Skip to main content
Log in

Phase Composition and Thermoelectric Properties of Materials Based on Cu2 – xSe (0.03 ≤ x ≤ 0.23)

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The phase composition and thermoelectric properties of Cu2 – xSe samples with different deviations from the stoichiometric composition (x = 0.03, 0.08, 0.13, 0.18, and 0.23) are studied. Bulk thermoelectric materials based on Cu2 – xSe are synthesized by spark plasma sintering. The phase composition is studied using the X-ray diffraction method. Depending on the chemical composition, the materials based on Cu2 – xSe at room temperature can be either a single-phase material containing only the cubic β-Cu2Se phase or a two-phase material containing a mixture of monoclinic α-Cu2Se and cubic β-Cu2Se phases. It is shown that the deviation of the stoichiometric composition has a substantial effect on the electrophysical characteristics of the material. With an increase in the deviation of the stoichiometric composition, the concentration of the main charge carriers in Cu2 – xSe increases because of the formation of copper vacancies. The change in the thermal conductivity substantially contributes to the thermoelectric figure of merit of Cu2 – xSe compounds. In the investigated range of chemical compositions, the maximum values of thermoelectric figure of merit around ZT ~ 1.3 at 600°C are observed in samples with the Cu1.97Se composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. K. Shinde, G. S. Ghodake, D. P. Dubal, et al., J. Taiwan Inst. Chem. Eng. 75, 271 (2017). https://doi.org/10.1016/j.jtice.2017.01.028

    Article  CAS  Google Scholar 

  2. B. Yu, W. S. Liu, S. Chen, et al., Nano Energy 1, 472 (2012). https://doi.org/10.1016/j.nanoen.2012.02.010

    Article  CAS  Google Scholar 

  3. H. L. Liu, X. Yuan, P. Lu, et al., Adv. Mater. 25, 6607 (2013). https://doi.org/10.1002/adma.201302660

    Article  CAS  Google Scholar 

  4. G. J. Tan, L. D. Zhao, and M. G. Kanatzidis, Chem. Rev. 116, 12123 (2016). https://doi.org/10.1021/acs.chemrev.6b00255

    Article  CAS  Google Scholar 

  5. X. L. Su, F. Fu, Y. G. Yan, et al., Nat. Commun. 5, 4908 (2014). https://doi.org/10.1038/ncomms5908

    Article  CAS  Google Scholar 

  6. L. L. Zhao, X. L. Wang, J. Y. Wang, et al., Sci. Rep. 5, 7671 (2015). https://doi.org/10.1038/srep07671

    Article  CAS  Google Scholar 

  7. T. W. Day, K. S. Weldert, W. G. Zeier, et al., Chem. Mater. 27, 7018 (2015). https://doi.org/10.1021/acs.chemmater.5b02405

    Article  CAS  Google Scholar 

  8. L. Yang, Z. G. Chen, G. Han, et al., Acta Mater. 113, 140 (2016). https://doi.org/10.1016/j.actamat.2016.04.050

    Article  CAS  Google Scholar 

  9. Z. H. Ge, B. P. Zhang, Y. X. Chen, et al., Chem. Commun. 47, 12697 (2011). https://doi.org/10.1039/c1cc16368j

    Article  CAS  Google Scholar 

  10. Y. He, T. W. Day, T. S. Zhang, et al., Adv. Mater. 26, 3974 (2014). https://doi.org/10.1002/adma.201400515

    Article  CAS  Google Scholar 

  11. Y. He, P. Lu, X. Shi, et al., Adv. Mater. 27, 3639 (2015). https://doi.org/10.1002/adma.201501030

    Article  CAS  Google Scholar 

  12. Y. He, T. S. Zhang, X. Shi, et al., npg Asia Mater. 7, 210 (2015). https://doi.org/10.1038/am.2015.91

  13. H. Liu, X. Shi, F. Xu, et al., Nat. Mater. 11, 422 (2012). https://doi.org/10.1038/nmat3273

    Article  CAS  Google Scholar 

  14. S. Ballikaya, H. Chi, J. R. Salvador, and C. Uher, J. Mater. Chem. A 1, 12478 (2013). https://doi.org/10.1039/C3TA12508D

    Article  CAS  Google Scholar 

  15. T. W. Day, K. A. Borup, T. Zhang, et al., Mater. Renew. Sustain. Energy 3, 26 (2014). https://doi.org/10.1007/s40243-014-0026-5

    Article  Google Scholar 

  16. R. D. Heyding and R. M. Murray, Can. J. Chem. 54, 841 (1976).

    Article  CAS  Google Scholar 

  17. K. Yamamoto and S. Kashida, J. Solid State Chem. 93, 202 (1991). https://doi.org/10.1016/0022-4596(91)90289-T

    Article  CAS  Google Scholar 

  18. S. A. Danilkin, A. N. Skomorokhov, A. Hoser, et al., J. Alloys Compd. 361, 57 (2003). https://doi.org/10.1016/S0925-8388(03)00439-0

    Article  CAS  Google Scholar 

  19. A. N. Skomorokhov, D. M. Trots, M. Knapp, et al., J. Alloys Compd. 421, 64 (2006). https://doi.org/10.1016/j.jallcom.2005.10.079

    Article  CAS  Google Scholar 

  20. M. C. Nguyen, J. H. Choi, X. Zhao, et al., Phys. Rev. Lett. 111, 165502 (2013). https://doi.org/10.1103/PhysRevLett.111.165502

    Article  CAS  Google Scholar 

  21. T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed. (ASM Int., Ohio, 1990).

    Google Scholar 

  22. L. Gulay, M. Daszkiewicz, O. Strok, and A. Pietraszko, Chem. Met. Alloys 4, 200 (2011). https://doi.org/10.30970/cma4.0184

    Article  Google Scholar 

  23. X. X. Xiao, W. J. Xie, X. F. Tang, and Q. J. Zhang, Chem. Phys. 20, 087201 (2011). https://doi.org/10.1088/1674-1056/20/8/087201

    Article  CAS  Google Scholar 

  24. J. Yu, K. Zhao, P. Qiua, et al., Ceram. Int. 43, 11142 (2017). https://doi.org/10.1016/j.ceramint.2017.05.161

    Article  CAS  Google Scholar 

  25. H. S. Kim, Z. M. Gibbs, Y. Tang, et al., Apl. Mater. 4, 041506 (2015). https://doi.org/10.1063/1.4908244

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-32-20211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Y. Tabachkova.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.A., Akchrin, R.K., Bogomolov, D.I. et al. Phase Composition and Thermoelectric Properties of Materials Based on Cu2 – xSe (0.03 ≤ x ≤ 0.23). Nanotechnol Russia 16, 351–356 (2021). https://doi.org/10.1134/S2635167621030083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621030083

Navigation