Skip to main content
Log in

Silicoaluminophosphate Molecular Sieves SAPO-11 and SAPO-41: Synthesis, Properties, and Applications for Hydroisomerization of C16+ n-Paraffins. Part 1: Current State of Research on SAPO-11 and SAPO-41 Synthesis (A Review)

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The review presents an analysis of the distinctive features of the structure and synthesis of silicoaluminophosphate molecular sieves such as SAPO-11 and SAPO-41. Various crystallization types are described and compared, including dry-gel conversion (DGC), solvent-free crystallization, hydrothermal crystallization, solvothermal crystallization, and crystallization in ionic liquids. The crystallization mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Wilson, S.T., Lok, B.M., Messina, C.A., Cannan, T.R., and Flanigen, E.M., J. Am. Chem. Soc., 1982, vol. 104, pp. 1146–1147. https://doi.org/10.1021/ja00368a062

    Article  CAS  Google Scholar 

  2. Baerlocher, С., McCusker, L.B., and Olson, D.H., Atlas of Zeolite Framework Types, 2007, pp. 398.

  3. Flanigen, E.M., Lok, B.M., Patton, R.L., and Wilson, S.T., Pure Appl. Chem., 1986, vol. 58, pp. 1351–1358. https://doi.org/10.1351/pac198658101351

    Article  CAS  Google Scholar 

  4. Lok, B.M., Celeste, A.M., Patton, R.L., Gajek, R.T., Cannan, Th.R., and Flanigen, E.M., J. Am. Chem. Soc., 1984, vol. 106, pp. 6092–6093. https://doi.org/10.1021/ja00332a063

    Article  CAS  Google Scholar 

  5. Borade, R.B. and Clearfield, A., J. Mol. Catal., 1994, vol. 88, pp. 249–266. https://doi.org/10.1016/0304-5102(93)E0262-F

    Article  CAS  Google Scholar 

  6. Yang, L., Aizhen, Y., and Qinhua, X., Appl. Catal., 1991, vol. 67, pp. 169–177. https://doi.org/10.1016/S0166-9834(00)84440-1

    Article  Google Scholar 

  7. Akolekar, D.B., J. Catal., 1994, vol. 149, pp. 1–10. https://doi.org/10.1006/jcat.1994.1267

    Article  CAS  Google Scholar 

  8. Schnabel, K.-H., Fricke, R., Girnus, I., Jahn, E., Loffler, E., Parlitz, B., and Peuker, Ch., J. Chem. Soc. Far. Trans., 1991, vol. 87(21), pp. 3569–3574. https://doi.org/10.1039/FT9918703569

    Article  CAS  Google Scholar 

  9. Deldari, H., Appl. Catal. A: Gen., 2005, vol. 293, pp. 1–10. https://doi.org/10.1016/j.apcata.2005.07.008

    Article  CAS  Google Scholar 

  10. Yadav, R. and Sakthivel, A., Appl. Catal. A: Gen., 2014, vol. 481, pp. 143–160. https://doi.org/10.1016/j.apcata.2014.05.010

    Article  CAS  Google Scholar 

  11. Akhmedov, V.M. and Al‐Khowaiter, S.H., Catal. Rev., 2007, vol. 49(1), pp. 33–139. https://doi.org/10.1080/01614940601128427

    Article  CAS  Google Scholar 

  12. Pastore, H.O., Marchese, L., and Coluccia, S., Annu. Rev. Mater. Res., 2005, vol. 35, pp. 351–395. https://doi.org/10.1146/annurev.matsci.35.103103.120732

    Article  CAS  Google Scholar 

  13. Hartmann, M. and Elangovan, S.P., Adv. Nanopore Mater., 2010, vol. 1, pp. 237–312. https://doi.org/10.1016/S1878-7959(09)00104-2

    Article  Google Scholar 

  14. Cundy, C.S. and Cox, P.A., Chem. Rev., 2003, vol. 103, pp. 663–701. https://doi.org/10.1021/cr020060i

    Article  CAS  PubMed  Google Scholar 

  15. Xu, R., Pang, W., Yu, J., Huo, Q., and Chen, J., Inorg. Chem., 2007, vol. 46(3), pp. 616–618.

    Article  Google Scholar 

  16. Cejka, J., Corma A. Zones., S., Zeolites and Catalysis: Synthesis, Reactions and Applications. John Wiley & Sons., 2010, pp. 918.

  17. Lok, B.M., Messina, C.A., Patton, R.L., Gajek, R.T., Cannan Th.R., and Flanigen, E.M., Patent US 4440871A, 1984.

  18. Sinha, A.K. and Seelan, S., Appl. Catal. A: Gen., 2004, vol. 270, pp. 245–252. https://doi.org/10.1016/j.apcata.2004.05.013

    Article  CAS  Google Scholar 

  19. Sinha, A.K., Sainkar, S., and Sivasanker, S., Micropor. Mesopor. Mater., 1999, vol. 31, pp. 321–331. https://doi.org/10.1016/S1387-1811(99)00081-5

    Article  CAS  Google Scholar 

  20. Araujo, A.S., Fernandes, V.J., Diniz, J.C., Silva, A.O.S., Silva, C.C., and Santos, R.H.A., Mater. Res. Bull., 1999, vol. 34(9), pp. 1369–1373. https://doi.org/10.1016/S0025-5408(99)00135-X

    Article  CAS  Google Scholar 

  21. Fernandes, A., Ribeiro, F., Lourenco, J., and Gabelica, Z., Stud. Surf. Sci. Catal. A, 2008, vol. 174, pp. 281–284. https://doi.org/10.1016/S0167-2991(08)80197-8

    Article  Google Scholar 

  22. Chen, B. and Huang, Y., Micropor. Mesopor. Mater., 2009, vol. 123, pp. 71–77. https://doi.org/10.1016/j.micromeso.2009.03.025

    Article  CAS  Google Scholar 

  23. Lopez, C.M., Escobar, V., Arcos, M.E., De Nobrega, L., Yanez, F., and Garcia, L.V., Catal. Today, 2008, vol. 133–135, pp. 120–128. https://doi.org/10.1016/j.cattod.2007.12.093

    Article  CAS  Google Scholar 

  24. Lopez, C.M., Marchado, F.J., Goldwasser, J., Mendez, B., Ramirez-Agudelo, M.M., and Rodriguez, K., Zeolites, 1997, vol. 19, pp. 133–141. https://doi.org/10.1016/S0144-2449(97)00058-4

    Article  CAS  Google Scholar 

  25. Song, Ch.-M., Yang, H., Wang, Y., Feng, Y., Shi, X., and Duan, H., Asia-Pac. J. Chem. Eng., 2016, vol. 11(6), pp. 846–850. https://doi.org/10.1002/apj.2018

    Article  CAS  Google Scholar 

  26. Song, Ch.-M., Feng, Y., and Ma, L.-L., Micropor. Mesopor. Mater., 2012, vol. 147, pp. 205–211. https://doi.org/10.1016/j.micromeso.2011.06.019

    Article  CAS  Google Scholar 

  27. Xing, G., Liu, S., Guan, Q., and Li, W., Catal. Today, 2019, vol. 330, pp. 109–116. https://doi.org/10.1016/j.cattod.2018.04.028

    Article  CAS  Google Scholar 

  28. Tiuliukova, I.A., Rudina, N.A., Lysikov, A.I., Cherepanova, S.V., and Parkhomchuk, E.V., Mater. Lett., 2018, vol. 228, pp. 61–64. https://doi.org/10.1016/j.matlet.2018.05.118

    Article  CAS  Google Scholar 

  29. Li, B., Tian, P., Qi, Y., Zhang, L., Xu, Sh., Su, X., Fan, D., and Liu, Zh., Chin. J. Catal., 2013, vol. 34, pp. 593–603. https://doi.org/10.1016/S1872-2067(12)60542-7

    Article  CAS  Google Scholar 

  30. Wang, L.-J., Guo, Ch.-W., Huang, X.-D., and Li, Q.-Zh., Chem. Lett., 2002, vol. 31(10), pp. 1012–1013. https://doi.org/10.1246/cl.2002.1012

    Article  Google Scholar 

  31. Guo, L., Fan, Y., Bao, X.J., Shi, G., and Liu, H.Y., J. Catal., 2013, vol. 301, pp. 162–173. https://doi.org/10.1016/j.jcat.2013.02.001

    Article  CAS  Google Scholar 

  32. Liu, P., Ren, J., and Sun, Y., Chin. J. Catal., 2008, vol. 29(4), pp. 379–384. https://doi.org/10.1016/S1872-2067(08)60034-0

    Article  CAS  Google Scholar 

  33. Liu, P., Ren, J., and Sun, Y.-h., J. Fuel Chem. Tech., 2008, vol. 36(5), pp. 610–615. https://doi.org/10.1016/S1872-5813(08)60035-3

    Article  CAS  Google Scholar 

  34. Alfonzo, M., Goldwasser, J., Lopez, C.M., Machado, F.J., Matjushin, M., Mendez, B., and Ramirez de Agudelo, M.M., J. Mol. Catal. A, 1995, vol. 98, pp. 35–48. https://doi.org/10.1016/1381-1169(95)00004-6

    Article  CAS  Google Scholar 

  35. Gharibeh, M., Tompsett, G., and Conner, W.G., Top. Catal., 2008, vol. 49, pp. 157–166. https://doi.org/10.1007/s11244-008-9089-9

    Article  CAS  Google Scholar 

  36. Liu, M., Wu, W., Kikhtyanin, O.V., Xiao, L., Toktarev, A.V., Wang, G., Zhao, A., Smirnova, M.Yu., and Echevsky, G.V., Micropor. Mesopor. Mater., 2013, vol. 181, pp. 132–140. https://doi.org/10.1016/j.micromeso.2013.06.034

    Article  CAS  Google Scholar 

  37. Meriaudeau, P., Tuan, Vu.A., Lefebvre, F., Nghiem, Vu.T., and Naccache, C., Micropor. Mesopor. Mater., 1998, vol. 22, pp. 435–449. https://doi.org/10.1016/S1387-1811(98)00095-X

    Article  CAS  Google Scholar 

  38. Liu, P., Ren, J., and Sun, Y., Catal. Commun., 2008, vol. 9, pp. 1804–1809. https://doi.org/10.1016/j.catcom.2008.01.030

    Article  CAS  Google Scholar 

  39. Liu, P., Ren, J., and Sun, Y., Micropor. Mesopor. Mater., 2008, vol. 114, pp. 365–372. https://doi.org/10.1016/j.micromeso.2008.01.022

    Article  CAS  Google Scholar 

  40. Singh, P.S., Bandyopadhyay, R., and Rao, B.S., J. Chem. Soc., Faraday Trans., 1996, vol. 92(11), pp. 2017–2026. https://doi.org/10.1039/FT9969202017

    Article  CAS  Google Scholar 

  41. Bértolo, R., Silva, J.M., Ribeiro, M.F., Martins, A., and Fernandes, A., Appl. Catal. A: Gen., 2017, vol. 542, pp. 28–37. https://doi.org/10.1016/j.apcata.2017.05.010

    Article  CAS  Google Scholar 

  42. Bandyopadhyay, R., Bandyopadhyay, M., Kubota, Y., and Sugi, Y., J. Por. Mater., 2002, vol. 9, pp. 83–95. https://doi.org/10.1023/A:1020816607626

    Article  CAS  Google Scholar 

  43. Elangovan, S.P., Krishnasamy, V., and Murugesan, V., React. Kinet. Catal. Lett., 1995, vol. 55(1), pp. 153–159. https://doi.org/10.1016/S1381-1169(96)00391-3

    Article  CAS  Google Scholar 

  44. Zhang, Sh., Chen, Sh.-L., Dong, P., Yuan, G., and Xu, K., Appl. Catal. A: Gen., 2007, vol. 332, pp. 46–55. https://doi.org/10.1016/j.apcata.2007.07.047

    Article  CAS  Google Scholar 

  45. Blasco, T., Chica, A., Corma, A., Murphy, W.J., AgundezRodriguez, J., and Perez-Pariente, J., J. Catal., 2006, vol. 242, pp. 153–161. https://doi.org/10.1016/j.jcat.2006.05.027

    Article  CAS  Google Scholar 

  46. Xu, X.T., Zhai, J.P., Li, I.L., and Ruan, Sh.Ch., Appl. Mech. Mater., 2013, vols. 275–277, pp. 1737–1741. https://doi.org/10.4028/www.scientific.net/AMM.275-277.1737

    Article  CAS  Google Scholar 

  47. Wang, X., Guo, Sh., and Zhao, L., Bull. Korean Chem. Soc., 2013, vol. 34(12), pp. 3829–3834. https://doi.org/10.5012/bkcs.2013.34.12.3829

    Article  CAS  Google Scholar 

  48. Cui, X., Liu, Y., and Liu, X., Catal. Lett., 2015, vol. 145, pp. 1464–1473. https://doi.org/10.1007/s10562-015-1554-z

    Article  CAS  Google Scholar 

  49. Wang, X., Zhang, W., Guo, Sh., Zhao, L., and Xiang, H., J. Braz. Chem. Soc., 2013, vol. 24(7), pp. 1180–1187. https://doi.org/10.5935/0103-5053.20130152

    Article  CAS  Google Scholar 

  50. Huang, X., Wang, L., Kong, L., and Li, Q., Appl. Catal. A: Gen., 2003, vol. 253, pp. 461–467. https://doi.org/10.1016/S0926-860X(03)00562-3

    Article  CAS  Google Scholar 

  51. Liu, Y., Lyu, Y., Zhao, X., Xu, L., Mintova, S., Yan, Z., and Liu, X., Chem. Commun., 2018, vol. 54, pp. 10950–10953. https://doi.org/10.1039/c8cc05952g

    Article  CAS  Google Scholar 

  52. Du, Y., Feng, B., Jiang, Y., Yuan, L., Huang, K., and Li, J., Eur. J. Inorg. Chem., 2018, pp. 2599–2606. https://doi.org/10.1002/ejic.201800134

  53. Lyu, Y., Liu, Y., He, X., Xu, L., Liu, X., and Yan, Z., Appl. Surf. Sci., 2018, vol. 453, pp. 350–357. https://doi.org/10.1016/j.apsusc.2018.05.106

    Article  CAS  Google Scholar 

  54. Wang, Zh., Tian, Zh., Teng, F., Wen, G., Xu, Y., Xu, Zh., and Lin, L., Catal. Lett., 2005, vol. 103, pp. 109–116. https://doi.org/10.1007/s10562-005-6510-x

    Article  CAS  Google Scholar 

  55. Yang, Zh., Li, J., Liu, Y., and Liu, Ch., J. Energy Chem., 2017, vol. 26(4), pp. 688–694. https://doi.org/10.1016/j.jechem.2017.02.002

    Article  Google Scholar 

  56. Yang, L., Wang, W., Song, X., Bai, X., Feng, Zh., Liu, T., and Wu, W., Fuel Proc. Tech., 2019, vol. 190, pp. 13–20. https://doi.org/10.1016/j.fuproc.2019.02.027

    Article  CAS  Google Scholar 

  57. Prakash, A.M., Chilukuri, S.V.V., Bagwe, R.P., Ashtekar, S., and Chakrabarty, D.K., Micropor. Mater., 1996, vol. 6, pp. 89–97. https://doi.org/10.1016/0927-6513(95)00091-7

    Article  CAS  Google Scholar 

  58. Chen, J. and Thomas, J.M., Catal. Lett., 1991, vol. 11, pp. 199–208. https://doi.org/10.1007/BF00764086

    Article  CAS  Google Scholar 

  59. Li, L. and Zhang, F., Stud. Surf. Sci. Catal., 2007, vol. 170, pp. 397–402. https://doi.org/10.1016/S0167-2991(07)80866-4

    Article  Google Scholar 

  60. Venkatathri, N. and Srivastava, R., J. Indian. Inst. Sci., 2004, vol. 84, pp. 99–105.

    CAS  Google Scholar 

  61. Venkatathri, N. and Srivastava, R., Stud. Surf. Sci. Catal., 2004, vol. 154, pp. 978–984. https://doi.org/10.1016/S0167-2991(04)80913-3

    Article  Google Scholar 

  62. Wei, X., Kikhtyanin, O.V., Parmon, V.N., Wu, W., Bai, X., Zhang, J., Xiao, L., Su, X., and Zhang, Y., J. Por. Mater., 2018, vol. 25, pp. 235–247. https://doi.org/10.1007/s10934-017-0429-7

    Article  CAS  Google Scholar 

  63. Meriaudeau, P., Tuan, V.A., Lefebvre, F., Nghiem, V.T., and Naccache, C., Micropor. Mesopor. Mater., 1998, vol. 26, pp. 161–173. https://doi.org/10.1016/S1387-1811(98)00230-3

    Article  CAS  Google Scholar 

  64. Ma, Y., Li, N., Guan, N., and Xiang, Sh., Micropor. Mesopor. Mater., 2011, vol. 142, pp. 680–687. https://doi.org/10.1016/j.micromeso.2011.01.017

    Article  CAS  Google Scholar 

  65. Wilson, S., Lok, B.M., and Flanigen, E.M., Patent US 4310440, 1981.

  66. Tapp, N.J., Milestone, N.B., and Bibby, D.N., Zeolites, 1988, vol. 8(3), pp. 183–188. https://doi.org/10.1016/S0144-2449(88)80305-1

    Article  CAS  Google Scholar 

  67. Ma, Y., Li, N., Ren, X., Xiang, Sh., and Guan, N., J. Mol. Catal. A Chem., 2006, vol. 250, pp. 9–14. https://doi.org/10.1016/j.molcata.2006.01.028

    Article  CAS  Google Scholar 

  68. Nieminen, V., Kumar, N., Heikkila, T., Laine, E., Villegas, J., Salmi, T., and Murzin, D.Yu., Appl. Catal. A: Gen., 2004, vol. 259, pp. 227–234. https://doi.org/10.1016/j.apcata.2003.09.038

    Article  CAS  Google Scholar 

  69. Balakrishnan, I. and Prasad, S., Appl. Catal., 1990, vol. 62, pp. L7–Lll. https://doi.org/10.1016/S0166-9834(00)82227-7

  70. Agliullin, M.R., Khairullina, Z.R., Kuvatova, R.Z., and Kutepov, B.I., Catal. Ind., 2020, vol. 12, pp. 89–94. https://doi.org/10.1134/S2070050420020026

    Article  Google Scholar 

  71. Agliullin, M.R., Khairullina, Z.R., Faizullin, A.V., Petrov, A.I., Badretdinova, A.A., Talzi, V.P., and Kutepov, B.I., Catal. Ind., 2019, vol. 11, pp. 1–6. https://doi.org/10.1134/S2070050419010021

    Article  Google Scholar 

  72. Agliullin, M.R. and Kutepov, B.I., Petrol. Chem., 2020, vol. 60, pp. 890–894. https://doi.org/10.1134/S0965544120080022

    Article  CAS  Google Scholar 

  73. Hu, Y., Liu, Ch., Zhang, Y., Ren, N., and Tang, Y., Micropor. Mesopor. Mater., 2009, vol. 119, pp. 306–314. https://doi.org/10.1016/j.micromeso.2008.11.005

    Article  CAS  Google Scholar 

  74. Park, M. and Komarneni, S., Micropor. Mesopor. Mater., 1998, vol. 20, pp. 39–44. https://doi.org/10.1016/S1387-1811(97)00007-3

    Article  CAS  Google Scholar 

  75. Chen, Y., Luo, X., Chang, P., and Geng, Sh., Mater. Chem. Phys., 2009, vol. 113, pp. 899–904. https://doi.org/10.1016/j.matchemphys.2008.08.038

    Article  CAS  Google Scholar 

  76. Rao, P.R.H.P. and Matsukata, M., Chem. Commun., 1996, pp. 1441–1442. https://doi.org/10.1039/CC9960001441

  77. Bandyopadhyay, R., Kubota, Y., and Sugi, Y., Chem. Lett., 1998, vol. 27, pp. 813–816. https://doi.org/10.1246/cl.1998.813

    Article  Google Scholar 

  78. Tatsumi, T. and Jappar, N., J. Phys. Chem., 1998, vol. 102, pp. 7126–7134. https://doi.org/10.1021/jp9816216

    Article  CAS  Google Scholar 

  79. Bandyopadhyay, M., Bandyopadhyay, R., and Kubota, Y., Chem. Lett., 2000, vol. 29(9), pp. 1024–1025. https://doi.org/10.1246/cl.2000.1024

    Article  Google Scholar 

  80. Meng, X. and Xiao, F.-Sh., Chem. Rev., 2014, vol. 114(2), pp. 1521–1543. https://doi.org/10.1021/cr4001513

    Article  CAS  PubMed  Google Scholar 

  81. Ren, L., Wu, Q., Yang, Ch., Zhu, L., Li, C., Li, C., Zhang, P., Zhang, H., Meng, X., and Xiao, F.-Sh., J. Am. Chem. Soc., 2012, vol. 134(37), pp. 15173–15176. https://doi.org/10.1021/ja3044954

    Article  CAS  PubMed  Google Scholar 

  82. Zhao, X., Gao, X., Zhang, X., and Hao, Zh., Micropor. Mesopor. Mater., 2017, vol. 242, pp. 160–165. https://doi.org/10.1016/j.micromeso.2017.01.028

    Article  CAS  Google Scholar 

  83. Qisheng, H. and Ruren, X., J. Chem. Soc., Chem. Commun., 1990, pp. 783–784. 10.1039/C39900000783

  84. Xu, R., Zhang, W., Xu, J., Tian, Zh., Deng, F., Han, X., and Bao, X., J. Phys. Chem. C, 2013, vol. 117, pp. 5848–5854. https://doi.org/10.1021/jp400422z

    Article  CAS  Google Scholar 

  85. Zhao, Zh., Zhang, W., Xu, R., Han, X., Tian, Zh., and Bao, X., Dalton Trans., 2012, vol. 41, pp. 990–994. https://doi.org/10.1039/C1DT11315A

    Article  CAS  PubMed  Google Scholar 

  86. Li, K., Tian, Zh., Li, X., Xu, R., Xu, Y., Wang, L., Ma, H., Wang, B., and Lin, L., Angew. Chem. Int. Ed., 2012, vol. 51, pp. 4397–4400. https://doi.org/10.1002/anie.201200101

    Article  CAS  Google Scholar 

  87. Xu, Y.-P., Tian, Zh.-J., Wang, Sh.-J., Hu, Y., Wang, L., Wang, B.-Ch., Ma, Y.-Ch., Hou, L., Yu, J.-Y., and Lin, L.-W., Angew. Chem., 2006, vol. 45, pp. 3965 – 3970. https://doi.org/10.1002/anie.200600054

    Article  CAS  Google Scholar 

  88. Cundy, C.S. and Cox, P.A., Micropor. Mesopor. Mater., 2005, vol. 82, pp. 1–78. https://doi.org/10.1016/j.micromeso.2005.02.016

    Article  CAS  Google Scholar 

  89. Chen, B. and Huang, Y., J. Phys. Chem. C, 2007, vol. 111(42), pp. 15236–15243. https://doi.org/10.1021/jp071868f

    Article  CAS  Google Scholar 

  90. Zhang, S., Chen, S.L., Dong, P., Ji, Z., Zhao, J., and Xu, K., Catal. Lett., 2007, vol. 118, pp. 109–117 https://doi.org/10.1007/s10562-007-9138-1

    Article  CAS  Google Scholar 

  91. Chen, B. and Huang, Y., J. Am. Chem. Soc., 2006, vol. 128, pp. 6437–6446. https://doi.org/10.1021/ja060286t

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, B., Xu, J., Fan, F., Guo, Q., Tong, X., Yan, W., Yu, J., Deng, F., Li, C., and Xu, R., Micropor. Mesopor. Mater., 2012, vol. 147, pp. 212–221. https://doi.org/10.1016/j.micromeso.2011.06.018

    Article  CAS  Google Scholar 

  93. Cheng, T., Xu, J., Li, X., Zhang, B., Yan, W., Yu, J., Sun, H., Deng, F., and Xu, R., Micropor. Mesopor. Mater., 2012, vol. 152, pp. 190–207. https://doi.org/10.1016/j.micromeso.2011.11.034

    Article  CAS  Google Scholar 

  94. Agliullin, M.R., Khairullina, Z.R., Faizullin, A.V., Petrov, A.I., Badretdinova, A.A., Talzi, V.P., and Kutepov, B.I., Catal. Ind., 2019, vol. 11, pp. 87–94. https://doi.org/10.1134/S2070050419020028

    Article  Google Scholar 

  95. Agliullin, M.R., Kuvatova, R.Z., and Kutepov, B.I., Petrol. Chem., 2020, vol. 60(4), pp. 451–458. https://doi.org/10.1134/S0965544120040027

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Russian Science Foundation № 21-73-00013, https://rscf.ru/project/21-73-00013/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Agliullin.

Ethics declarations

A.L. Maximov, a co-author, is the Chief Editor at the Neftekhimiya (Petroleum Chemistry) Journal. The other co-authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agliullin, M.R., Kutepov, B.I., Ostroumova, V.A. et al. Silicoaluminophosphate Molecular Sieves SAPO-11 and SAPO-41: Synthesis, Properties, and Applications for Hydroisomerization of C16+ n-Paraffins. Part 1: Current State of Research on SAPO-11 and SAPO-41 Synthesis (A Review). Pet. Chem. 61, 836–851 (2021). https://doi.org/10.1134/S0965544121080028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121080028

Keywords:

Navigation