Skip to main content
Log in

Thermoelectric Properties of Amorphous and Nanocrystallic Cr0.33Si0.67 Films at Different Annealing Stages in the Range 100–900 K

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The thermoelectric properties of thin Cr0.33Si0.67 films in amorphous and crystalline states, as well as at different annealing stages in the temperature range 100–900 K have been studied. The crystallization of amorphous films at a temperature of ~550 K is accompanied by an increase in the resistivity and thermoelectric power. Amorphous films crystallize with the formation of CrSi2 nanocrystals with an average grain size of 10–20 nm. The increase in resistivity is due to the appearance of a crystalline phase and the formation of interphase boundaries between the crystalline and amorphous phases. The scattering of charge carriers at interphase boundaries is selective, which leads to the appearance of an additional contribution to the thermopower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. F. Ioffe, Semiconductor Thermal Elements (Akad. Nauk SSSR, Moscow, 1960) [in Russian].

    Google Scholar 

  2. B. Poudel, Q. Hao, Y. Ma, et al., Science (Washington, DC, U. S.) 320, 634 (2008). https://doi.org/10.1126/science.1156446

    Article  CAS  Google Scholar 

  3. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993). https://doi.org/10.1103/PhysRevB.47.12727

    Article  CAS  Google Scholar 

  4. M. G. Kanatzidis, Chem. Mater. 22, 648 (2010). https://doi.org/10.1021/cm902195j

    Article  CAS  Google Scholar 

  5. A. A. Shabaldin, P. P. Konstantinov, D. A. Kurdyukov, et al., Semiconductors 53, 742 (2019). https://doi.org/10.1134/S1063782619060186

    Article  CAS  Google Scholar 

  6. B. Moyzhes and V. Nemchinsky, Appl. Phys. Lett. 73, 1895 (1998). https://doi.org/10.1063/1.122318

    Article  CAS  Google Scholar 

  7. A. T. Burkov, A. Heinrich, P. P. Konstantinov, et al., Meas. Sci. Technol. 12, 264 (2001). https://doi.org/10.1088/0957-0233/12/3/304

    Article  CAS  Google Scholar 

  8. A. T. Burkov, A. I. Fedotov, and S. V. Novikov, Thermoelectrics for Power Generation–A Look at Trends in the Technology (InTech, Rijeka, 2016), p. 351. https://doi.org/10.5772/66290

    Book  Google Scholar 

  9. Y. Kakefuda, K. Yubuta, T. Shishido, et al., APL Mater. 5, 126103 (2017). https://doi.org/10.1063/1.5005869

    Article  CAS  Google Scholar 

  10. T. E. Faber and J. M. Ziman, Philos. Mag. 11, 153 (1965). https://doi.org/10.1080/14786436508211931

    Article  CAS  Google Scholar 

  11. D. M. North, J. E. Enderby, and P. A. Egelstaff, J. Phys. C: Solid State Phys. 1, 784 (1968). https://doi.org/10.1088/0022-3719/1/3/329

    Article  Google Scholar 

  12. S. V. Novikov, A. T. Burkov, and J. Schumann, J. Electron. Mater. 43, 2420 (2014). https://doi.org/10.1007/s11664-014-3388-7

    Article  Google Scholar 

  13. A. T. Burkov, S. V. Novikov, V. V. Khovaylo, and J. Schumann, J. Alloys Compd. 691, 89 (2017). https://doi.org/10.1016/j.jallcom.2016.08.117

    Article  CAS  Google Scholar 

  14. S. V. Novikov, V. S. Kuznetsova, A. T. Burkov, and J. Schumann, Semiconductors 54, 426 (2020). https://doi.org/10.1134/S1063782620040107

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by a grant of the President of the Russian Federation MK-1452.2019.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Novikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, S.V., Antonov, A.S., Pospeev, A.A. et al. Thermoelectric Properties of Amorphous and Nanocrystallic Cr0.33Si0.67 Films at Different Annealing Stages in the Range 100–900 K. Nanotechnol Russia 16, 346–350 (2021). https://doi.org/10.1134/S2635167621030149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621030149

Navigation