Skip to main content
Log in

Thermoelectric Properties of n-Mg2Si0.8Sn0.2 Solid Solutions with Addition of SiO2 and TiO2 Nanoinclusions

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The results of theoretical calculations show the possibility of increasing the thermoelectric figure of merit in solid solutions of Mg2Si–Mg2Sn using nanoinclusions (NEAT approach). The thermoelectric properties of the Mg2Si0.2Sn0.8 solid solution, doped with antimony to obtain the optimal concentration of free electrons, with the addition of SiO2 and TiO2 impurities as additional scattering centers were studied. During the preparation of solid solution samples by hot pressing, nanoparticles of silicon dioxide and titanium dioxide of 15–200 nm in size at a concentration of 0.5–1 vol % were added. The coefficients of thermopower, electrical conductivity, and thermal conductivity were measured on these samples in the temperature range from 300 to 800 K. An insignificant decrease in thermal conductivity was shown for samples containing additional impurities. In this case, an increase in the thermoelectric figure of merit was not observed due to a decrease in the mobility of majority carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. J. Tani and H. Kido, Phys. B (Amsterdam, Neth.) 364, 218 (2005). https://doi.org/10.1016/j.physb.2005.04.017

  2. V. K. Zaitsev, M. I. Fedorov, E. A. Gurieva, et al., Phys. Rev. B 74, 045207 (2006). https://doi.org/10.1103/PhysRevB.74.045207

    Article  CAS  Google Scholar 

  3. N. A. Khan, N. Vlachos, and T. Kyratsi, Scr. Mater. 69, 606 (2013). https://doi.org/10.1016/j.scriptamat.2013.07.008

    Article  CAS  Google Scholar 

  4. P. Gao, I. Berkun, R. D. Schmidt, et al., J. Electron. Mater. 43, 1790 (2013). https://doi.org/10.1007/s11664-013-2865-8

    Article  CAS  Google Scholar 

  5. X. Zhang, H. Liu, Q. Lu, et al., Appl. Phys. Lett. 103, 063901 (2013). https://doi.org/10.1063/1.4816971

    Article  CAS  Google Scholar 

  6. M. I. Fedorov, V. K. Zaitsev, and G. N. Isachenko, Solid State Phenom. 170, 286 (2011). https://doi.org/10.4028/www.scientific.net/SSP.170.286

    Article  CAS  Google Scholar 

  7. P. Gao, J. D. Davis, V. V. Poltavets, and T. P. Hogan, J. Mater. Chem. C 4, 929 (2016). https://doi.org/10.1039/c5tc03692e

    Article  CAS  Google Scholar 

  8. H. Kamila, A. Sankhla, and M. Yasseri, Mater. Today: Proc. 8, 546 (2019). https://doi.org/10.1016/j.matpr.2019.02.052

    Article  CAS  Google Scholar 

  9. G. N. Isachenko, A. Y. Samunin, and E. A. Gurieva, J. Electron. Mater. 45, 1982 (2016). https://doi.org/10.1007/s11664-016-4345-4

    Article  CAS  Google Scholar 

  10. Y. Pei, J. Lensch-Falk, E. S. Toberer, et al., Adv. Funct. Mater. 21, 241 (2011). https://doi.org/10.1002/adfm.201000878

    Article  CAS  Google Scholar 

  11. N. Mingo, D. Hauser, N. P. Kobayashi, et al., Nano Lett. 9, 711 (2009). https://doi.org/10.1021/nl8031982

    Article  CAS  Google Scholar 

  12. S. Wang and N. Mingo, Appl. Phys. Lett. 94, 203109 (2009). https://doi.org/10.1063/1.3139785

    Article  CAS  Google Scholar 

  13. D. Zhang, F. Wenhao, F. Zhang, et al., Adv. Mater. Res. 415, 47 (2012). https://doi.org/10.4028/www.scientific.net/AMR.415-417.47

    Article  CAS  Google Scholar 

  14. M. I. Fedorov and V. K. Zaitsev, in Thermoelectrics Handbook. Macro to Nano, Ed. by D. M. Rowe (CRC, Taylor and Francis Group, Boca Raton, 2006), p. 31.

    Google Scholar 

  15. A. S. Tazebay, S.-I. Yi, J. K. Lee, et al., ACS Appl. Mater. Interfaces 8, 7003 (2016). https://doi.org/10.1021/acsami.5b12060

    Article  CAS  Google Scholar 

  16. K. Yin, X. Su, Y. Yan, et al., Scr. Mater. 126, 1 (2017). https://doi.org/10.1016/j.scriptamat.2016.08.010

    Article  CAS  Google Scholar 

  17. M. V. Vedernikov, P. P. Konstantinov, and A. T. Burkov, in Proceedings of Conference ICT-1989, Nancy, France, 1989, p. 45.

  18. A. Yu. Samunin, V. K. Zaitsev, D. A. Pshenay-Severin, P. P. Konstantinov, G. N. Isachenko, M. I. Fedorov, and S. V. Novikov, Phys. Solid State 58, 1528 (2016). https://doi.org/10.1134/S1063783416080242

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to E.P. Zayats for help in  carrying out experimental measurements and N.V. Zaitseva for X-ray studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Isachenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isachenko, G.N., Samunin, A.Y., Konstantinov, P.P. et al. Thermoelectric Properties of n-Mg2Si0.8Sn0.2 Solid Solutions with Addition of SiO2 and TiO2 Nanoinclusions. Nanotechnol Russia 16, 334–338 (2021). https://doi.org/10.1134/S2635167621030058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621030058

Navigation