Skip to main content
Log in

Progress in the Research on Promising High-Performance Thermoelectric Materials

  • REVIEWS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Various classes of chemical compounds that are considered promising thermoelectric materials with a high efficiency of converting thermal energy into electric energy are studied. The strategies for increasing the thermoelectric figure of merit and examples of their application are described. The progress in studies of compounds, such as SnX (X = S, Se, Te), AgSbTe2, M3 – xTe4 (M = La, Nd, Pr), Mg3Sb2, Mg2X (X = Si, Ge, Sn), and MgAgSb, is evaluated. The contribution of the use of information technology to the development of thermoelectric materials science is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. F. Ioffe, Sots. Rekonstr. Nauka 2–3, 108 (1931).

    Google Scholar 

  2. A. F. Ioffe, Semiconductor Thermal Elements (Akad. Nauk SSSR, Moscow, 1960) [in Russian].

    Google Scholar 

  3. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993). https://doi.org/10.1103/PhysRevB.47.12727

    Article  CAS  Google Scholar 

  4. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993). https://doi.org/10.1103/PhysRevB.47.16631

    Article  CAS  Google Scholar 

  5. R. Venkatasubramanian, E. Siivola, T. Colpitts, et al., Nature (London, U.K.) 413 (6856), 597 (2001). https://doi.org/10.1038/35098012

    Article  CAS  Google Scholar 

  6. K. Kishimoto and T. Koyanagi, J. Appl. Phys. 92, 2544 (2002). https://doi.org/10.1063/1.1499206

    Article  CAS  Google Scholar 

  7. B. Y. Moizhes and V. Nemchinsky, in Proceedings of the 11th International Conference on Thermoelectricity, Ed. by K. R. Rao (Univ. Texas Press, Arlington, TX, 1992), p. 232.

  8. K. F. Hsu, S. Loo, F. Guo, et al., Science (Washington, DC, U. S.) 303 (5659), 818 (2004). https://doi.org/10.1126/science.1092963

    Article  CAS  Google Scholar 

  9. G. Slack, CRC Handbook of Thermoelectrics (CRC, Boca Raton, 1995). https://doi.org/10.1201/9781420049718.ch34

    Book  Google Scholar 

  10. B. C. Sales, D. Mandrus, and R. K. Williams, Science (Washington, DC, U. S.) 272 (5266), 1325 (1996). https://doi.org/10.1126/science.272.5266.1325

    Article  CAS  Google Scholar 

  11. X. Yan, G. Joshi, W. Liu, et al., Nano Lett. 11, 556 (2011). https://doi.org/10.1021/nl104138t

    Article  CAS  Google Scholar 

  12. X. Yan, W. Liu, H. Wang, et al., Energy Environ. Sci. 5, 7543 (2012). https://doi.org/10.1039/c2ee21554c

    Article  CAS  Google Scholar 

  13. F. Gascoin, S. Ottensmann, D. Stark, et al., Adv. Funct. Mater. 15, 1860 (2005). https://doi.org/10.1002/adfm.200500043

    Article  CAS  Google Scholar 

  14. E. S. Toberer, C. A. Cox, S. R. Brown, et al., Adv. Funct. Mater. 18, 2795 (2008). https://doi.org/10.1002/adfm.200800298

    Article  CAS  Google Scholar 

  15. A. T. Burkov, Phys. Status Solidi A 215, 1800105 (2018). https://doi.org/10.1002/pssa.201800105

    Article  CAS  Google Scholar 

  16. C. S. R. Matthes, D. F. Woerner, T. J. Hendricks, et al., in Proceedings of the IEEE Aerospace Conference, 2018. https://doi.org/10.1109/AERO.2018.8396738

  17. S. LeBlanc, S. K. Yee, M. L. Scullin, et al., Renewable Sustainable Energy Rev. 32, 313 (2014). https://doi.org/10.1016/j.rser.2013.12.030

    Article  CAS  Google Scholar 

  18. H. Liu, X. Shi, F. Xu, et al., Nat. Mater. 11, 422 (2012). https://doi.org/10.1038/nmat3273

    Article  CAS  Google Scholar 

  19. K. Kim, G. Kim, S. Il Kim, et al., J. Alloys Compd. 772, 593 (2019). https://doi.org/10.1016/j.jallcom.2018.09.099

    Article  CAS  Google Scholar 

  20. X. Tang, W. Xie, H. Li, et al., Appl. Phys. Lett. 90 (1) (2007). https://doi.org/10.1063/1.2425007

  21. Y. Ma, Q. Hao, B. Poudel, et al., Nano Lett. 8, 2580 (2008). https://doi.org/10.1021/nl8009928

    Article  CAS  Google Scholar 

  22. W. Xie, J. He, H. J. Kang, et al., Nano Lett. 10, 3283 (2010). https://doi.org/10.1021/nl100804a

    Article  CAS  Google Scholar 

  23. C. Li, X. Qin, Y. Li, et al., J. Alloys Compd. 661, 389 (2016). https://doi.org/10.1016/j.jallcom.2015.11.217

    Article  CAS  Google Scholar 

  24. F. Li, R. Zhai, Y. Wu, et al., J. Mater. 4, 208 (2018). https://doi.org/10.1016/j.jmat.2018.05.008

    Article  CAS  Google Scholar 

  25. Y. C. Dou, X. Y. Qin, D. Li, et al., J. Appl. Phys. 114 (4) (2013). https://doi.org/10.1063/1.4817074

  26. J. Li, Q. Tan, J. F. Li, et al., Adv. Funct. Mater. 23, 4317 (2013). https://doi.org/10.1002/adfm.201300146

    Article  CAS  Google Scholar 

  27. B. Madavali, C. H. Lee, H. S. Kim, et al., Int. J. Appl. Ceram. Technol. 15, 125 (2018). https://doi.org/10.1111/ijac.12789

    Article  CAS  Google Scholar 

  28. B. Madavali, H. S. Kim, K. H. Lee, et al., Intermetallics 82, 68 (2017). https://doi.org/10.1016/j.intermet.2016.11.002

    Article  CAS  Google Scholar 

  29. L. D. Ivanova, Yu. V. Granatkina, A. G. Malchev, I. Yu. Nikhezina and M. V. Emel’yanov, Semiconductors 53, 652 (2019). https://doi.org/10.1134/S1063782619050099

    Article  CAS  Google Scholar 

  30. L. D. Ivanova, L. I. Petrova, Y. V. Granatkina, et al., Inorg. Mater. 51, 741 (2015). https://doi.org/10.1134/S0020168515070067

    Article  CAS  Google Scholar 

  31. L. P. Hu, X. H. Liu, H. H. Xie, et al., Acta Mater. 60, 4431 (2012). https://doi.org/10.1016/j.actamat.2012.05.008

    Article  CAS  Google Scholar 

  32. Z. Dashevsky and S. Skipidarov, in Novel Thermoelectric Materials and Device Design Concepts (Springer, Switzerland, 2019), p. 3. https://doi.org/10.1007/978-3-030-12057-3_1

    Book  Google Scholar 

  33. M. G. Lavrentev, V. B. Osvenskii, Y. N. Parkhomenko, et al., Apl. Mater. 4 (10) (2016). https://doi.org/10.1063/1.4953173

  34. R. J. Korkosz, T. C. Chasapis, S. H. Lo, et al., J. Am. Chem. Soc. 136, 3225 (2014). https://doi.org/10.1021/ja4121583

    Article  CAS  Google Scholar 

  35. H. J. Wu, L. D. Zhao, F. S. Zheng, et al., Nat. Commun. 5, 4515 (2014). https://doi.org/10.1038/ncomms5515

    Article  CAS  Google Scholar 

  36. Y. Xiao, H. Wu, J. Cui, et al., Energy Environ. Sci. 11, 2486 (2018). https://doi.org/10.1039/c8ee01151f

    Article  CAS  Google Scholar 

  37. J. Zhang, D. Wu, D. He, et al., Adv. Mater. 29 (39) (2017). https://doi.org/10.1002/adma.201703148

  38. Y. L. Pei and Y. Liu, J. Alloys Compd. 514, 40 (2012). https://doi.org/10.1016/j.jallcom.2011.10.036

    Article  CAS  Google Scholar 

  39. Y. Lee, S. H. Lo, C. Chen, et al., Nat. Commun. 5, 3640 (2014). https://doi.org/10.1038/ncomms4640

    Article  CAS  Google Scholar 

  40. J. M. Hodges, S. Hao, J. A. Grovogui, et al., J. Am. Chem. Soc. 140, 18115 (2018). https://doi.org/10.1021/jacs.8b11050

    Article  CAS  Google Scholar 

  41. L. D. Zhao, S. H. Lo, Y. Zhang, et al., Nature (London, U.K.) 508 (7496), 373 (2014). https://doi.org/10.1038/nature13184

    Article  CAS  Google Scholar 

  42. L. D. Zhao, G. Tan, S. Hao, et al., Science (Washington, DC, U. S.) 351 (6269), 141 (2016). https://doi.org/10.1126/science.aad3749

    Article  CAS  Google Scholar 

  43. C. Chang, D. Wang, D. He, et al., Adv. Energy Mater. 9, 1901334 (2019). https://doi.org/10.1002/aenm.201901334

    Article  CAS  Google Scholar 

  44. H. Wu, X. Lu, X. Han, et al., in Novel Thermoelectric Materials and Device Design Concepts (Springer, Switzerland, 2019), p. 47. https://doi.org/10.1007/978-3-030-12057-3_3

    Book  Google Scholar 

  45. J. Tang, B. Gao, S. Lin, et al., Adv. Funct. Mater. 28, 1803586 (2018). https://doi.org/10.1002/adfm.201803586

    Article  CAS  Google Scholar 

  46. D. T. Morelli, V. Jovovic, and J. P. Heremans, Phys. Rev. Lett. 101, 035901 (2008). https://doi.org/10.1103/PhysRevLett.101.035901

    Article  CAS  Google Scholar 

  47. H. J. Wu and S. W. Chen, Acta Mater. 59, 6463 (2011). https://doi.org/10.1016/j.actamat.2011.07.010

    Article  CAS  Google Scholar 

  48. B. Du, H. Li, J. Xu, et al., Chem. Mater. 22, 5521 (2010). https://doi.org/10.1021/cm101503y

    Article  CAS  Google Scholar 

  49. S. Roychowdhury, R. Panigrahi, S. Perumal, et al., ACS Energy Lett. 2, 349 (2017). https://doi.org/10.1021/acsenergylett.6b00639

    Article  CAS  Google Scholar 

  50. M. Hong, Z. G. Chen, L. Yang, et al., Adv. Energy Mater. 8, 1702333 (2018). https://doi.org/10.1002/aenm.201702333

    Article  CAS  Google Scholar 

  51. C. Xiao, X. Qin, J. Zhang, et al., J. Am. Chem. Soc. 134, 18460 (2012). https://doi.org/10.1021/ja308936b

    Article  CAS  Google Scholar 

  52. L. Pan, D. Bérardan, and N. Dragoe, J. Am. Chem. Soc. 135, 4914 (2013). https://doi.org/10.1021/ja312474n

    Article  CAS  Google Scholar 

  53. W. Gao, Z. Wang, J. Huang, et al., ACS Appl. Mater. Interfaces 10, 18685 (2018). https://doi.org/10.1021/acsami.8b03243

    Article  CAS  Google Scholar 

  54. A. F. May, J. P. Fleurial, and G. J. Snyder, Phys. Rev. B 78, 125205 (2008). https://doi.org/10.1103/PhysRevB.78.125205

    Article  CAS  Google Scholar 

  55. S. M. Clarke, J. M. Ma, C. K. Huang, et al., Mater. Res. Soc. Symp. Proc. 1490, 83 (2013). https://doi.org/10.1557/opl.2013.25

    Article  CAS  Google Scholar 

  56. D. Cheikh, B. E. Hogan, T. Vo, et al., Joule 2, 698 (2018). https://doi.org/10.1016/j.joule.2018.01.013

    Article  CAS  Google Scholar 

  57. S. J. Gomez, D. Cheikh, T. Vo, et al., Chem. Mater. 31, 4460 (2019). https://doi.org/10.1021/acs.chemmater.9b00964

    Article  CAS  Google Scholar 

  58. X. Shi, W. Zhang, L. D. Chen, et al., Phys. Rev. Lett. 95, 185503 (2005). https://doi.org/10.1103/PhysRevLett.95.185503

    Article  CAS  Google Scholar 

  59. X. Shi, W. Zhang, L. D. Chen, et al., Acta Mater. 56, 1733 (2008). https://doi.org/10.1016/j.actamat.2007.12.012

    Article  CAS  Google Scholar 

  60. T. He, J. Chen, H. D. Rosenfeld, et al., Chem. Mater. 18, 759 (2006). https://doi.org/10.1021/cm052055b

    Article  CAS  Google Scholar 

  61. V. V. Khovaylo, T. A. Korolkov, A. I. Voronin, et al., J. Mater. Chem. A 5, 3541 (2017). https://doi.org/10.1039/c6ta09092c

    Article  CAS  Google Scholar 

  62. G. S. Nolas, H. Takizawa, T. Endo, et al., Appl. Phys. Lett. 77, 52 (2000). https://doi.org/10.1063/1.126874

    Article  CAS  Google Scholar 

  63. B. Sales, B. Chakoumakos, and D. Mandrus, Phys. Rev. B 61, 2475 (2000). https://doi.org/10.1103/PhysRevB.61.2475

    Article  CAS  Google Scholar 

  64. X. Li, B. Xu, L. Zhang, et al., J. Alloys Compd. 615, 177 (2014). https://doi.org/10.1016/j.jallcom.2014.06.198

    Article  CAS  Google Scholar 

  65. J. Yang, W. Zhang, S. Q. Bai, et al., Appl. Phys. Lett. 90, 192111 (2007). https://doi.org/10.1063/1.2737422

    Article  CAS  Google Scholar 

  66. X. Shi, J. Yang, J. R. Salvador, et al., J. Am. Chem. Soc. 133, 7837 (2011). https://doi.org/10.1021/ja111199y

    Article  CAS  Google Scholar 

  67. G. Rogl, A. Grytsiv, E. Bauer, et al., Intermetallics 18, 57 (2010). https://doi.org/10.1016/j.intermet.2009.06.005

    Article  CAS  Google Scholar 

  68. G. Rogl, A. Grytsiv, P. Rogl, et al., Solid State Phenom. 170, 240 (2011). https://doi.org/10.4028/www.scientific.net/SSP.170.240

  69. G. Rogl, A. Grytsiv, P. Rogl, et al., Intermetallics 19, 546 (2011). https://doi.org/10.1016/j.intermet.2010.12.001

    Article  CAS  Google Scholar 

  70. L. Zhang, A. Grytsiv, M. Kerber, et al., J. Alloys Compd. 490, 19 (2010). https://doi.org/10.1016/j.jallcom.2009.10.033

    Article  CAS  Google Scholar 

  71. G. Rogl, A. Grytsiv, P. Rogl, et al., Acta Mater. 76, 434 (2014). https://doi.org/10.1016/j.actamat.2014.05.051

    Article  CAS  Google Scholar 

  72. G. Rogl, A. Grytsiv, J. Bursik, et al., Phys. Chem. Chem. Phys. 17, 3715 (2015). https://doi.org/10.1039/c4cp05230g

    Article  CAS  Google Scholar 

  73. G. Rogl, A. Grytsiv, P. Rogl, et al., Acta Mater. 61, 6778 (2013). https://doi.org/10.1016/j.actamat.2013.07.052

    Article  CAS  Google Scholar 

  74. G. Rogl, A. Grytsiv, P. Rogl, et al., Acta Mater. 63, 30 (2014). https://doi.org/10.1016/j.actamat.2013.09.039

    Article  CAS  Google Scholar 

  75. G. Rogl and P. Rogl, Mater. Today Phys. 3, 48 (2017). https://doi.org/10.1016/j.mtphys.2017.12.004

    Article  Google Scholar 

  76. G. Rogl, A. Grytsiv, K. Yubuta, et al., Acta Mater. 95, 201 (2015). https://doi.org/10.1016/j.actamat.2015.05.024

    Article  CAS  Google Scholar 

  77. T. Caillat, J. P. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997). https://doi.org/10.1016/S0022-3697(96)00228-4

    Article  CAS  Google Scholar 

  78. J. Lin, X. Li, G. Qiao, et al., J. Am. Chem. Soc. 136, 1497 (2014). https://doi.org/10.1021/ja410605f

    Article  CAS  Google Scholar 

  79. Q. Q. Wang, X. Y. Qin, D. Li, et al., J. Appl. Phys. 113, 124901 (2013). https://doi.org/10.1063/1.4795840

    Article  CAS  Google Scholar 

  80. V. P. Panchenko, N. Y. Tabachkova, A. A. Ivanov, et al., Semiconductors 51, 714 (2017). https://doi.org/10.1134/S1063782617060252

    Article  CAS  Google Scholar 

  81. A. A. Ivanov, D. I. Bogomolov, V. T. Bublik, et al., J. Electron. Mater. 49, 2704 (2020). https://doi.org/10.1007/s11664-020-08056-3

    Article  CAS  Google Scholar 

  82. N. Kazem, W. Xie, S. Ohno, et al., Chem. Mater. 26, 1393 (2014). https://doi.org/10.1021/cm403345a

    Article  CAS  Google Scholar 

  83. A. Zevalkink, J. Swallow, and G. J. Snyder, Dalton. Trans. 42, 9713 (2013). https://doi.org/10.1039/c3dt50428j

    Article  CAS  Google Scholar 

  84. A. Zevalkink, W. G. Zeier, G. Pomrehn, et al., Energy Environ. Sci. 5, 9121 (2012). https://doi.org/10.1039/c2ee22378c

    Article  CAS  Google Scholar 

  85. S. Ohno, U. Aydemir, M. Amsler, et al., Adv. Funct. Mater. 27, 1606361 (2017). https://doi.org/10.1002/adfm.201606361

    Article  CAS  Google Scholar 

  86. G. Cerretti, O. Villalpo, J. P. Fleurial, et al., J. Appl. Phys. 126, 175102 (2019). https://doi.org/10.1063/1.5118227

    Article  CAS  Google Scholar 

  87. Y. Hu, J. Wang, A. Kawamura, et al., Chem. Mater. 27, 343 (2015). https://doi.org/10.1021/cm504059t

    Article  CAS  Google Scholar 

  88. Y. Hu, S. K. Bux, J. H. Grebenkemper, et al., J. Mater. Chem. C 3, 10566 (2015). https://doi.org/10.1039/c5tc02326b

    Article  CAS  Google Scholar 

  89. J. H. Grebenkemper, Y. Hu, D. Barrett, et al., Chem. Mater. 27, 5791 (2015). https://doi.org/10.1021/acs.chemmater.5b02446

    Article  CAS  Google Scholar 

  90. J. A. Paik, E. Bron, T. Caillat, et al., in Proceedings of the Conference on Nuclear and Emerging Technologies for Space NETS-2011, Albuquerque NM, 2011.

  91. J. Shuai, H. Geng, Y. Lan, et al., Proc. Natl. Acad. Sci. U. S. A. 113, 4125 (2016). https://doi.org/10.1073/pnas.1608794113

    Article  CAS  Google Scholar 

  92. S. R. Brown, S. M. Kauzlarich, F. Gascoin, et al., Chem. Mater. 18, 1873 (2006). https://doi.org/10.1021/cm060261t

    Article  CAS  Google Scholar 

  93. A. Zevalkink, E. S. Toberer, W. G. Zeier, et al., Energy Environ. Sci. 4, 510 (2011). https://doi.org/10.1039/c0ee00517g

    Article  CAS  Google Scholar 

  94. J. Zhang, L. Song, S. H. Pedersen, et al., Nat. Commun. 8, 13901 (2017). https://doi.org/10.1038/ncomms13901

    Article  CAS  Google Scholar 

  95. H. Tamaki, H. K. Sato, and T. Kanno, Adv. Mater. 28, 10182 (2016). https://doi.org/10.1002/adma.201603955

    Article  CAS  Google Scholar 

  96. X. Chen, H. Wu, J. Cui, et al., Nano Energy 52, 246 (2018). https://doi.org/10.1016/j.nanoen.2018.07.059

    Article  CAS  Google Scholar 

  97. K. Imasato, S. D. Kang, and G. J. Snyder, Energy Environ. Sci. 12, 965 (2019). https://doi.org/10.1039/C8EE03374A

    Article  CAS  Google Scholar 

  98. N. Satyala and D. Vashaee, J. Appl. Phys. 112, 093716 (2012). https://doi.org/10.1063/1.4764872

    Article  CAS  Google Scholar 

  99. V. Zaitsev, Thermoelectrics Handbook (CRC, Boca Raton, 2005). https://doi.org/10.1201/9781420038903.ch29

    Book  Google Scholar 

  100. W. Liu, X. Tan, K. Yin, et al., Phys. Rev. Lett. 108, 166601 (2012). https://doi.org/10.1103/PhysRevLett.108.166601

    Article  CAS  Google Scholar 

  101. P. Gao, I. Berkun, R. D. Schmidt, et al., J. Electron. Mater. 43, 1790 (2014). https://doi.org/10.1007/s11664-013-2865-8

    Article  CAS  Google Scholar 

  102. J. Mao, H. S. Kim, J. Shuai, et al., Acta Mater. 103, 633 (2016). https://doi.org/10.1016/j.actamat.2015.11.006

    Article  CAS  Google Scholar 

  103. L. Zhang, P. Xiao, L. Shi, et al., J. Appl. Phys. 117, 155103 (2015). https://doi.org/10.1063/1.4918311

    Article  CAS  Google Scholar 

  104. G. K. Goyal, S. Mukherjee, R. C. Mallik, et al., ACS Appl. Energy Mater. 2, 2129 (2019). https://doi.org/10.1021/acsaem.8b02148

    Article  CAS  Google Scholar 

  105. S. K. Bux, M. T. Yeung, E. S. Toberer, et al., J. Mater. Chem. 21, 12259 (2011). https://doi.org/10.1039/c1jm10827a

    Article  CAS  Google Scholar 

  106. K. Yin, X. Su, Y. Yan, et al., Chem. Mater. (2016). https://doi.org/10.1021/acs.chemmater.6b02308

  107. L. Zhang, X. Chen, Y. Tang, et al., J. Mater. Chem. A 4, 17726 (2016). https://doi.org/10.1039/c6ta07611d

    Article  CAS  Google Scholar 

  108. F. G. Aliev, V. V. Kozyrkov, V. V. Moshchalkov, et al., Z. Phys. B 80, 353 (1990). https://doi.org/10.1007/BF01323516

    Article  CAS  Google Scholar 

  109. J. Yang, H. Li, T. Wu, et al., Adv. Funct. Mater. 18, 2880 (2008). https://doi.org/10.1002/adfm.200701369

    Article  CAS  Google Scholar 

  110. S. Chen, K. C. Lukas, W. Liu, et al., Adv. Energy Mater. 3, 1210 (2013). https://doi.org/10.1002/aenm.201300336

    Article  CAS  Google Scholar 

  111. R. He, H. Zhu, J. Sun, et al., Mater. Today Phys. 1, 24 (2017). https://doi.org/10.1016/j.mtphys.2017.05.002

    Article  Google Scholar 

  112. Y. Kimura, T. Tanoguchi, and T. Kita, Acta Mater. 58, 4354 (2010). https://doi.org/10.1016/j.actamat.2010.04.028

    Article  CAS  Google Scholar 

  113. R. He, L. Huang, Y. Wang, et al., APL Mater. 4, 104804 (2016). https://doi.org/10.1063/1.4952994

    Article  CAS  Google Scholar 

  114. X. Yan, W. Liu, S. Chen, et al., Adv. Energy Mater. 3, 1195 (2013). https://doi.org/10.1002/aenm.201200973

    Article  CAS  Google Scholar 

  115. G. Rogl, P. Sauerschnig, Z. Rykavets, et al., Acta Mater. 131, 336 (2017). https://doi.org/10.1016/j.actamat.2017.03.071

    Article  CAS  Google Scholar 

  116. H. Zhu, R. He, J. Mao, et al., Nat. Commun. 9, 2497 (2018). https://doi.org/10.1038/s41467-018-04958-3

    Article  CAS  Google Scholar 

  117. C. Fu, S. Bai, Y. Liu, et al., Nat. Commun. 6, 8144 (2015). https://doi.org/10.1038/ncomms9144

    Article  Google Scholar 

  118. Y. Zheng, C. Liu, L. Miao, et al., Nano Energy 59, 311 (2019). https://doi.org/10.1016/j.nanoen.2019.02.045

    Article  CAS  Google Scholar 

  119. Z. Liu, J. Shuai, J. Mao, et al., Acta Mater. 102, 17 (2016). https://doi.org/10.1016/j.actamat.2015.09.033

    Article  CAS  Google Scholar 

  120. Z. Liu, Y. Wang, J. Mao, et al., Adv. Energy Mater. 6, 1502269 (2016). https://doi.org/10.1002/aenm.201502269

    Article  CAS  Google Scholar 

  121. J. Shuai, H. S. Kim, Y. Lan, et al., Nano Energy 11, 640 (2015). https://doi.org/10.1016/j.nanoen.2014.11.027

    Article  CAS  Google Scholar 

  122. Z. Liu, Y. Wang, W. Gao, et al., Nano Energy 31, 194 (2017). https://doi.org/10.1016/j.nanoen.2016.11.010

    Article  CAS  Google Scholar 

  123. H. Zhao, J. Sui, Z. Tang, et al., Nano Energy 7, 97 (2014). .https://doi.org/10.1016/j.nanoen.2014.04.012

    Article  CAS  Google Scholar 

  124. J. Sui, J. Shuai, Y. Lan, et al., Acta Mater. 87, 266 (2015). https://doi.org/10.1016/j.actamat.2015.01.018

    Article  CAS  Google Scholar 

  125. Z. Liu, W. Gao, X. Meng, et al., Scr. Mater. (2017). https://doi.org/10.1016/j.scriptamat.2016.08.037

  126. N. N. Kiselyova, V. A. Dudarev, and A. V. Stolyarenko, High Temp. 54, 215 (2016). https://doi.org/10.1134/S0018151X16020085

    Article  CAS  Google Scholar 

  127. F. V. Grechnikov, I. N. Bobrovskii, Ya. A. Erisov, et al., Izv. Samar. Nauch. Tsentra RAN 19, 563 (2017).

    Google Scholar 

  128. J. J. de Pablo, N. E. Jackson, M. A. Webb, et al., npj Comput. Mater. 5, 41 (2019). https://doi.org/10.1038/s41524-019-0173-4

    Article  Google Scholar 

  129. L. Xi, S. Pan, X. Li, et al., J. Am. Chem. Soc. 140, 10785 (2018). https://doi.org/10.1021/jacs.8b04704

    Article  CAS  Google Scholar 

  130. M. W. Gaultois, T. D. Sparks, C. K. H. Borg, et al., Chem. Mater. 25, 2911 (2013). https://doi.org/10.1021/cm400893e

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ivanov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.A., Kaplar, E.P., Prilepo, Y.P. et al. Progress in the Research on Promising High-Performance Thermoelectric Materials. Nanotechnol Russia 16, 268–281 (2021). https://doi.org/10.1134/S263516762103006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S263516762103006X

Navigation