Skip to main content
Log in

Topological Thermoelectric Materials Based on Bismuth Telluride

  • REVIEWS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The main directions of experimental studies of topological insulators based on bismuth and antimony chalcogenides, which are related to the possibility of using the properties of the surface states of Dirac fermions in thermoelectricity, have been considered. The results of studies of the Van der Waals interlayer surface (0001) in single-crystal layered films of solid solutions of n- and p-type conductivity with substitutions of atoms in Bi and Te sublattices performed by micro-Raman spectroscopy, scanning tunneling microscopy, and scanning tunneling spectroscopy have been discussed. The oscillations of galvanomagnetic effects in strong magnetic fields and thermoelectric properties measured under normal conditions and at high pressures have been analyzed. The compositions of solid solutions in which the contribution of the surface states of Dirac fermions increases because of an increase in the surface concentration of fermions and the Fermi velocity depending on the energy of the Dirac point, the value of the Seebeck coefficient, and the power parameter have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001), p. 295.

    Book  Google Scholar 

  2. D. M. Rowe, in Modules, Systems, and Applications in Thermoelectrics, Ed. by D. M. Rowe (CRC, Boca Raton, FL, 2012), p. 23.

    Book  Google Scholar 

  3. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010). https://doi.org/10.1103/RevModPhys.82.3045

    Article  CAS  Google Scholar 

  4. P. Seifert, C. Kastl, and A. W. Holleitner, in The Role of Topology in Materials, Ed. by S. Gupta and A. Saxena, Springer Ser. Solid-State Sci. 189, 491 (2018).

  5. J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, Opt. Express 22, 6165 (2014). https://doi.org/10.1364/OE.22.006165

    Article  CAS  Google Scholar 

  6. H. Liu, X. Zhu, X. Sun, et al., ACS Nano 13, 13573 (2019). https://doi.org/10.1021/acsnano.9b07563

    Article  CAS  Google Scholar 

  7. K. Uchida, J. Xiao, H. Adachi, et al., Nat. Mater. 9, 894 (2010). https://doi.org/10.1038/nmat2856

    Article  CAS  Google Scholar 

  8. Z. Jiang, C. Z. Chang, M. R. Masir, et al., Nat. Commun. 7, 11458 (2016). https://doi.org/10.1038/nmat2856

    Article  CAS  Google Scholar 

  9. N. Xu, Y. Xu, and J. Zhu, npj Quant. Mater. 2, 51 (2017). https://doi.org/10.1038/s41535-017-0054-3

    Article  Google Scholar 

  10. J. Heremans, R. Cava, and N. Samarth, Nat. Rev. Mater. 2, 17049 (2017). https://doi.org/10.1038/natrevmats.2017.49

    Article  CAS  Google Scholar 

  11. D. Baldomir and D. Failde, Sci. Rep. 9, 6324 (2019). https://doi.org/10.1038/s41598-019-42744-3

    Article  CAS  Google Scholar 

  12. D. X. Qu, Y. S. Hor, J. Xiong, et al., Science (Washington, DC, U. S.) 329, 821 (2010). https://doi.org/10.1126/science.1189792

    Article  CAS  Google Scholar 

  13. X. Yu, L. He, M. Lang, et al., Nanotechnology 24, 015705 (2013). https://doi.org/10.1088/0957-4484/24/1/015705

    Article  CAS  Google Scholar 

  14. B. Seradjeh, J. E. Moore, and M. Franz, Phys. Rev. Lett. 103, 066402 (2009). https://doi.org/10.1103/PhysRevLett.103.066402

    Article  CAS  Google Scholar 

  15. K. Wu, L. Rademaker, and J. Zaanen, Phys. Rev. Appl. 2, 054013 (2014). https://doi.org/10.1103/PhysRevApplied.2.054013

    Article  CAS  Google Scholar 

  16. M. Eschbach, E. Mlynczak, J. Kellner, et al., Nat. Commun. 6, 8816 (2015). https://doi.org/10.1038/ncomms9816

    Article  CAS  Google Scholar 

  17. H. Nam, Y. Xu, I. Miotkowski, et al., J. Phys. Chem. Solids 128, 251 (2019). https://doi.org/10.1016/j.jpcs.2017.10.026

    Article  CAS  Google Scholar 

  18. J. Zhang, C. Z. Chang, Z. Zhang, et al., Nat. Commun. 2, 574 (2011). https://doi.org/10.1038/ncomms1588

    Article  CAS  Google Scholar 

  19. S. I. Vedeneev, Phys. Usp. 60, 385 (2017). https://doi.org/10.3367/UFNe.2017.01.038053

    Article  CAS  Google Scholar 

  20. Z. Alpichshev, J. G. Analytis, J. H. Chu, et al., Phys. Rev. Lett. 104, 016401 (2010). https://doi.org/10.1103/PhysRevLett.104.016401

    Article  CAS  Google Scholar 

  21. J. Sanchez-Barriga, M. R. Scholz, E. Golias, et al., Phys. Rev. B 90, 195413 (2014). https://doi.org/10.1103/PhysRevB.90.195413

    Article  CAS  Google Scholar 

  22. T.-H. Liu, J. Zhou, M. Li, et al., Proc. Natl. Acad. Sci. U. S. A. 115, 879 (2018). https://doi.org/10.1073/pnas.1715477115

    Article  CAS  Google Scholar 

  23. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009). https://doi.org/10.1039/B822664B

    Article  CAS  Google Scholar 

  24. T. Knispel, W. Jolie, N. Borgwardt, et al., Phys. Rev. B 96, 195135 (2017). https://doi.org/10.1103/PhysRevB.96.195135

    Article  Google Scholar 

  25. A. A. Taskin, Z. Ren, S. Sasaki, et al., Phys. Rev. Lett. 107, 016801 (2011). https://doi.org/10.1103/PhysRevLett.107.016801

    Article  CAS  Google Scholar 

  26. Z. Ren, A. A. Taskin, S. Sasaki, et al., Phys. Rev. B 84, 165311 (2011). https://doi.org/10.1103/PhysRevB.82.241306

    Article  CAS  Google Scholar 

  27. Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013). https://doi.org/10.7566/JPSJ.82.102001

    Article  CAS  Google Scholar 

  28. X. He, H. Li, L. Chen, and K. Wu, Sci. Rep. 5, 8830 (2015). https://doi.org/10.1038/srep08830

    Article  CAS  Google Scholar 

  29. A. Yu. Dmitriev, N. I. Fedotov, V. F. Nasretdinova, and S. V. Zaitsev-Zotov, JETP Lett. 100, 442 (2014). https://doi.org/10.7868/S0370274X1418009X

    Article  Google Scholar 

  30. P. Sessi, M. M. Otrokov, and T. Bathon, Phys. Rev. B 88, 161407(R) (2013). https://doi.org/10.1103/PhysRevB.88.161407

  31. T. Arakane, T. Sato, S. Souma, et al., Nat. Commun. 3, 636 (2012). https://doi.org/10.1038/ncomms1639

    Article  CAS  Google Scholar 

  32. Y. P. Chen, Proc. SPIE 8373, 83730B-02 (2012). https://doi.org/10.1117/12.920513

    Article  Google Scholar 

  33. Y. Chen, “Surface excitonic thermoelectric devices,” US Patent Appl. No. 20120138115 (2012).

  34. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’quinn, Nature (London, U.K.) 413, 597 (2001). https://doi.org/10.1038/35098012

    Article  CAS  Google Scholar 

  35. L. N. Luk’yanova, A. Yu. Bibik, V. A. Aseev, O. A. Usov, I. V. Makarenko, V. N. Petrov, N. V. Nikonorov, and V. A. Kutasov, Phys. Solid State 58, 1440 (2016).

    Article  Google Scholar 

  36. L. N. Luk’yanova, A. Yu. Bibik, V. A. Aseev, O. A. Usov, I. V. Makarenko, V. N. Petrov and N. V. Nikonorov, Semiconductors 51, 729 (2017). https://doi.org/10.1134/S1063782617060197

    Article  Google Scholar 

  37. T. S. Kunkel, L. N. Lukyanova, A. V. Ankudinov, and O. A. Usov, Ferroelectrics 525, 156 (2018). https://doi.org/10.1080/00150193.2018.1432828

    Article  CAS  Google Scholar 

  38. D. Teweldebrhan, V. Goyal, and A. A. Balandin, Nano Lett. 10, 1209 (2010). https://doi.org/10.1021/nl903590b

    Article  CAS  Google Scholar 

  39. Yu. D. Glinka, S. Babakiray, T. A. Johnson, and D. Lederman, J. Phys.: Condens. Matter 27, 052203 (2015). https://doi.org/10.1088/0953-8984/27/5/052203

    Article  CAS  Google Scholar 

  40. L. Plucinski, A. Herdt, and S. Fahrendorf, J. Appl. Phys. 113, 053706 (2013). https://doi.org/10.1063/1.4789353

    Article  CAS  Google Scholar 

  41. D. Pietro, M. Ortolani, and O. A. Limaj, Nat. Nanotechnol. 8, 556 (2013). https://doi.org/10.1038/nnano.2013.134

    Article  CAS  Google Scholar 

  42. L. N. Lukyanova, I. V. Makarenko, O. A. Usov, and P. A. Dementev, Semicond. Sci. Technol. 33, 055001 (2018). https://doi.org/10.1088/1361-6641/aab538

    Article  CAS  Google Scholar 

  43. L. N. Lukyanova, I. V. Makarenko, O. A. Usov, and P. A. Dementev, Semiconductors 53, 1860 (2019). https://doi.org/10.1134/S1063782619050142

    Article  CAS  Google Scholar 

  44. L. N. Lukyanova, I. V. Makarenko, O. A. Usov, and P. A. Dementev, Semiconductors 53, 647 (2019). https://doi.org/10.1134/S1063782619050142

    Article  CAS  Google Scholar 

  45. W. S. Whitney, V. W. Brar, and Y. Ou, Nano Lett. 17, 255 (2017). https://doi.org/10.1021/acs.nanolett.6b03992

    Article  CAS  Google Scholar 

  46. L. N. Luk’yanova, Yu. A. Boikov, O. A. Usov, V. A. Danilov, and M. P. Volkov, Semiconductors 51, 843 (2017). https://doi.org/10.1134/S1063782617070259

    Article  Google Scholar 

  47. L. N. Luk’yanova, Yu. A. Boikov, V. A. Danilov, O. A. Usov, M. P. Volkov, and V. A. Kutasov, Phys. Solid State 56, 941 (2014).

    Article  Google Scholar 

  48. L. N. Luk’yanova, O. A. Usov, and M. P. Volkov, Semiconductors 53, 620 (2019). https://doi.org/10.1134/S1063782619050154

    Article  Google Scholar 

  49. N. H. Tu, Y. Tanabe, Y. Satake, et al., Nano Lett. 17, 2354 (2017). https://doi.org/10.1021/acs.nanolett.6b05260

    Article  CAS  Google Scholar 

  50. L. N. Lukyanova, Yu. A. Boikov, V. A. Danilov, et al., Semicond. Sci. Technol. 30, 015011 (2015). https://doi.org/10.1088/0268-1242/30/1/015011

    Article  CAS  Google Scholar 

  51. L. N. Luk’yanova, Yu. A. Boikov, O. A. Usov, and V. A. Danilov, Semiconductors 51, 692 (2017). https://doi.org/10.1134/S1063782617060203

    Article  Google Scholar 

  52. I. V. Korobeinikov, L. N. Luk’yanova, G. V. Vorontsov, V. V. Shchennikov, and V. A. Kutasov, Phys. Solid State 56, 263 (2014).

    Article  CAS  Google Scholar 

  53. S. V. Ovsyannikov, N. V. Morozova, I. V. Korobeinikov, et al., Appl. Phys. Lett. 106, 143901 (2015). https://doi.org/10.1063/1.4916947

    Article  CAS  Google Scholar 

  54. I. V. Korobeinikov, N. V. Morozova, L. N. Lukyanova, et al., J. Phys. D: Appl. Phys. 51, 025501 (2018).https://doi.org/10.1088/1361-6463/aa9b5f

    Article  CAS  Google Scholar 

  55. I. V. Korobeinikov, N. V. Morozova, L. N. Lukyanova, O. A. Usov, and S. V. Ovsyannikov, Semiconductors 53, 732 (2019). https://doi.org/10.1134/S1063782619060083

    Article  CAS  Google Scholar 

  56. M. Zhang, X. Wang, A. Rahman, et al., Appl. Phys. Lett. 112, 041907 (2018). https://doi.org/10.1063/1.5012842

    Article  CAS  Google Scholar 

  57. K. Park, J. J. Heremans, V. W. Scarola, et al., Phys. Rev. Lett. 105, 186801 (2010). https://doi.org/10.1103/PhysRevLett.105.186801

    Article  CAS  Google Scholar 

  58. J. S. Kim, R. Juneja, N. P. Salke, et al., J. Appl. Phys. 123, 115903 (2018). https://doi.org/10.1063/1.5018857

    Article  CAS  Google Scholar 

  59. M. K. Jacobsen, S. V. Sinogeikin, R. S. Kumar, and A. L. Cornelius, J. Phys. Chem. Solids 73, 1154 (2012). https://doi.org/10.1016/j.jpcs.2012.05.001

    Article  CAS  Google Scholar 

Download references

Funding

The study was partially supported by the Russian Foundation for Basic Research (project no. 20-08-00464).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Lukyanova.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukyanova, L.N., Usov, O.A., Volkov, M.P. et al. Topological Thermoelectric Materials Based on Bismuth Telluride. Nanotechnol Russia 16, 282–293 (2021). https://doi.org/10.1134/S2635167621030125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621030125

Navigation