Skip to main content
Log in

Promising Development of Thin Film and Flexible Thermoelectric Devices

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The temperature dependences of the thermoelectric properties of Ge2Sb2Te5 (p-type) and Bi2Te2.8Se0.2 (n-type) thin films obtained by magnetron and vacuum thermal evaporation, respectively, are under investigation. The effect of crystallization on the Seebeck coefficient of Ge2Sb2Te5 thin films is established. The temperature dependences of the power factors of the investigated thin films are determined. Film thermoelements based on Ge2Sb2Te5 and Bi2Te2.8Se0.2 materials have sufficiently high thermoelectric properties and can be used for manufacturing flexible film thermoelectric generators (TEGs). Computer simulation of the characteristics of a flexible film TEG using the proposed multi-physics model of a flexible film TEG is carried out. The characteristics of the TEG are determined at various ambient temperatures and various electrical loads, which make it possible to optimize the geometric parameters of thermoelements. The optimal operating temperatures of TEGs for wearable electronics are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. MarketsandMarkets. https://www.prnewswire.com/news-releases/thermoelectric-modules-market-worth-1-023-million-by-2024–exclusive-report-by-marketsandmarkets-300925040.html. Accessed July 14, 2020.

  2. J. Hsu, IEEE Spectr., No. 2, 119572 (2014).

  3. L. Du, G. Shi, and J. Zhao, Sens. Transducers 176 (8), 1 (2014).

    Google Scholar 

  4. S. Qing, A. Rezania, L. A. Rosendahl, et al., Energy Convers. Manage. 156, 655 (2018). https://doi.org/10.1016/j.enconman.2017.11.065

    Article  CAS  Google Scholar 

  5. F. Suarez, A. Nozariasbmarz, D. Vashaee, et al., Energy Environ. 9, 2099 (2016). https://doi.org/10.1039/C6EE00456C

    Article  CAS  Google Scholar 

  6. A. R. M. Siddique, S. Mahmud, and B. V. Heyst, Renewable Sustainable Energy Rev. 73, 730 (2017). https://doi.org/10.1016/j.rser.2017.01.177

    Article  Google Scholar 

  7. J.-H. Bahk, H. Fang, K. Yazawa, et al., J. Mater. Chem. C 3, 10362 (2015). https://doi.org/10.1039/C5TC01644D

    Article  CAS  Google Scholar 

  8. C. S. Kim, H. M. Yang, J. Lee, et al., ACS Energy Lett. 3, 501 (2018). https://doi.org/10.1021/acsenergylett.7b01237

    Article  CAS  Google Scholar 

  9. A. Nag, S. C. Mukhopadhyay, and J. Kosel, IEEE Sens. J. 17, 3949 (2017). https://doi.org/10.1109/JSEN.2017.2705700

    Article  CAS  Google Scholar 

  10. K. Takei, W. Honda, S. Harada, et al., Adv. Healthcare Mater. 4, 487 (2015). https://doi.org/10.1039/C5RA03110A

    Article  CAS  Google Scholar 

  11. T. Q. Trung and N.-E. Lee, Adv. Mater. 28, 4338 (2016). https://doi.org/10.1002/adma.201504244

    Article  CAS  Google Scholar 

  12. D. Pani, A. Dessi, J. F. Saenz-Cogollo, et al., IEEE Trans. Biomed. Eng. 63, 540 (2016). https://doi.org/10.1109/TBME.2015.2465936

    Article  Google Scholar 

  13. A. R. M. Siddique, R. Rabari, S. Mahmud, et al., Energy 115, 1081 (2016). https://doi.org/10.1016/j.energy.2016.09.087

    Article  CAS  Google Scholar 

  14. A. S. Korotkov, V. V. Loboda, S. V. Dzyubanenko, et al., in Problems of Advanced Micro- and Nanoelectronic Systems Development, Proceedings of the 8th Conference (2018), p. 57. https://doi.org/10.31114/2078-7707-2018-4-57-62

  15. S. J. Kim, J. H. We, and B. J. Cho, Energy Environ. Sci. 7, 1959 (2014). https://doi.org/10.1039/C4EE00242C

    Article  CAS  Google Scholar 

  16. F. Suarez, D. P. Parekh, C. Ladd, et al., Appl. Energy 202, 736 (2017). https://doi.org/10.1016/j.apenergy.2017.05.181

    Article  Google Scholar 

  17. B. Chen, M. Kruse, B. Xu, et al., Nanoscale 11, 5222 (2019). https://doi.org/10.1039/C8NR09101C

    Article  CAS  Google Scholar 

  18. S. H. Kim, T. Min, J. W. Choi, et al., Energy 144, 607 (2018). https://doi.org/10.1016/j.energy.2017.12.063

    Article  CAS  Google Scholar 

  19. H. Park, D. Lee, D. Kim, et al., J. Phys. Appl. Phys. 51, 365501 (2018). https://orcid.org/0000-0003-3966-8414

    Article  Google Scholar 

  20. X. Chen, W. Dai, T. Wu, et al., Coatings 8, 244 (2018). https://doi.org/10.3390/coatings8070244

    Article  CAS  Google Scholar 

  21. Y. Wang, Y. Shi, D. Mei, et al., Appl. Energy 215, 690 (2018). https://doi.org/10.1016/j.apenergy.2018.02.062

    Article  CAS  Google Scholar 

  22. T. Nguyen Huu, T. van Nguyen, and O. Takahito, Appl. Energy 210, 467 (2018). https://doi.org/10.1016/j.apenergy.2017.05.005

    Article  CAS  Google Scholar 

  23. C. A. Gould, N. Y. A. Shammas, S. Grainger, et al., in Proceedings of the 26th International Conference on Microelectronics, Nis, Serbia, May 11–14, 2008 (2008), p. 329. https://doi.org/10.26689/jera.v2i2.337

  24. R. He, G. Schierning, and K. Nielsch, Adv. Mater. Technol. 3, 1700256 (2018). https://doi.org/10.1002/admt.201870016

    Article  Google Scholar 

  25. Y. Qi and M. C. McAlpine, Energy Environ. Sci. 3, 1275 (2010). https://doi.org/10.1039/C0EE00137F

    Article  CAS  Google Scholar 

  26. Y. Wang, L. Yang, X.-L. Shi, et al., Adv. Mater. 31, 1807916 (2019). https://doi.org/10.1002/adma.201807916

    Article  CAS  Google Scholar 

  27. Y. Chen, M. He, J. Tang, et al., Adv. Electron. Mater. 4, 1800200 (2018). https://doi.org/10.1002/aelm.201800200

    Article  CAS  Google Scholar 

  28. S. J. Kim, J. H. We, J. S. Kim, et al., J. Alloys Compd. 582, 177 (2014). https://doi.org/10.1016/j.jallcom.2013.07.195

    Article  CAS  Google Scholar 

  29. Z. Lu, H. Zhang, C. Mao, et al., Appl. Energy 164, 57 (2016). https://doi.org/10.1016/j.apenergy.2015.11.038

    Article  CAS  Google Scholar 

  30. M. K. Kim, M. S. Kim, S. E. Jo, et al., in Transducers Eurosensors XXVII, Proceedings of the The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, June 16–20, 2013, Barcelona (2013), p. 1376. https://doi.org/10.1109/Transducers.2013.6627034

  31. C. Navone, M. Soulier, M. Plissonnier, et al., J. Electron. Mater. 39, 1755 (2010). https://doi.org/10.1007/s11664-010-1187-3

    Article  CAS  Google Scholar 

  32. S. E. Jo, M. K. Kim, M. S. Kim, et al., Electron. Lett. 48, 1015 (2012). https://doi.org/10.1049/el.2012.1566

    Article  CAS  Google Scholar 

  33. J. Y. Oh, J. H. Lee, S. W. Han, et al., Energy Environ. 9, 1696 (2016). https://doi.org/10.1039/c5ee03813h

    Article  CAS  Google Scholar 

  34. L. Francioso, C. de Pascali, P. Siciliano, et al., in Proceedings of the 5th IEEE International Workshop on Advances in Sensors and Interfaces IWASI, June 13–14, 2013, Bari, Italy (2013), p. 104. https://doi.org/10.1109/IWASI.2013.6576100

  35. P. Fan, Z. Zheng, Y. Li, et al., Appl. Phys. Lett. 106, 073901 (2015). https://doi.org/10.1063/1.4909531

    Article  CAS  Google Scholar 

  36. M. Alhawari, B. Mohammad, H. Saleh, et al., Energy Harvesting for Self-Powered Wearable Devices (Springer Int., Switzerland, 2018). https://doi.org/10.1007/978-3-319-62578-2

  37. T. Varghese, C. Hollar, J. Richardson, et al., Sci. Rep. 6, 33135 (2016). https://doi.org/10.1038/srep33135

    Article  CAS  Google Scholar 

  38. R. Tian, C. Wan, Y. Wang, et al., J. Mater. Chem. A 5, 564 (2017). https://doi.org/10.1039/C6TA08838D

    Article  CAS  Google Scholar 

  39. P. Mele, D. Narducci, M. Ohta, et al., Thermoelectric Thin Films (Springer Int., Switzerland, 2019)

    Book  Google Scholar 

  40. E. Vieira, J. Figueira, A. L. Pires, et al., Proceedings 2, 815 (2018). https://doi.org/10.3390/proceedings2130815

    Article  Google Scholar 

  41. K. Tappura, Renewable Energy 120, 78 (2018). https://doi.org/10.1016/j.renene.2017.12.063

    Article  Google Scholar 

  42. S. J. Kim, H. E. Lee, H. Choi, et al., ACS Nano 10, 10851 (2016). https://doi.org/10.1021/acsnano.6b05004

    Article  CAS  Google Scholar 

  43. H. Anno, T. Nishinaka, M. Hokazono, et al., J. Electron. Mater. 44, 2105 (2015). https://doi.org/10.1007/s11664-015-3668-x

    Article  CAS  Google Scholar 

  44. W. Zhu, Y. Deng, and L. Cao, Nano Energy 34, 463 (2017). https://doi.org/10.1016/j.nanoen.2017.03.020

    Article  CAS  Google Scholar 

  45. W. Zhu, Y. Deng, M. Gao, et al., Energy 89, 106 (2015). https://doi.org/10.1016/j.energy.2015.07.057

    Article  CAS  Google Scholar 

  46. N.-W. Park, T.-H. Park, J.-Y. Ahn, et al., AIP Adv. 6, 065123 (2016). https://doi.org/10.1063/1.4955000

    Article  CAS  Google Scholar 

  47. R. P. Given, K. S. Wenger, V. D. Wheeler, et al., J. Vac. Sci. Technol. A 35, 01B120 (2016). https://doi.org/10.1116/1.4971403

  48. O. Owoyele, S. Ferguson, and B. T. O’Connor, Appl. Energy 147, 184 (2015). https://doi.org/10.1016/j.apenergy.2015.01.132

    Article  Google Scholar 

  49. T. Sun, J. L. Peavey, D. M. Shelby, et al., Energy Convers. Manage. 103, 674 (2015). https://doi.org/10.1016/j.enconman.2015.07.016

    Article  CAS  Google Scholar 

  50. E. Jin Bae, Y. Hun Kang, K.-S. Jang, et al., Sci. Rep. 6, 18805 (2016). https://doi.org/10.1038/srep18805

    Article  CAS  Google Scholar 

  51. T. Nishino and T. Suzuki, J. Micromech. Microeng. 27, 035011 (2017). https://doi.org/10.1088/1361-6439/aa5aad

    Article  CAS  Google Scholar 

  52. J. P. Rojas, D. Conchouso, A. Arevalo, et al., Nano Energy 31, 296 (2017). https://doi.org/10.1016/j.nanoen.2016.11.012

    Article  CAS  Google Scholar 

  53. F. Yang, S. Zheng, H. Wang, et al., J. Micromech. Microeng. 27, 055005 (2017). https://doi.org/10.1088/1361-6439/aa64a3

    Article  CAS  Google Scholar 

  54. J. Barzola-Quiquia, T. Lehmann, M. Stiller, et al., J. Appl. Phys. 117, 075301 (2015). https://doi.org/10.1063/1.4908007

    Article  CAS  Google Scholar 

  55. E. I. Rogacheva, A. V. Budnik, M. V. Dobrotvorskaya, et al., Thin Solid Films 612, 128 (2016). https://doi.org/10.1016/j.tsf.2016.05.046

    Article  CAS  Google Scholar 

  56. Y. Chen, Y. Zhao, and Z. Liang, Energy Environ. Sci. 8, 401 (2015). https://doi.org/10.1039/C4EE03297G

    Article  CAS  Google Scholar 

  57. H. Wang, S. Yi, X. Pu, et al., ACS Appl. Mater. Interfaces 7, 9589 (2015). https://doi.org/10.1021/acsami.5b01149

    Article  CAS  Google Scholar 

  58. Q. Zhang, Y. Sun, W. Xu, et al., Adv. Mater. 26, 6829 (2014). https://doi.org/10.1002/adma.201305371

    Article  CAS  Google Scholar 

  59. H. Alam and S. Ramakrishna, Nano Energy 2, 190 (2013). https://doi.org/10.1016/j.nanoen.2012.10.005

    Article  CAS  Google Scholar 

  60. Z. Ren, Y. Lan, and Q. Zhang, Advanced Thermoelectrics (CRC, Boca Raton, FL, 2017). https://doi.org/10.1016/j.mtphys.2017.06.003

  61. A. Sherchenkov, S. Kozyukhin, A. Babich, et al., Chalcogenide Lett. 15, 45 (2018).

    CAS  Google Scholar 

  62. L. Adnane, F. Dirisaglik, A. Cywar, et al., J. Appl. Phys. 122, 125104 (2017). https://doi.org/10.1063/1.4996218

    Article  CAS  Google Scholar 

  63. J. Sun, S. Mukhopadhyay, A. Subedi, et al., Appl. Phys. Lett. 106, 123907 (2015). https://doi.org/10.1063/1.4916558

    Article  CAS  Google Scholar 

  64. A. Vora-ud, M. Horprathum, M. Kumar, et al., Mater. Lett. 234, 229 (2019). https://doi.org/10.1016/j.matlet.2018.09.105

    Article  CAS  Google Scholar 

  65. D. Y. Terekhov, P. Lazarenko, A. Sherchenkov, et al., Proc. Univ. Electron. 22, 518 (2017). https://doi.org/10.24151/1561-5405-2017-22-6-518-527

    Article  Google Scholar 

  66. D. W. Newbrook, R. Huang, S. P. Richards, et al., J. Phys. Energy 2, 014001 (2020). https://doi.org/10.1088/2515-7655/ab4242

    Article  CAS  Google Scholar 

  67. E. V. Sempels and F. J. Lesage, IEEE Trans. Compon. Packag. Manuf. Technol. 8, 1573 (2018). https://doi.org/10.1109/TCPMT.2018.2864171

    Article  CAS  Google Scholar 

  68. G. Gromov. https://www.litres.ru/gennady-gromov/thermoelectric-microgenerators-optimization-for-energy-harv/(Accessed July 13, 2020).

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 18-79-10231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Terekhov.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terekhov, D.Y., Sherchenkov, A.A., Voloshchuk, I.A. et al. Promising Development of Thin Film and Flexible Thermoelectric Devices. Nanotechnol Russia 16, 392–400 (2021). https://doi.org/10.1134/S2635167621030186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621030186

Navigation