Skip to main content
Log in

Hydrogenation/Dehydrogenation Catalysts for Hydrogen Storage Systems Based on Liquid Organic Carriers (A Review)

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The state of the art in the field of studying catalysts for hydrogenation/dehydrogenation of organic substrates as potential components of modern hydrogen storage systems based on liquid organic hydrogen carriers is analyzed. The ways to reduce the content of noble metals or to replace them partially or fully by cheaper transition metals, prospects for using various supports, and possibilities of enhancing the activity, stability, and selectivity of the catalysts and of regenerating spent catalytic systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Hydrogen scaling up. A sustainable pathway for the global energy transition, Hydrogen Council, November 2017.

  2. Renewable hydrogen “already cost competitive”, says new research, March 15, 2019, by Jocelyn Timperley. https://energypost.eu/renewable-hydrogen-already-cost-competitive-says-new-research/

  3. Nafchi, F.M., Baniasadi, E., Afshari, E., and Javani, N., Int. J. Hydrogen Energy, 2018, vol. 43, pp. 5820–5831. https://doi.org/10.1016/j.ijhydene.2017.09.058

    Article  CAS  Google Scholar 

  4. Fateev, V.N., Alekseeva, O.K., Korobtsev, S.V., Seregina, E.A., Fateeva, T.V., Grigor’ev, A.S., and Aliev, A.Sh., Khim. Probl., 2018, vol. 16, no. 4, pp. 453–483.

    Google Scholar 

  5. Kikuchi, Y., Ichikawa, T., Sugiyama, M., and Koyama, M., Int. J. Hydrogen Energy, 2019, vol. 44, pp. 1451–1465. https://doi.org/10.1016/j.ijhydene.2018.11.119

    Article  CAS  Google Scholar 

  6. Niermann, M., Drunert, S., Bonhoff, K., and Kaltschmitt, M., Energy Environ. Sci., 2019, vol. 12, pp. 290–307. https://doi.org/10.1039/C8EE02700E

    Article  CAS  Google Scholar 

  7. Sadaghiani, M.S. and Mehrpooya, M., Int. J. Hydrogen Energy, 2017, vol. 42, pp. 6033–6050. https://doi.org/10.1016/j.ijhydene.2017.01.136

    Article  CAS  Google Scholar 

  8. Sreedhar, I., Kamani, K.M., Kamani, B.M., Reddy, B.M., and Venugopal, A., Renew. Sustain. Energy Rev., 2018, vol. 91, pp. 838–860. https://doi.org/10.1016/j.rser.2018.04.028

    Article  CAS  Google Scholar 

  9. Preuster, P., Papp, C., and Wasserscheid, P., Acc. Chem. Res., 2017, vol. 50, pp. 74–85. https://doi.org/10.1021/acs.accounts.6b00474

    Article  CAS  PubMed  Google Scholar 

  10. Geburtig, D., Preuster, P., Bösmann, A., Müller, K., and Wasserscheid, P., Int. J. Hydrogen Energy, 2016, vol. 41, pp. 1010–1017. https://doi.org/10.1016/j.ijhydene.2015.10.013

    Article  CAS  Google Scholar 

  11. Gianotti, E., Taillades-Jacquin, M., Rozière, J., and Jones, D.J., ACS Catal., 2018, vol. 8, no. 5, pp. 4660– 4680. https://doi.org/10.1021/acscatal.7b04278

    Article  CAS  Google Scholar 

  12. Rivard, E., Trudeau, M., and Zaghi, K., Materials, 2019, vol. 12, 1973. https://doi.org/10.3390/ma12121973

  13. Andersson, J. and Gronkvist, S., Int. J. Hydrogen Energy, 2019, vol. 44, pp. 11901–11919. https://doi.org/10.1016/j.ijhydene.2019.03.063

    Article  CAS  Google Scholar 

  14. Crabtree, R.H., ACS Sustain. Chem. Eng., 2017, vol. 5, pp. 4491–4498. https://doi.org/10.1021/acssuschemeng.7b00983

    Article  CAS  Google Scholar 

  15. Aakko-Saksa, P.T., Cook, C., Kiviaho, J., and Repo, T., J. Power Sources, 2018, vol. 396, pp. 803–823. https://doi.org/10.1016/j.jpowsour.2018.04.011

    Article  CAS  Google Scholar 

  16. Modisha, P.M., Ouma, C.N.M., Garidzirai, R., Wasserscheid, P., and Bessarabov, D., Energy Fuels, 2019, vol. 33, pp. 2778–2796. https://doi.org/10.1021/acs.energyfuels.9b00296

    Article  CAS  Google Scholar 

  17. Hurskainen, M. and Ihonen, J., Int. J. Hydrogen Energy, 2020, vol. 45, no. 56, pp. 32098–32112. https://doi.org/10.1016/j.ijhydene.2020.08.186

    Article  CAS  Google Scholar 

  18. Safe and reliable: HySTOC’s promise for the future of hydrogen supply, 1 July 2020. https://cordis.europa.eu/article/id/421415-safe-and-reliable-hystoc-s-promise-for-the-future-of-hydrogen-supply

  19. Taube, M., Rippin, D.W.T., Cresswell, D.L., and Knecht, W., Int. J. Hydrogen Energy, 1983, vol. 8, pp. 213–225.

    Article  CAS  Google Scholar 

  20. Hull, J.F., Himeda, Y., Wang, W.-H., Hashiguchi, B., Periana, R., Szalda, D.J., Muckerman, J.T., and Fujita, E., Nat. Chem., 2012, vol. 4, pp. 383–388. https://doi.org/10.1038/nchem.1295

    Article  CAS  PubMed  Google Scholar 

  21. Mellmann, D., Sponholz, P., Junge, H., and Beller, M., Chem. Soc. Rev., 2016, vol. 45, pp. 3954–3988. https://doi.org/10.1039/C5CS00618J

    Article  CAS  PubMed  Google Scholar 

  22. Heim, L.E., Schlörer, N.E., Choi, J.-H., and Prechtl, M.H.G., Nat. Commun., 2014, vol. 5, p. 3621. https://doi.org/10.1038/ncomms4621

    Article  CAS  PubMed  Google Scholar 

  23. Trincado, M., Sinha, V., Rodriguez-Lugo, R.E., Pribanic, B., de Bruin, B., and Grutzmacher, H., Nat. Commun., 2017, vol. 8, p. 14990. https://doi.org/10.1038/ncomms14990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin, L., Zhou, W., Gao, R., Yao, S., Zhang, X., Xu, W., Zheng, S., Jiang, Z., Yu, Q., Li, Y.-W., Shi, C., Wen, X.-D., and Ma, D., Nature, 2017, vol. 544, pp. 80–83. https://doi.org/10.1038/nature21672

    Article  CAS  PubMed  Google Scholar 

  25. Kothandaraman, J., Kar, S., Goeppert, A., Sen, R., and Prakash, G.K.S., Top. Catal., 2018, vol. 61, pp. 542–559. https://doi.org/10.1007/s11244-018-0963-9

    Article  CAS  Google Scholar 

  26. Onishi, N., Iguchi, M., Yang, X., Kanega, R., Kawanami, H., Xu, Q., and Himeda, Y., Adv. Energy Mater., 2019, vol. 9, no. 23: Special Issue: Energy Research in AIST, https://doi.org/10.1002/aenm.201801275

  27. Müller, K., Brooks, K., and Autrey, T., Energy Fuels, 2017, vol. 31, no. 11, pp. 12603–12611. https://doi.org/10.1021/acs.energyfuels.7b02997

    Article  CAS  Google Scholar 

  28. Verevkin, S.P., Siewert, R., and Pimerzin, A.A., Fuel, 2020, vol. 266, I 117067. https://doi.org/10.1016/j.fuel.2020.117067

  29. Li, D., Zhang, J., Liu, Y., Yuan, H., and Chen, Y., Chem. Eng. Sci., 2021, vol. 229, 116075. https://doi.org/10.1016/j.ces.2020.11.6075

  30. Yang, M., Dong, Y., and Cheng, H.S., Adv. Mater. Res., 2014, vols. 953–954, pp. 981–984. https://doi.org/10.4028/www.scientific.net/amr.953-954.981

    Article  Google Scholar 

  31. Yang, M., Dong, Y., Fei, S., Pan, Q., Ni, G., Han, C., Ke, H., Fang, Q., and Cheng, H., RSC Adv., 2013, vol. 3, pp. 24877–24881. https://doi.org/10.1039/C3RA44760J

    Article  CAS  Google Scholar 

  32. Li, L., Yang, M., Dong, Y., Mei, P., and Cheng, H., Int. J Hydrogen Energy, 2016, vol. 41, pp. 16129–16134. https://doi.org/10.1016/j.ijhydene.2016.04.240

    Article  CAS  Google Scholar 

  33. Dong, Y., Yang, M., Yang, Z., Ke, H., and Cheng, H., Int. J. Hydrogen Energy, 2015, vol. 40, pp. 10918–10922. https://doi.org/10.1016/j.ijhydene.2015.05.196

    Article  CAS  Google Scholar 

  34. Chen, Z., Yang, M., Zhu, T., Zhang, Z., Chen, X., Liu, Z., Dong, Y., Cheng, G., and Cheng, H., Int. J. Hydrogen Energy, 2018, vol. 43, pp. 12688–12696. https://doi.org/10.1016/j.ijhydene.2018.03.088

    Article  CAS  Google Scholar 

  35. Klvana, D., Chaouki, J., Kusohorsky, D., Chavarie, C., and Pajonk, G.M., Appl. Catal., 1988, vol. 42, pp. 121–130.

    Article  CAS  Google Scholar 

  36. Itoh, N., Xu, W.C., Hara, S., and Sakaki, K., Catal. Today, 2000, vol. 56, pp. 307–314. https://doi.org/10.1016/S0920-5861(99)00288-6

    Article  CAS  Google Scholar 

  37. Crabtree, R.H., Energy Environ. Sci., 2008, vol. 1, no. 1, pp. 134–138. https://doi.org/10.1039/B805644G

    Article  CAS  Google Scholar 

  38. Kustov, L.M., Kalenchuk, A.N., and Bogdan, V.I., Russ. Chem. Rev., 2020, vol. 89, no. 9, pp. 897–916.

    Article  CAS  Google Scholar 

  39. Rao, P.C. and Yoon, M., Energies, 2020, vol. 13, no. 22, 6040. https://doi.org/10.3390/en13226040

  40. Shimbayashi, T. and Fujita, K., Tetrahedron, 2020, vol. 76, no. 11, I 130946. https://doi.org/10.1016/j.tet.2020.130946

  41. Bourane, A., Elanany, M., Pham, T.V., and Katikaneni, S.P., Int. J. Hydrogen Energy, 2016, vol. 41, no. 48, pp. 23075–23091. https://doi.org/10.1016/jijhydene.2016.07.167

    Article  CAS  Google Scholar 

  42. Brückner, N., Obesser, K., Bösmann, A., Teichmann, D., Arlt, W., Dungs, J., and Wasserscheid, P., Chem. Sustain. Chem., 2014, vol. 7, no. 1, pp. 229–235. https://doi.org/10.1002/cssc.201300426

    Article  CAS  Google Scholar 

  43. Catalyst development for improved economic viability of LOHC technology, TOPIC ID: FCH-02-1-2020, European Commission, Funding & Tender Opportunities. https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/fch-02-1-2020

  44. Yamaguchi, R., Ikeda, C., Takahashi, Y., and Fujita, K.-I., J. Am. Chem. Soc., 2009, vol. 131, pp. 8410–8412. https://doi.org/10.1021/ja9022623

    Article  CAS  PubMed  Google Scholar 

  45. Wang, Z., Belli, J., and Jensen, C.M., Faraday Disc., 2011, vol. 151, pp. 297–305. https://doi.org/10.1039/C1FD00002K

    Article  CAS  Google Scholar 

  46. Boufaden, N., Akkari, R., Pawelec, B., Fierro, J.L.G., Zina, M.S., and Ghorbel, A., J. Mol. Catal. A: Chem., 2016, vol. 420, pp. 96–106. https://doi.org/10.1016/j.molcata.2016.04.011

    Article  CAS  Google Scholar 

  47. Jiang, Z., Gong, X., Wang, B., Wu, Z., and Fang, T., Int. J. Hydrogen Energy, 2019, vol. 44, no. 5, pp. 2951–2959. https://doi.org/10.1016/j.ijhydene.2018.11.236

    Article  CAS  Google Scholar 

  48. Yang, M., Dong, Y., Fei, S., Ke, H., and Cheng, H., Int. J. Hydrogen Energy, 2014, vol. 39, pp. 18976–18983. https://doi.org/10.1016/j.ijhydene.2014.09.123

    Article  CAS  Google Scholar 

  49. He, Y., Song, Y., Cullen, D.A., and Laursen, S., J. Am. Chem. Soc., 2018, vol. 140, pp. 14010–14014. https://doi.org/10.1021/jacs.8b05060

    Article  CAS  PubMed  Google Scholar 

  50. Shao, Z., Li, Y., Liu, C., Ai, W., Luo, S.-P., and Liu, Q., Nat. Commun., 2020, vol. 11, p. 591. https://doi.org/10.1038/s41467-020-14380-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zell, T. and Langer, R., Recycl. Catal., 2015, vol. 2, pp. 87–109. https://doi.org/10.1515/recat-2015-0010

    Article  Google Scholar 

  52. Ali, A., Kumar, U., and Lee, H.J., J. Mech. Sci. Technol., 2019, vol. 33, pp. 5561–5569. https://doi.org/10.1007/s12206-019-1049-8

    Article  Google Scholar 

  53. Yan, J., Wang, W., Miao, L., Wu, K., Chen, G., Huang, Y., and Yang, Y., Int. J. Hydrogen Energy, 2018, vol. 43, pp. 9343–9352. https://doi.org/10.1016/j.ijhydene.2018.04.003

    Article  CAS  Google Scholar 

  54. Usman, M.R., Energy Sources, Part A: Recovery, 2011, vol. 24, pp. 2231–2238. https://doi.org/10.1080/15567036.2011.565307

    Article  CAS  Google Scholar 

  55. Ouma, C.N.M., Modisha, P.M., and Bessarabov, D., Appl. Surf. Sci., 2018, vol. 471, pp. 1034–1040. https://doi.org/10.1016/j.apsusc.2018.12.110

    Article  CAS  Google Scholar 

  56. Alhumaidan, F., Tsakiris, D., Cresswell, D., and Garforth, A., Int. J. Hydrogen Energy, 2013, vol. 38, no. 32, pp. 14010–14026. https://doi.org/10.1016/j.ijhydene.2013.08.067

    Article  CAS  Google Scholar 

  57. Zhu, T., Yang, M., Chen, X., Dong, Y., Zhang, Z., and Cheng, H., J. Catal., 2019, vol. 378, pp. 382–391. https://doi.org/10.1016/j.jcat.2019.08.032

    Article  CAS  Google Scholar 

  58. Wang, B., Chang, T.-Y., Jiang, Z., Wei, J.-J., and Fang, T., Appl. Catal. B: Environmental, 2019, vol. 251, pp. 261–272. https://doi.org/10.1016/j.apcatb.2019.03.071

    Article  CAS  Google Scholar 

  59. Chen, X., Li, G., Gao, M., Dong, Y., Yang, M., and Cheng, H., Int. J. Hydrogen Energy, 2020, vol. 45, no. 56, pp. 32168–32178. https://doi.org/10.1016/j.ijhydene.2020.08.162

    Article  CAS  Google Scholar 

  60. Jiang, Z., Gong, X., Guo, S., Bai, Y., and Fang, T., Int. J. Hydrogen Energy, 2021, vol. 46, no. 2, pp. 2376–2389. https://doi.org/10.1016/j.ijhydene.2020.10.123

    Article  CAS  Google Scholar 

  61. Kustov, L.M., Tarasov, A.L., and Kirichenko, O.A., Int. J. Hydrogen Energy, 2017, vol. 42, no. 43, pp. 26723–26729. https://doi.org/10.1016/j.ijhydene.2017.09.009

    Article  CAS  Google Scholar 

  62. Yu, H., Yang, X., Wu, Y., Guo, Y., Li, S., Lin, W., Li, X., and Zheng, J., J. Energy Chem., 2020, vol. 40, pp. 188–195. https://doi.org/10.1016/j.jechem.2019.04.009

    Article  Google Scholar 

  63. Modisha, P., Gqogqa, P., Garidzirai, R., Ouma, C.N.M., and Bessarabov, D., Int. J. Hydrogen Energy, 2019, vol. 44, no. 39, pp. 21926–21935. https://doi.org/10.1016/j.ijhydene.2019.06.212

    Article  CAS  Google Scholar 

  64. Kothandaraman, J., Kar, S., Sen, R., Goeppert, A., Olah, G.A., and Prakash, G.K.S., J. Am. Chem. Soc., 2017, vol. 139, no. 7, pp. 2549–2552. https://doi.org/10.1021/jacs.6b11637

    Article  CAS  PubMed  Google Scholar 

  65. Bonitatibus, P.J.Jr., Chakraborty, S., Doherty, M.D., Siclovan, O., Jones, W.D., and Soloveichik, G.L., Proc. Natl. Acad. Sci. USA, 2015, vol. 112, no. 6, pp. 1687– 1692. https://www.pnas.org/content/112/6/1687

    Article  CAS  Google Scholar 

  66. Bernskoetter, W.H. and Hazari, N., Hydrogenation and Dehydrogenation Reactions Catalyzed by Iron Pincer Compounds: Chapter in Pincer Compounds, 2018, pp. 111–131. https://doi.org/10.1016/B978-0-12-812931-9.000062

  67. Xie, Y., Hu, P., Ben-David, Y., and Milstein, D., Angew. Chem. Int. Ed., 2019, vol. 58, no. 15, pp. 5105–5109. https://doi.org/10.1002/anie.201901695

    Article  CAS  Google Scholar 

  68. Yu, H., Yang, X., Jiang, X., Wu, Y., Chen, S., Lin, W., Wu, Y., Xie, L., Li, X., and Zheng, J., Nano Energy, 2021, vol. 80, p. 105476. https://doi.org/10.1016/j.nanoen.2020.105476

    Article  CAS  Google Scholar 

  69. Peng, L.S., Zheng, S.X., Li, L., Zhang, L., Yang, N., Xiong, K., Chen, H.M., Li, J., and Wei, Z.D., Appl. Catal. B: Environmental, 2019, vol. 245, pp. 122–129. https://doi.org/10.1016/j.apcatb.2018.12.035

    Article  CAS  Google Scholar 

  70. Ding, C., Zhu, T., Wang, F., Zhang, Z., Dong, Y., Yang, M., Cheng, G., Ke, H., and Cheng, H., Int. J. Hydrogen Energy, 2020, vol. 45, no. 32, pp. 16144–16152. https://doi.org/10.1016/j.ijhydene.2020.04.081

    Article  CAS  Google Scholar 

  71. Chen, Z., Zhang, M., Hua, J., Yang, M., Dong, Y., and Cheng, H., Int. J. Hydrogen Energy, 2021, vol. 46, no. 15, pp. 9718–9729. https://doi.org/10.1016/j.ijhydene.2020.08.168

    Article  CAS  Google Scholar 

  72. Cromwell, D.K., Vasudevan, P.T., Pawelec, B, and Fierro, J.L.G., Catal. Today, 2016, vol. 259, pp. 119–129. https://doi.org/10.1016/j.cattod.2015.05.030

    Article  CAS  Google Scholar 

  73. Manabe, S., Yabe, T., Nakano, A., Nagatake, S., Higo, T., Ogo, S., Nakai, H., and Sekine, Y., Chem. Phys. Lett., 2018, vol. 711, pp. 73–76. https://doi.org/10.1016/j.cplett.2018.09.026

    Article  CAS  Google Scholar 

  74. Lee, S., Lee, J., Kim, T., Han, G., Lee, J., Lee, K., and Bae, J., Int. J. Hydrogen Energy, 2021, vol. 46, no. 7, pp. 5520–5529. https://doi.org/10.1016/j.ijhydene.2020.11.038

    Article  CAS  Google Scholar 

  75. Kwak, Y., Moon, S., Ahn, Ch., Kim, A.-R., Park, Y., Kim, Y., Sohn, H., Jeong, H., Nam, S.W., Yoon, Ch.W., and SukJo, Y., Fuel, 2021, vol. 284, I 119285. https://doi.org/10.1016/j.fuel.2020.119285

  76. Yang, X., Wu, Y., Yu, H., Sun, M., Zheng, J., Li, X., Lin, W., and Wu, Y., Int. J. Hydrogen Energy, 2020, vol. 45, no. 58, pp. 33657–33662. https://doi.org/10.1016/j.ijhydene.2020.09.043

    Article  CAS  Google Scholar 

  77. Wang, B., Yan, T., Chang, T., Wei, J., Zhou, Q., Yang, S., and Fang, T., Carbon, 2017, vol. 122, p. 9–8. https://doi.org/10.1016/j.carbon.2017.06.021

    Article  CAS  Google Scholar 

  78. Palkovits, R., Artz, J., and Chen, X., Chem. Ing. Tech., 2018, vol. 90, no. 9, pp. 1171–1171. https://doi.org/10.1002/cite.201855087

    Article  CAS  Google Scholar 

  79. Shi, L., Zhou, Y., Qi, S., Smith, K.J., Tan, X., Yan, J., and Yi, C., ACS Catal., 2020, vol. 10, no. 18, pp. 10661– 10671. https://doi.org/10.1021/acscatal.0c03091

    Article  CAS  Google Scholar 

  80. Kalenchuk, A.N., Bogdan, V.I., Dunaev, S.F., and Kustov, L.M., Fuel Process. Technol., 2018, vol. 169, pp. 94–100. https://doi.org/10.1016/j.fuproc.2017.09.023

    Article  CAS  Google Scholar 

  81. Kalenchuk, A.N., Bogdan, V.I., Dunaev, S.F., and Kustov, L.M., Int. J. Hydrogen Energy, 2018, vol. 43, no. 12, pp. 6191–6196. https://doi.org/10.1016/j.ijhydene.2018.01.121

    Article  CAS  Google Scholar 

  82. Aakko-Saksa, P.T., Vehkamaki, M., Kemell, M., Keskivali, L., Simell, P., Reinikainen, M., Tapper, U., and Repo, T., Chem. Commun., 2020, vol. 56, pp. 1657–1660. https://doi.org/10.1039/c9cc09715e

    Article  CAS  Google Scholar 

  83. Martynenko, E.A., Pimerzin, Al.A., Savinov, A.A., Verevkin, S.P., and Pimerzin, A.A., Top. Catal., 2020, vol. 63, pp. 178–186. https://doi.org/10.1007/s11244-020-01228-9

    Article  CAS  Google Scholar 

  84. Gong, X., Jiang, Z., and Fang, T., Int. J. Hydrogen Energy, 2020, vol. 45, no. 11, pp. 6838–6847. https://doi.org/10.1016/j.ijhydene.2019.12.203

    Article  CAS  Google Scholar 

  85. Fei, S., Han, B., Li, L., Mei, P., Zhu, T., Yang, M., and Cheng, H., Int. J. Hydrogen Energy, 2017, vol. 42, no. 41, pp. 25942–25950. https://doi.org/10.1016/j.ijhydene.2017.08.204

    Article  CAS  Google Scholar 

  86. Feng, Z., Chen, X., and Bai, X., Environ. Sci. Pollut. Res., 2020, vol. 27, pp. 36172–36185. https://doi.org/10.1007/s11356-020-09698-w

    Article  CAS  Google Scholar 

  87. Auer, F., Blaumeiser, D., Bauer, T., Bösmann, A., Szesni, N., Libuda, J., and Wasserscheid, Catal. Sci. Technol., 2019, vol. 9, pp. 3537–3547. https://doi.org/10.1039/C9CY00817A

    Article  CAS  Google Scholar 

  88. Modisha, P. and Bessarabov, D., Sustain. Energy Fuels, 2020, vol. 4, pp. 4662–4670. https://doi.org/10.1039/D0SE00625D

    Article  CAS  Google Scholar 

  89. Ouma, C.N.M., Modisha, P.M., and Bessarabov, D., Comput. Mater. Sci., 2020, vol. 172, 109332. https://doi.org/10.1016/j.commatsci.2019.109332

  90. Romanovskii, R.V., Ivashkina, E.N., Frantsina, E.V., Dolganov, I.M., Ivanchina, E.D., Kravtsov, A.V., and Ivanov, S.Yu., Katal. Prom–sti, 2013, no. 4, pp. 42–51.

    Google Scholar 

  91. Lokteva, E.S., Lazhko, A.E., Golubina, E.V., Timofeev, V.V., Naumkin, A.V., Yagodovskaya, T.V., Gaidamaka, S.N., and Lunin, V.V., J. Supercrit. Fluids, 2011, vol. 58, no. 2, pp. 263–271. https://doi.org/10.1016/j.supflu.2011.05.018

    Article  CAS  Google Scholar 

  92. Kreuder, H., Müller, C., Meier, J., Gerhards, U., Dittmeyer, R., and Pfeifer, P., Catal. Today, 2015, vol. 242, part A, pp. 211–220. https://doi.org/10.1016/j.cattod.2014.06.029

    Article  CAS  Google Scholar 

  93. Amende, M., Kaftan, A., Bachmann, P., Brehmer, R., Preuster, P., Koch, M., Wasserscheid, P., and Libuda, J., Appl. Surf. Sci., 2016, vol. 360, part B, pp. 671–683. https://doi.org/10.1016/j.apsusc.2015.11.045

    Article  CAS  Google Scholar 

  94. Makaryan, I.A., Sedov, I.V., and Maksimov, A.L., Russ. J. Appl. Chem., 2020, vol. 93, pp. 1815–1830. https://doi.org/10.1134/S1070427220120034

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed within the framework of the Program of Basic Scientific Research of State Academies of Sciences, theme 0089-2019-0018 of the Institute of Problems of Chemical Physics, Russian Academy of Sciences (state registry no. АААА-А19-119022690098-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Sedov.

Ethics declarations

I.V. Sedov is the Deputy Editor-in-Chief of Neftekhimiya/Petroleum Chemistry Journal. I.A. Makaryan declares no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 5, pp. 591–605 https://doi.org/10.31857/S0028242121050026.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makaryan, I.A., Sedov, I.V. Hydrogenation/Dehydrogenation Catalysts for Hydrogen Storage Systems Based on Liquid Organic Carriers (A Review). Pet. Chem. 61, 977–988 (2021). https://doi.org/10.1134/S0965544121090085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121090085

Keywords:

Navigation