spectrometry, thermal analysis and differential scanning calorimetry. Thermochimica Acta 176, 63–68 (1991)

    Article  CAS  Google Scholar 

  38. C. Peniche-Covas, W. Argüelles-Monal, J. San Román, A kinetic study of the thermal degradation of chitosan and a mercaptan derivative of chitosan. Polym. Degradation and Stability 39(1), 21–28 (1993)

    Article  CAS  Google Scholar 

  39. L. Zeng, C. Qin, L. Wang, W. Li, Volatile compounds formed from the pyrolysis of chitosan. Carbohydrate Polym. 83(4), 1553–1557 (2011)

    Article  CAS  Google Scholar 

  40. P.-S. Wang, G. Odell, V Formation of pyrazines from thermal treatment of some amino-hydroxy compounds. J. Agric. Food Chem. 21, 868–870 (1973)

    Article  CAS  PubMed  Google Scholar 

  41. V. Gomez-Serrano, J. Pastor-Villegas, A. Perez-Florindo, C. Duran-Valle, C. Valenzuela-Calahorro, FT-IR study of rockrose and of char and activated carbon. J. Analyt. Appl. Pyrolysis 36(1), 71–80 (1996)

    Article  CAS  Google Scholar 

  42. B.C. Smith. Fundamentals of fourier transform infrared spectroscopy, second edition. (2011)

  43. H. Kaczmarek, J. Zawadzki, Chitosan pyrolysis and adsorption properties of chitosan and its carbonizate. Carbohydr. Res. 345(7), 941–947 (2010)

    Article  CAS  PubMed  Google Scholar 

  44. N.S. Lebedeva, Y.A. Gubarev, E.S. Yurina, A.I. Vyugin, I.M. Lipatova, Features of chitosan interaction with copper(II) and cobalt(II) tetrasulfophthalocyanines. Rus. J. Gen. Chem. 87(10), 2327–2331 (2017)

    Article  CAS  Google Scholar 

  45. G.P. Amaral, G.O. Puntel, C.L. Dalla Corte, F. Dobrachinski, R.P. Barcelos, L.L. Bastos, D.S. Ávila, J.B.T. Rocha, E.O. Da Silva, R.L. Puntel, F.A.A. Soares, The antioxidant properties of different phthalocyanines. Toxicology in Vitro (2012)

  46. C. Kantar, H. Akal, B. Kaya, F. Islamoʇlu, M. Türk, S. Şaşmaz, Novel phthalocyanines containing resorcinol azo dyes; Synthesis, determination of pKa values, antioxidant, antibacterial and anticancer activity. J. Organomet. Chem. 783, 28–39 (2015)

    Article  CAS  Google Scholar 

  47. E. Fuente, J.A. Menéndez, M.A. Díez, D. Suárez, M.A. Montes-Morán, Infrared spectroscopy of carbon materials: a quantum chemical study of model compounds. J. Phys. Chem. B 107(26), 6350–6359 (2003)

    Article  CAS  Google Scholar 

  48. W.W. Duley, D.A. Williams, The infrared spectrum of interstellar dust: Surface functional groups on carbon. Mon Not. R. Astron. Soc. 196(2), 269–274 (1981)

    Article  CAS  Google Scholar 

Download references

Acknowlegements

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation under state assignment No. 01201260481. We are grateful to the center “The upper Volga region centre of physico-chemical research” for analysis of the investigated samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury A. Gubarev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, N.S., Guseinov, S.S., Yurina, E.S. et al. Pyrolysis of Complexes of Metallosulphophthalocyanines with Chitosan for Obtaining Graphite-Like Structures. J Inorg Organomet Polym 31, 3991–4000 (2021). https://doi.org/10.1007/s10904-021-02079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02079-x

Keywords

Navigation