Skip to main content
Log in

Matrices for Tissue Engineering Based on Ultrafine Fibers and Microparticles of Poly(hydroxybutyrate)

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The structure and diffusion properties of combined ultrafibrous matrices containing microspheres for prolonged release of lysozyme are studied in the work. The matrices are biocompatible and they are not cytotoxic. The matrices are obtained via electrospinning. These materials are suitable for solving problems of tissue engineering, since they combine ultrafine fibers of poly(hydroxybutyrate) promoting effective attachment and growth of cells and poly(hydroxybutyrate) microparticles capable of prolonged release of a bioactive compound. These properties allow one to recommend these matrices for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bonartsev, A.P., Bonartseva, G.A., Shaitan, K.V., and Kirpichnikov, M.P., Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate)—based biopolymer systems, Biochem. (Moscow), Suppl. Ser. B: Biomed. Chem., 2011, vol. 5, no. 1, pp. 10–21.

    Google Scholar 

  2. Gunatillake, P.A. and Adhikari, R., Biodegradable synthetic polymers for tissue engineering, Eur. Cells Mater., 2003, vol. 5, no. 1, pp. 1–16. https://doi.org/10.22203/ecm.v005a01

    Article  CAS  Google Scholar 

  3. Cao, K., Liu, Y., Olkhov, A.A., Siracusa, V., and Iordanskii, A.L., PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery, Drug Delivery Transl. Res., 2018, vol. 8, no. 1, pp. 291–302.

    Article  CAS  Google Scholar 

  4. Olkhov, A., Gur’ev, V., Akatov, V., Mastalygina, E., Iordanskii, A., and Sevastyanov, V.I., Composite tendon implant based on nanofibrillar polyhydroxybutyrate and polyamide filaments, J. Biomed. Mater. Res., Part A, 2018, vol. 106, no. 10, pp. 2708–2713.

    Article  CAS  Google Scholar 

  5. Li, D. and Xia, Y., Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater., 2004, vol. 16, no. 14, pp. 1151–1170.

    Article  CAS  Google Scholar 

  6. Haider, A., Haider, S., and Kang, I.-K., A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology, Arabian J. Chem., 2018, vol. 11, pp. 1165–1188.

    Article  CAS  Google Scholar 

  7. Ding, J., Zhang, J., Li, J., Li, D., Xiao, C., Xiao, H., Yang, H., Zhuang, X., and Chen, X., Electrospun polymer biomaterials, Prog. Polym. Sci., 2019, vol. 90, pp. 1–34.

    Article  CAS  Google Scholar 

  8. Baradaran-Rafii, A., Biazar, E., and Heidari-Keshel, S., Cellular response of stem cells on nanofibrous scaffold for ocular surface bioengineering, ASAIO J., 2015, vol. 61, no. 5, pp. 605–612.

    Article  CAS  Google Scholar 

  9. Shtilman, M.I., Polymeric Biomaterials. Part 1. Polymer Implants, Leiden, Netherlands: VSP, 2003.

    Google Scholar 

  10. Satyam, A., Kumar, P., Fan, X., Gorelov, A., Rochev, Y., Joshi, L., Peinado, H., Lyden, D., Thomas, B., Rodriguez, B., Raghunath, M., Pandit, A., and Zeugolis, D., Macromolecular crowding meets tissue engineering by self-assembly: A paradigm shift in regenerative medicine, Adv. Mater., 2014, vol. 26, no. 19, pp. 3024–3034.

    Article  CAS  Google Scholar 

  11. Moisenovich, M.M., Pustovalova, O., Shackelford, J., Vasiljeva, T.V., Druzhinina, T.V., Kamenchuk, Y.A., Guzeev, V.V., Sokolova, O.S., Bogush, V.G., Debabov, V.G., Kirpichnikov, M.P., and Agapov, I.I., Tissue regeneration in vivo within recombinant spidroin 1 scaffolds, Biomaterials, 2012, vol. 33, no. 15, pp. 3887–3898.

    Article  CAS  Google Scholar 

  12. Chan, L.W. and Heng, P.W.S., Effects of aldehydes and methods of cross-linking on properties of calcium alginate microspheres prepared by emulsification, Biomaterials, 2002, vol. 23, no. 5, pp. 1319–1326.

    Article  CAS  Google Scholar 

  13. Hiramatsu, M., Okabe, N., and Tomita, K., Preparation and properties of lysozyme modified by fluorescein-isothiocyanate, J. Biochem., 1973, vol. 73, no. 5, pp. 971–978.

    Article  CAS  Google Scholar 

  14. Kim, I.-D., Advances in electrospun functional nanofibers, Macromol. Mater. Eng., 2013, vol. 298, no. 5, pp. 473–474.

    Article  CAS  Google Scholar 

  15. Sutherland, M.W. and Learmonth, B.A., The tetrazolium dyes MTS and XTT provide new quantitative assays for superoxide and superoxide dismutase, Free Radical Res., 1997, vol. 27, no. 3, pp. 283–289.

    Article  CAS  Google Scholar 

  16. Ol’khov, A.A., Kucherenko, E.L., Kosenko, R.Yu., Markin, V.S., Perov, V.I., and Iordanskiy, A.L., Analysis of the structure of polyhydroxybutyrate-based fibrous matrices for prolonged drug release, Inorg. Mater.: Appl. Res., 2019, vol. 10, pp. 806–811. https://doi.org/10.1134/S2075113319040300

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ol’khov.

Additional information

Translated by K. Aleksanyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonartsev, A.P., Ol’khov, A.A., Khan, O.I. et al. Matrices for Tissue Engineering Based on Ultrafine Fibers and Microparticles of Poly(hydroxybutyrate). Inorg. Mater. Appl. Res. 12, 974–979 (2021). https://doi.org/10.1134/S2075113321040080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321040080

Keywords:

Navigation