Skip to main content
Log in

Thermoelectric Properties of a Composite Based on Polyvinylidene Fluoride and Carbon Nanotubes

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The temperature dependences of the Seebeck coefficient and conductance of the nanocomposite composed of polyvinylidene fluoride, multi-walled carbon nanotubes, and carbon nanofibers are measured. It is shown that the thermoelectric properties of the composite are very different from the properties of the initial carbon filler. In particular, the Seebeck coefficient of the nanocomposite at room temperature is almost two times higher than the thermoelectric power of the carbon filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Nozariasbmarz, H. Collins, K. Dsouza, et al., Appl. Energy 258, 114069 (2020). https://doi.org/10.1016/j.apenergy.2019.114069

    Article  Google Scholar 

  2. C. Gao and G. Chen, Compos. Sci. Technol. 124, 52 (2016). https://doi.org/10.1016/j.compscitech.2016.01.014

    Article  CAS  Google Scholar 

  3. G. Chen, W. Xu, and D. Zhu, J. Mater. Chem. C 5, 4350 (2017). https://doi.org/10.1039/C6TC05488A

    Article  CAS  Google Scholar 

  4. J. L. Blackburn, A. J. Ferguson, C. Cho, and J. C. Grunlan, Adv. Mater. 30, 1870072 (2018). https://doi.org/10.1002/adma.201870072

    Article  Google Scholar 

  5. Y. Nakai, K. Honda, K. Yanagi, et al., Appl. Phys. Express 7, 025103 (2014). https://doi.org/10.7567/APEX.7.025103

    Article  CAS  Google Scholar 

  6. E. Kymakis and G. A. J. Amaratunga, J. Appl. Phys. 99, 084302 (2006). https://doi.org/10.1063/1.2189931

    Article  CAS  Google Scholar 

  7. C. Yu, Y. S. Kim, D. Kim, and J. C. Grunlan, Nano Lett. 8, 4428 (2008). https://doi.org/10.1021/nl802345s

    Article  CAS  Google Scholar 

  8. Q. Yao, L. Chen, W. Zhang, et al., ACS Nano 4, 2445 (2010). https://doi.org/10.1021/nn1002562

    Article  CAS  Google Scholar 

  9. C. Meng, C. Liu, and S. Fan, Adv. Mater. 22, 535 (2010). https://doi.org/10.1002/adma.200902221

    Article  CAS  Google Scholar 

  10. D. Kim, Y. Kim, K. Choi, et al., ACS Nano 4, 513 (2010). https://doi.org/10.1021/nn9013577

    Article  CAS  Google Scholar 

  11. C. Yu, K. Choi, L. Yin, and J. C. Grunlan, ACS Nano 5, 7885 (2011). https://doi.org/10.1021/nn202868a

    Article  CAS  Google Scholar 

  12. C. A. Hewitt, A. B. Kaiser, S. Roth, et al., Appl. Phys. Lett. 98, 183110 (2011). https://doi.org/10.1063/1.3580761

    Article  CAS  Google Scholar 

  13. K. Yusupov, A. Zakhidov, S. You, et al., J. Alloys Compd. 741, 392 (2018). https://doi.org/10.1016/j.jallcom.2018.01.010

    Article  CAS  Google Scholar 

  14. D. Li, C. Luo, Y. Chen, et al., ACS Appl. Energy Mater. 2, 2427 (2019). https://doi.org/10.1021/acsaem.9b00334

    Article  CAS  Google Scholar 

  15. S.-H. Chung, D. H. Kim, H. Kim, et al., Mater. Today Commun. 23, 100867 (2020). https://doi.org/10.1016/j.mtcomm.2019.100867

    Article  CAS  Google Scholar 

  16. M. Bharti, A. Singh, B. P. Singh, et al., J. Power Sources 449, 227493 (2020). https://doi.org/10.1016/j.jpowsour.2019.227493

    Article  CAS  Google Scholar 

  17. D. J. Bergman and O. Levy, J. Appl. Phys. 70, 6821 (1991). https://doi.org/10.1063/1.349830

    Article  Google Scholar 

  18. F.-P. Du, X. Qiao, Y.-G. Wu, et al., Polymers 10, 797 (2018). https://doi.org/10.3390/polym10070797

    Article  CAS  Google Scholar 

  19. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Science (Washington, DC, U. S.) 287, 1801 (2000). https://doi.org/10.1126/science.287.5459.1801

    Article  CAS  Google Scholar 

  20. B. Sadanadan, T. Savage, S. Bhattacharya, et al., J. Nanosci. Nanotech. 3, 99 (2003). https://doi.org/10.1166/jnn.2003.186

    Article  CAS  Google Scholar 

  21. B. Bourlon, C. Miko, L. Forró, et al., Phys. Rev. Lett. 93, 176806 (2004). https://doi.org/10.1103/PhysRevLett.93.176806

    Article  CAS  Google Scholar 

  22. V. Skákalová, A. B. Kaiser, Y.-S. Woo, and S. Roth, Phys. Rev. B 74, 085403 (2006). https://doi.org/10.1103/PhysRevB.74.085403

    Article  CAS  Google Scholar 

  23. Z. Li, H. R. Kandel, E. Dervishi, et al., Appl. Phys. Lett. 91, 053115 (2007). https://doi.org/10.1063/1.2767215

    Article  CAS  Google Scholar 

  24. K. Yang, J. He, Z. Su, et al., Carbon 48, 756 (2010). https://doi.org/10.1016/j.carbon.2009.10.022

    Article  CAS  Google Scholar 

  25. C. A. Hewitt, A. B. Kaiser, M. Craps, et al., J. Appl. Phys. 114, 083701 (2013). https://doi.org/10.1063/1.4819104

    Article  CAS  Google Scholar 

  26. T. Takezawa, T. Tsuzuku, A. Ono, and Y. Hishiyama, Philos. Mag. 19, 623 (1969). https://doi.org/10.1080/14786436908216318

    Article  CAS  Google Scholar 

  27. K. Sugihara, H. Ohshima, K. Kawamura, and T. Tsuzuku, J. Phys. Soc. Jpn. 43, 1664 (1977). https://doi.org/10.1143/JPSJ.43.1664

    Article  CAS  Google Scholar 

  28. P. Sheng, Phys. Rev. B 21, 2180 (1980). https://doi.org/10.1103/PhysRevB.21.2180

    Article  CAS  Google Scholar 

  29. A. V. Eletskii, A. A. Knizhnik, B. V. Potapkin, and J. M. Kenny, Phys. Usp. 58, 209 (2015). https://doi.org/10.3367/UFNe.0185.201503a.0225

    Article  CAS  Google Scholar 

  30. B. Krause, V. Bezugly, V. Khavrus, et al., Energies 13, 394 (2020). https://doi.org/10.3390/en13020394

    Article  CAS  Google Scholar 

  31. S. V. Faleev and F. Léonard, Phys. Rev. B 77, 214304 (2008). https://doi.org/10.1103/PhysRevB.77.214304

    Article  CAS  Google Scholar 

  32. M. He, J. Ge, Z. Lin, et al., Energy Environ. Sci. 5, 8351 (2012). https://doi.org/10.1039/C2EE21803H

    Article  CAS  Google Scholar 

  33. C.-M. Chang and Y.-L. Liu, Carbon 48, 1289 (2010). https://doi.org/10.1016/j.carbon.2009.12.002

    Article  CAS  Google Scholar 

  34. C. A. Hewitt, A. B. Kaiser, S. Roth, et al., Nano Lett. 12, 1307 (2012). https://doi.org/10.1021/nl203806q

    Article  CAS  Google Scholar 

  35. Y.-C. Sun, D. Terakita, A. C. Tseng, and H. E. Naguib, Smart Mater. Struct. 24, 085034 (2015). https://doi.org/10.1088/0964-1726/24/8/085034

    Article  CAS  Google Scholar 

  36. M. Aghelinejad and S. N. Leung, Composites, Part B 145, 100 (2018). https://doi.org/10.1016/j.compositesb.2018.03.030

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank E.V. Saklakova for preparing nanocomposite films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Uryupin.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, Y.V., Uryupin, O.N. & Shabaldin, A.A. Thermoelectric Properties of a Composite Based on Polyvinylidene Fluoride and Carbon Nanotubes. Nanotechnol Russia 16, 387–391 (2021). https://doi.org/10.1134/S2635167621030095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621030095

Navigation