Skip to main content
Log in

Thermoelectric Properties and Thermal Stability of Nanostructured Thermoelectric Materials on the Basis of PbTe, GeTe, and SiGe

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

We have developed compositions and methods for obtaining effective medium-temperature nanostructured thermoelectric materials (TEMs): PbTe (doped by 0.2 wt % PbI2, 0.3 wt % Ni), GeTe (doped by 7.4 wt % Bi), high-temperature Si0.8Ge0.2 (doped by 1.7 wt % P) and Si0.8Ge0.2 (doped by 0.5 wt % B). Using scanning electron microscopy, the composition and structure of the materials are studied. The temperature dependence of the electrical conductivity and thermoelectric power of TEMs are explored. The thermal conductivity of TEMs are studied by the absolute stationary method. The components of thermal conductivity are determined. A decrease in thermal conductivity in nanostructured materials by 10–15% in comparison with the usual structure due to phonon heat transfer has been found. The obtained data are used to calculate the thermoelectric figure of merit (Z) and parameter . For nanostructured TEMs based on PbTe, GeTe, and n-type Si0.8Ge0.2, the temperature dependences of specific heat have been studied for the first time using differential scanning calorimetry (DSC). With the help of repeated DSC measurements, it has been found that nanostructured TEMs are thermally stable in the working temperature ranges. Thermogravimetric analysis is carried out and temperatures are determined at which a significant TEM sublimation occurs. The ranges of operating temperatures at which the investigated TEMs have the maximum efficiency and thermal stability have been determined. This is urgent in modeling multisectional thermoelements operating in a wide temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. L. C. Ding, A. Akbarzadeh, and L. Tan, Renewable Sustainable Energy Rev. 81, 799 (2018). https://doi.org/10.1016/j.rser.2017.08.010

    Article  Google Scholar 

  2. F. Huang, J. Zheng, J. M. Baleynaud, and J. Lu, J. Energy Inst. 90, 951 (2017). https://doi.org/10.1016/j.joei.2016.07.012

    Article  CAS  Google Scholar 

  3. L. Yang, Z.-G. Chen, M. S. Dargusch, and J. Zou, Adv. Energy Mater. 8, 1701797 (2017). https://doi.org/10.1002/aenm.201701797

    Article  CAS  Google Scholar 

  4. S. Twaha, J. Zhu, Y. Yan, and B. Li, Renewable Sustainable Energy Rev. 65, 698 (2016). https://doi.org/10.1016/j.rser.2016.07.034

    Article  CAS  Google Scholar 

  5. W. He, G. Zhang, X. Zhang, et al., Appl. Energy 143, 1 (2015). https://doi.org/10.1016/j.apenergy.2014.12.075

    Article  Google Scholar 

  6. D. M. Rowe, Thermoelectrics Handbook: Macro to Nano (CRC, Boca Raton, FL, 2006). https://doi.org/10.1201/9781420038903

    Book  Google Scholar 

  7. A. A. Sherchenkov, Yu. I. Shtern, R. E. Mironov, M. Yu. Shtern, and M. S. Rogachev, Nanotechnol. Russ. 10, 827 (2015). https://doi.org/10.1134/S1995078015060117

    Article  Google Scholar 

  8. D. K. Aswal, R. Basu, and A. Singh, Energy Convers. Manag. 114, 50 (2016). https://doi.org/10.1016/j.enconman.2016.01.065

    Article  Google Scholar 

  9. X. Shi, L. Chen, and C. Uher, Int. Mater. Rev. 61, 379 (2016). https://doi.org/10.1080/09506608.2016.1183075

    Article  CAS  Google Scholar 

  10. X. Zhang and L.-D. Zhao, J. Materiomics 1, 92 (2015). doi

  11. M. Y. Shtern, M. S. Rogachev, Y. I. Shtern, et al., in Proceedings of the 2019 International Seminar on Electron Devices Design and Production, SED 2019 (IEEE, 2019), p. 8798432. https://doi.org/10.1109/SED.2019.8798432

  12. M. Yu. Shtern, M. S. Rogachev, A. A. Sherchenkov, and Yu. I. Shtern, Mater. Today: Proc. 20, 295 (2020). https://doi.org/10.1016/j.matpr.2019.10.066

    Article  CAS  Google Scholar 

  13. B. A. Cook, T. E. Chan, G. Dezsi, et al., J. Electron. Mater. 44, 1936 (2015). https://doi.org/10.1007/s11664-014-3600-9

    Article  CAS  Google Scholar 

  14. Y. Luo and C. N. Kim, Int. J. Energy Res. 43, 2172 (2019). https://doi.org/10.1002/er.4426

    Article  CAS  Google Scholar 

  15. M. L. Olsen, E. L. Warren, P. A. Parilla, et al., Energy Proc. 49, 1460 (2014). https://doi.org/10.1016/j.egypro.2014.03.155

    Article  Google Scholar 

  16. P. H. Ngan, D. V. Christensen, G. J. Snyder, et al., Phys. Status Solidi A 211, 9 (2014). https://doi.org/10.1002/pssa.201330155

    Article  CAS  Google Scholar 

  17. P. H. Ngan, L. Han, and D. V. Christensen, J. Electron. Mater. 47, 701 (2018). https://doi.org/10.1007/s11664-017-5827-8

    Article  CAS  Google Scholar 

  18. C. L. Cramer, H. Wang, and K. Ma, J. Electron. Mater. 47, 5122 (2018). https://doi.org/10.1007/s11664-018-6402-7

    Article  CAS  Google Scholar 

  19. M. Yu. Shtern, in Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, 2019, p. 1914. https://doi.org/10.1109/EIConRus.2019.8656785

  20. Y. I. Shtern, D. G. Gromov, M. Yu. Shtern, et al., in Proceedings of the 2017 IEEE Russia Section Young Researchers in Electrical and Electronic Engineering Conference, 2017, p. 1201. https://doi.org/10.1109/EIConRus.2017.7910776

  21. M. Martin-Gonzalez, Renewable Sustainable Energy Rev. 24, 288 (2013). https://doi.org/10.1016/j.rser.2013.03.008

    Article  CAS  Google Scholar 

  22. J. G. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008). https://doi.org/10.1038/nmat2090

    Article  CAS  Google Scholar 

  23. L. P. Bulat, I. A. Drabkin, V. V. Karataev, V. B. Osvenskii, Yu. N. Parkhomenko, D. A. Pshenai-Severin, G. I. Pivovarov, and N. Yu. Tabachkova, Phys. Solid State 53, 29 (2011).

    Article  CAS  Google Scholar 

  24. A. A. Sherchenkov, Y. I. Shtern, M. Y. Shtern, and M. S. Rogachev, Nanotechnol. Russ. 11, 387 (2016). https://doi.org/10.1134/S1995078016040157

    Article  Google Scholar 

  25. L. P. Bulat, I. A. Drabkin, V. V. Karataev, V. B. Osvenskii, and D. A. Pshenai-Severin, Phys. Solid State 52, 1836 (2010)].

    Article  CAS  Google Scholar 

  26. L. P. Bulat, V. B. Osvenskii, and D. A. Pshenai-Severin, Phys. Solid State 55, 2442 (2013).

    Article  CAS  Google Scholar 

  27. G. Chen, Phys. Rev. B 57, 14958 (1998). https://doi.org/10.1103/PhysRevB.57.14958

    Article  CAS  Google Scholar 

  28. X. Zhou, Y. Yan, X. Lu, et al., Mater Today 21, 974 (2018). https://doi.org/10.1016/j.mattod.2018.03.039

    Article  CAS  Google Scholar 

  29. A. H. Awad, J. Therm. Anal. Calorim. 119, 1459 (2015). https://doi.org/10.1007/s10973-014-4284-3

    Article  CAS  Google Scholar 

  30. A. V. Dmitriev and I. P. Zvyagin, Phys. Usp. 53, 789 (2010). https://doi.org/10.3367/UFNe.0180.201008b.0821

    Article  CAS  Google Scholar 

  31. M. S. Dresselhaus, G. Chen, M. Y. Tang, et al., Adv. Mater. 19, 1043 (2007). https://doi.org/10.1002/adma.200600527

    Article  CAS  Google Scholar 

  32. P. Poudel, Q. Hao, Y. Ma, et al., Science (Washington, DC, U. S.) 320 (5876), 634 (2008). https://doi.org/10.1126/science.1156446

    Article  CAS  Google Scholar 

  33. G. Tan, L.-D. Zhao, and M. G. Kanatzidis, Chem. Rev. 116, 12123 (2016). https://doi.org/10.1021/acs.chemrev.6b00255

    Article  CAS  Google Scholar 

  34. T. Zhu, Y. Liu, C. Fu, et al., Adv. Mater. 29, 1605884 (2017). https://doi.org/10.1002/adma.201605884

    Article  CAS  Google Scholar 

  35. B. Zhou, S. Li, W. Li, et al., ACS Appl. Mater. Interfaces 9, 34033 (2017). https://doi.org/10.1021/acsami.7b08770

    Article  CAS  Google Scholar 

  36. L. P. Bulat, V. B. Osvenskii, Yu. N. Parkhomenko, and D. A. Pshenay-Severin, Phys. Solid State 54, 2165 (2012).

    Article  CAS  Google Scholar 

  37. H. Tian, N. Jiang, Q. Jia, et al., Energy Proc. 75, 590 (2015). https://doi.org/10.1016/j.egypro.2015.07.461

    Article  CAS  Google Scholar 

  38. S. Y. Li, J. Pei, D. W. Liu, et al., Energy 113, 35 (2016). https://doi.org/10.1016/j.energy.2016.07.034

    Article  CAS  Google Scholar 

  39. X. Shi, J. Yang, J. R. Salvador, et al., J. Am. Chem. Soc. 133, 7837 (2011). https://doi.org/10.1021/ja111199y

    Article  CAS  Google Scholar 

  40. X. Hu, P. Jood, M. Ohta, et al., Energy Environ. Sci. 9, 517 (2016). https://doi.org/10.1039/C5EE02979A

    Article  CAS  Google Scholar 

  41. M.-E. Song, H. Lee, M.-G. Kang, et al., ACS Appl. Energy Mater. 2, 4292 (2019). https://doi.org/10.1021/acsaem.9b00522

    Article  CAS  Google Scholar 

  42. T. Xing, Q. Song, P. Qiu, et al., Natl. Sci. Rev. 6, 944 (2019). https://doi.org/10.1093/nsr/nwz052

    Article  CAS  Google Scholar 

  43. M. Y. Shtern, in Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (2019), p. 1920. https://doi.org/10.1109/EIConRus.2019.8657108

  44. D. A. Ditmars, S. Ishihara, S. S. Chang, and G. Bernstein, J. Res. Nat. Bur. Stand. 87, 159 (1982). https://doi.org/10.6028/JRES.087.012

    Article  CAS  Google Scholar 

  45. ASTM E1269 – 11: Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry (2018).

  46. P. V. Pavlov and A. F. Khokhlov, Solid State Physics (Vyssh. Shkola, Moscow, 2000) [in Russian].

  47. Yu. I. Shtern, N. V. Igumnova, A. A. Sherchenkov, et al., J. Phys.: Conf. Ser. 857, 012041 (2017). https://doi.org/10.1088/1742-6596/857/1/012041

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 20-19-00494).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Shtern.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtern, M.Y., Sherchenkov, A.A., Shtern, Y.I. et al. Thermoelectric Properties and Thermal Stability of Nanostructured Thermoelectric Materials on the Basis of PbTe, GeTe, and SiGe. Nanotechnol Russia 16, 363–372 (2021). https://doi.org/10.1134/S2635167621030174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621030174

Navigation