Skip to main content
Log in

Synthesis and Properties of Thermoelectric Nanomaterial AgInSe2 with a Chalcopyrite Structure

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

AgInSe2 nanopowders with a chalcopyrite structure and an average particle size of ~75 nm were synthesized from solutions by the polyol method of chemical synthesis. Spark plasma sintering was used to obtain bulk polycrystalline nanomaterials with an average grain size of ~110 nm. Electrons are the main current carriers in bulk materials. In the range 300–700 K, the features of the temperature dependences of the electrical resistivity, Seebeck coefficient, and total thermal conductivity of the nanomaterials are determined. It was found that the maximum thermoelectric figure of merit, equal to 0.1, is achieved at a temperature of 700 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. Li, X. Li, L. Xi, et al., ACS Appl. Mater. Interfaces 11, 24859 (2019). https://doi.org/10.1021/acsami.9b01196

    Article  CAS  Google Scholar 

  2. L. E. Bell, Science (Washington, DC, U. S.) 321, 1457 (2008). https://doi.org/10.1126/science.1158899

    Article  CAS  Google Scholar 

  3. S. I. Kim, K. H. Lee, H. A. Mun, et al., Science (Washington, DC, U. S.) 348, 109 (2015). https://doi.org/10.1126/science.aaa4166

    Article  CAS  Google Scholar 

  4. L. D. Zhao, G. Tan, S. J. Hao, et al., Science (Washington, DC, U. S.) 351, 141 (2016). https://doi.org/10.1126/science.aad3749

    Article  CAS  Google Scholar 

  5. X. Shi and L. Chen, Nat. Mater. 15, 691 (2016). https://doi.org/10.1038/nmat4643

    Article  CAS  Google Scholar 

  6. V. Kh. Berdin, Renewable Energy Sources in Isolated Settlements in the Russian Arctic (Vsemirnyi Fond Dikoi Prirody (WWF), Moscow, 2017) [in Russian].

  7. V. M. Rudoi, N. I. Ostanin, and Yu. P. Zaikov, Design of Cathodic Protection of Underground Pipelines (GOU VPO UGTU-UPI, Yekaterinburg, 2005) [in Russian].

    Google Scholar 

  8. N. P. Semena, Thermophys. Aeromech. 20, 211 (2013).

    Article  Google Scholar 

  9. H. J. Goldsmid, Materials 7, 2577 (2014). https://doi.org/10.3390/ma7042577

    Article  CAS  Google Scholar 

  10. W. Liu, X. Yan, G. Chen, et al., Nano Energy 1, 42 (2012). https://doi.org/10.1016/j.nanoen.2011.10.001

    Article  CAS  Google Scholar 

  11. Z. Xingyi, Y. Yue, L. Feng, et al., Constr. Build. Mater. 228, 116818 (2019). https://doi.org/10.1016/j.conbuildmat.2019.116818

    Article  Google Scholar 

  12. O. Ivanov, M. Yaprintsev, R. Lyubushkin, et al., Scr. Mater. 146, 91 (2018). https://doi.org/10.1016/j.scriptamat.2017.11.031

    Article  CAS  Google Scholar 

  13. M. Yaprintsev, R. Lyubushkin, O. Soklakova, and O. Ivanov, J. Electron. Mater. 47, 1362 (2018). https://doi.org/10.1007/s11664-017-5940-8

    Article  CAS  Google Scholar 

  14. O. Ivanov and M. Yaprintsev, Mater. Res. Express 5, 015905 (2018). https://doi.org/10.1088/2053-1591/aaa265

    Article  CAS  Google Scholar 

  15. H. J. Goldsmid, Thermoelectric Refrigeration, Electrical Engineering (Springer, Boston, 2013).

    Google Scholar 

  16. W. X. Ni, W. M. Chen, I. A. Buyanova, et al., J. Cryst. Growth 157, 242 (1995).

    Article  CAS  Google Scholar 

  17. J. P. Heremans, V. Jovovic, E. S. Toberer, et al., Science (Washington, DC, U. S.) 321, 554 (2008). https://doi.org/10.1126/science.1159725

    Article  CAS  Google Scholar 

  18. X. Shi, J. Yang, J. Salvador, et al., J. Am. Chem. Soc. 133, 7837 (2011). https://doi.org/10.1021/ja111199y

    Article  CAS  Google Scholar 

  19. G. S. Nolas, The Physics and Chemistry of Inorganic Clathrates (Springer, Boston, 2014).

    Book  Google Scholar 

  20. J. Yang, H. M. Li, T. Wu, et al., Adv. Funct. Mater. 18, 2880 (2008). https://doi.org/10.1002/adfm.200701369

    Article  CAS  Google Scholar 

  21. E. J. Skoug, J. D. Cain, and D. T. Morelli, Appl. Phys. Lett. 98, 261911 (2011). https://doi.org/10.1063/1.3605246

    Article  CAS  Google Scholar 

  22. N. Cheng, R. Liu, S. Bai, et al., J. Appl. Phys. 115, 163705 (2014). https://doi.org/10.1063/1.4872250

    Article  CAS  Google Scholar 

  23. W. G. Zeier, H. Zhu, Z. M. Gibbs, et al., J. Mater. Chem. C 2, 10189 (2014). https://doi.org/10.1039/C4TC02218A

    Article  CAS  Google Scholar 

  24. Y. Qin, P. Qiu, R. Liu, et al., J. Mater. Chem. A 4, 1277 (2016). https://doi.org/10.1039/C5TA09584K

    Article  CAS  Google Scholar 

  25. J. Zhang, R. Liu, N. Cheng, et al., Adv. Mater. 26, 3848 (2014). https://doi.org/10.1002/adma.201400058

    Article  CAS  Google Scholar 

  26. A. Yusufu, K. Kurosaki, A. Kosuga, et al., Appl. Phys. Lett. 99, 061902 (2011). https://doi.org/10.1063/1.3617458

    Article  CAS  Google Scholar 

  27. M. T. Ng, C. B. Boothroyd, and J. J. Vittal, J. Am. Chem. Soc. 128, 7118 (2006). https://doi.org/10.1021/ja060543u

    Article  CAS  Google Scholar 

  28. M.-A. Langevin, A. M. Ritcey, and C. N. Allen, ACS Nano 8, 3476 (2014). https://doi.org/10.1021/nn406439w

    Article  CAS  Google Scholar 

  29. O. Yarema, M. Yarema, and D. Bozyigit, ACS Nano 9, 11134 (2015). https://doi.org/10.1021/acsnano.5b04636

    Article  CAS  Google Scholar 

  30. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, et al., Energy Environ. Sci. 2, 466 (2009). https://doi.org/10.1039/b822664b

    Article  CAS  Google Scholar 

  31. O. Madelung, Semiconductors: Data Handbook (Springer, Berlin, 2004). https://doi.org/10.1007/978-3-642-18865-7

    Book  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Education and Science of the Russian Federation (project no. 0625-2020-0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Yapryntsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasiliev, A.E., Ivanov, O.N., Zhezhu, M.V. et al. Synthesis and Properties of Thermoelectric Nanomaterial AgInSe2 with a Chalcopyrite Structure. Nanotechnol Russia 16, 357–362 (2021). https://doi.org/10.1134/S2635167621030198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621030198

Navigation