Skip to main content
Log in

Surface Morphology and Differential Tunneling Conductivity in Multicomponent Solid Solutions (Bi, Sb, Sn, Ge)2(Te, Se)3

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The morphology of the interlayer surface and the spectra of differential tunneling conductivity in solid solutions (Bi, Sb, Sn, Ge)2(Te, Se)3 has been studied by scanning tunneling microscopy and scanning tunneling spectroscopy. Surface defects associated with distortions of surface electronic states as a result of atomic substitution and with the formation of intrinsic defects formed during the growth of solid solutions are systematized. The position of the Dirac point and its fluctuations relative to the mean value are determined, the levels of impurity surface defects are found, and their energy depending on the composition of the solid solution, the value of the Seebeck coefficient, and the power parameter are calculated. The surface concentration of Dirac fermions is calculated and the compositions are established in which the contribution of surface states increases due to an increase in the concentration of fermions and due to an increase in the Fermi velocity and mobility of fermions in the surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001).

    Book  Google Scholar 

  2. D. M. Rowe, in Modules, Systems, and Applications in Thermoelectrics, Ed. by D. M. Rowe (CRC, Boca Raton, FL, 2012), p. 23-1.

    Book  Google Scholar 

  3. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010). https://doi.org/10.1103/RevModPhys.82.3045

    Article  CAS  Google Scholar 

  4. S. I. Vedeneev, Phys. Usp. 60, 385 (2017). https://doi.org/10.3367/UFNe.2017.01.038053

    Article  CAS  Google Scholar 

  5. N. Xu, Y. Xu, and J. Zhu, npj Quant. Mater. 2, 51 (2017). https://doi.org/10.1038/s41535-017-0054-3

    Article  Google Scholar 

  6. J. Heremans, R. Cava, and N. Samarth, Nat. Rev. Mater. 2, 17049 (2017). https://doi.org/10.1038/natrevmats.2017.49

    Article  CAS  Google Scholar 

  7. T.-H. Liu, J. Zhou, M. Li, et al., Proc. Natl. Acad. Sci. U. S. A. 115, 879 (2018). https://doi.org/10.1073/pnas.1715477115

    Article  CAS  Google Scholar 

  8. D. Baldomir and D. Failde, Sci. Rep. 9, 6324 (2019). https://doi.org/10.1038/s41598-019-42744-3

    Article  CAS  Google Scholar 

  9. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’quinn, Nature (London, U.K.) 413, 597 (2001). https://doi.org/10.1038/35098012

    Article  CAS  Google Scholar 

  10. B. Seradjeh, J. E. Moore, and M. Franz, Phys. Rev. Lett. 103, 066402 (2009). https://doi.org/10.1103/PhysRevLett.103.066402

    Article  CAS  Google Scholar 

  11. Y. Hou, R. Wang, R. Xiao, et al., Nat. Commun. 10, 5723 (2019). https://doi.org/10.1038/s41467-019-13711-3

    Article  CAS  Google Scholar 

  12. I. V. Korobeinikov, N. V. Morozova, L. N. Lukyanova, O. A. Usov, and S. V. Ovsyannikov, Semiconductors 53, 732 (2019). https://doi.org/10.1134/S1063782619060083

    Article  CAS  Google Scholar 

  13. Y. C. Lau, R. Akiyama, H. T. Hirose, et al., J. Phys. Mater. 3, 034001 (2020). https://doi.org/10.1088/2515-7639/ab7e0c

    Article  CAS  Google Scholar 

  14. H. Beidenkopf, P. Roushan, J. Seo, et al., Nat. Phys. 7, 939 (2011). https://doi.org/10.1038/nphys2108

    Article  CAS  Google Scholar 

  15. J. Dai, D. West, X. Wang, et al., Phys. Rev. Lett. 117, 106401 (2016). https://doi.org/10.1103/PhysRevLett.117.106401

    Article  CAS  Google Scholar 

  16. H. Nam, Y. Xu, I. Miotkowski, et al., J. Phys. Chem. Solids 128, 251 (2019). https://doi.org/10.1016/j.jpcs.2017.10.026

    Article  CAS  Google Scholar 

  17. D. O. Scanlon, P. D. C. King, R. P. Singh, et al., Adv. Mater. 24, 2154 (2012). https://doi.org/10.1002/adma.201200187

    Article  CAS  Google Scholar 

  18. X. He, H. Li, L. Chen, and K. Wu, Sci. Rep. 5, 8830 (2015). https://doi.org/10.1038/srep08830

    Article  CAS  Google Scholar 

  19. M. Chen, J.-P. Peng, H.-M. Zhang, et al., Appl. Phys. Lett. 101, 081603 (2012). https://doi.org/10.1063/1.4747715

    Article  CAS  Google Scholar 

  20. M. T. Edmonds, J. L. Collins, J. Hellerstedt, et al., Sci. Adv. 3, eaao6661 (2017). https://doi.org/10.1126/sciadv.aao6661

  21. J. Zhang, C. Z. Chang, Z. Zhang, et al., Nat. Commun. 2, 574 (2011). https://doi.org/10.1038/ncomms1639

    Article  CAS  Google Scholar 

  22. L. N. Lukyanova, V. A. Kutasov, P. P. Konstantinov, and V. V. Popov, in Modules, Systems, and Applications in Thermoelectrics, Ed. by D. M. Rowe (CRC, Boca Raton, FL, 2012), p. 7-1.

    Google Scholar 

  23. V. A. Kutasov, L. N. Lukyanova, and M. V. Vedernikov, in Thermoelectrics Handbook: Macro to Nano, Ed. by D. M. Rowe (CRC, Boca Raton, FL, 2006), p. 37-1.

    Google Scholar 

Download references

Funding

This study was carried out with partial financial support from the Russian Foundation for Basic Research (project no. 20-08-00464).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Lukyanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukyanova, L.N., Makarenko, I.V. & Usov, O.A. Surface Morphology and Differential Tunneling Conductivity in Multicomponent Solid Solutions (Bi, Sb, Sn, Ge)2(Te, Se)3. Nanotechnol Russia 16, 323–329 (2021). https://doi.org/10.1134/S2635167621030137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621030137

Navigation