Skip to main content

Advertisement

Log in

Prioritization and thresholds for managing biological invasions in urban ecosystems

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Urban areas are hubs for invasive alien (non-native) species (IAS) which can cause major problems in and around urban areas. Urban conservation practitioners face complex decisions about which IAS require management, where and when these management interventions are necessary, and how to implement them effectively. While researchers increasingly advocate the assignment of critical thresholds informing IAS management decisions, little attention has been given to the development of criteria for such thresholds or related practical application protocols in the context of urban environmental management. We review approaches that have been applied to manage IAS in urban areas and evaluate which thresholds are considered and applied before, during, and after management actions. Our literature search revealed 75 publications, with clear geographic bias. Less than half of all studies had implications for the prioritization of IAS management in urban areas and only 31% of these directly assessed such priorities. Only 8% of studies referenced a threshold or decision trigger when proposing management approaches for IAS in urban areas. This suggests that decisions to manage IAS in urban areas are often made on an ad hoc basis, without considering objective and transparent criteria, and/or are prompted by external factors (such as funding availability) that are not recorded in the formal literature. There is a need for IAS management in urban areas to be evidence-based and informed by well-tested measures and transparent decision triggers. Resources should be directed towards integrating evidence-based thresholds and tailored prioritization schemes into urban management frameworks to support decisions about what, where, and when IAS management is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

modified from Martin et al. 2009). Ecological thresholds represent the value (point or range) that signifies rapid or irreversible change in an attribute, which reflects a change in the state of an environmental variable. Utility thresholds are determined subjectively and reflect stakeholder perspectives and values. Management thresholds represent the value (point or zone) of an attribute that once crossed characterizes when management intervention is required to address undesirable ecosystem changes. They are conditional on, and derived from, ecological and utility thresholds. Decision triggers represent the value of an attribute that once exceeded triggers a management action. Setting a decision trigger requires the identification of an ecological, social, or economic attribute that can serve as an indicator for the state of the system or the threatening process that is the target for management

Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The data will be made available from the lead author on request.

References

  • Addison PFE, Cook CN, de Bie K (2016) Conservation practitioners’ perspectives on decision triggers for evidence-based management. J Appl Ecol 53:1351–1357. https://doi.org/10.1111/1365-2664.12734/full

    Article  Google Scholar 

  • Addison PFE, de Bie K, Rumpff L (2015) Setting conservation management thresholds using a novel participatory modelling approach. Conserv Biol 29:1411–1422

    Article  CAS  PubMed  Google Scholar 

  • Anagnostakis S (1987) Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79:23–27

    Article  Google Scholar 

  • Angulo E, Diagne C, Ballesteros-Mejia L, Adamjy T, Ahmed DA, Akulov E, Banerjee AK, Capinha C, Dia CA, Dobigny G, Duboscq-Carra VG (2021) Non-English languages enrich scientific knowledge: The example of economic costs of biological invasions. Sci Total Environ 10:144441

  • Aronson MFJ, Nilon CH, Lepczyk CA et al (2016) Hierarchical filters determine community assembly of urban species pools. Ecology 97:2952–2963. https://doi.org/10.1002/ecy.1535

    Article  PubMed  Google Scholar 

  • Atkinson UAE (1973) Spread of the ship rat (Rattus r. rattus L.) in New Zealand. J R Soc N Z 3:457–472

    Article  Google Scholar 

  • Barbato D, Benocci A, Caruso T, Manganelli G (2017) The role of dispersal and local environment in urban land snail assemblages: an example of three cities in Central Italy. Urban Ecosyst 20:919–931. https://doi.org/10.1007/s11252-017-0643-8

    Article  Google Scholar 

  • Becker DJ, Streicker DG, Altizer S (2015) Linking anthropogenic resources to wildlife-pathogen dynamics: A review and meta-analysis. Ecol Lett 18:483–495. https://doi.org/10.1111/ele.12428

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennetts RE, Gross JE, Cahill K, McIntyre C, Bingham BB, Hubbard A, Cameron L, Carter SL (2007) Linking monitoring to management and planning: assessment points as a generalized approach. The George Wright Forum 24:59–77

    Google Scholar 

  • Biggs HC, Rogers KH (2003) An adaptive system to link science, monitoring and management in practice. In: Du Toit J, Biggs H, Rogers KH (eds) The Kruger Experience: Ecology and Management of Savanna Heterogeneity. Island Press, Washington DC, USA, pp 59–80

    Google Scholar 

  • Bigsby KM, Ambrose MJ, Tobin PC, Sills EO (2014) The cost of gypsy moth sex in the city. Urban for Urban Green 13:459–468. https://doi.org/10.1016/j.ufug.2014.05.003

    Article  Google Scholar 

  • Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošik V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339. https://doi.org/10.1016/j.tree.2011.03.023

  • Buczkowski G (2017) Prey-baiting as a conservation tool: selective control of invasive ants with minimal non-target effects. Insect Conserv Divers 10:302–309. https://doi.org/10.1111/icad.12230

    Article  Google Scholar 

  • Cadotte MW, Yasui SLE, Livingstone S, MacIvor JS (2017) Are urban systems beneficial, detrimental, or indifferent for biological invasion? Biol Invasions 19:3489–3503

  • Carpenter SR, Ludwig D, Brock WA (1999) Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9:751–771

    Article  Google Scholar 

  • Carpio AJ, Barasona JA, Guerrero-Casado J et al (2017) An assessment of conflict areas between alien and native species richness of terrestrial vertebrates on a macro-ecological scale in a Mediterranean hotspot. Anim Conserv 20:433–443. https://doi.org/10.1111/acv.12330

    Article  Google Scholar 

  • Chong JH, Aristizábal LF, Arthurs SP (2015) Biology and management of Maconellicoccus hirsutus (Hemiptera: Pseudococcidae) on ornamental plants. J Integr Pest Manag 6:1–14

    Article  Google Scholar 

  • Cierjacks A, Kowarik I, Joshi J et al (2013) Biological flora of the british isles: Robinia pseudoacacia. J Ecol 101:1623–1640. https://doi.org/10.1111/1365-2745.12162

    Article  Google Scholar 

  • Cohen TM, McKinney M, Kark S, Dor R (2019) Global invasion in progress: modeling the past, current and potential global distribution of the common myna. Biol Invasions 21:1295–309

  • Cook CN, de Bie K, Keith DA, Addison PFE (2016) Decision triggers are a critical part of evidence-based conservation. Biol Conserv 195:46–51. https://www.sciencedirect.com/science/article/pii/S0006320715302044#!

  • Cuthbert RN, Diagne C, Haubrock PJ, Turbelin AJ, Courchamp F (2021) Are the "100 of the world's worst" invasive species also the costliest? Biol Invasions 1-10. https://doi.org/10.1007/s10530-021-02568-7

  • Davis AJS, Singh KK, Thill JC, Meentemeyer RK (2016) Accounting for residential propagule pressure improves prediction of urban plant invasion. Ecosphere 7. https://doi.org/10.1002/ecs2.1232

  • de Bie K, Addison PFE, Cook CN (2018) Integrating decision triggers into conservation management practice. J Appl Ecol 55:494–502. https://doi.org/10.1111/1365-2664.13042/abstract

    Article  Google Scholar 

  • de Wit MP, Crookes DJ, Blignaut JN, de Beer ZW, Paap T, Roets F, van der Merwe C, Richardson DM (2021) Invasion of the Polyphagous Shot Hole Borer Beetle in South Africa A Preliminary Assessment of the Economic Impacts. https://doi.org/10.21203/rs.3.rs-220132/v1

  • Diagne C, Leroy B, Vaissière AC et al (2021) High and rising economic costs of biological invasions worldwide. Nature 592:571–576

    Article  CAS  PubMed  Google Scholar 

  • Dickie IA, Bennett BM, Burrows LE et al (2014) Conflicting values: Ecosystem services and invasive tree management. Biol Invasions 16:705–719. https://doi.org/10.1007/s10530-013-0609-6

    Article  Google Scholar 

  • Doherty TS, Bengsen AJ, Davis RA (2014) A critical review of habitat use by feral cats and key directions for future research and management. Wildl Res 41:435–446. https://doi.org/10.1071/WR14159

    Article  Google Scholar 

  • Donovan GH, Butry DR, Michael YL et al (2013) The relation between trees and human health: evidence from the spread of the emerald ash borer. Am J Prev Med 44:139–145

    Article  PubMed  Google Scholar 

  • Dusfour I, Vontas J, David JP, Weetman D, Fonseca DM, Corbel V, Raghavendra K, Coulibaly MB, Martins AJ, Kasai S, Chandre F (2019) Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges. PLoS Negl Trop Dis 13(10):e0007615

    Article  PubMed  PubMed Central  Google Scholar 

  • Elizondo EC, Loss SR (2016) Using trail cameras to estimate free-ranging domestic cat abundance in urban areas. Wildl Biol 22:246–252. https://doi.org/10.2981/wlb.00237

    Article  Google Scholar 

  • Epanchin-Niell RS, Hufford MB, Aslan CE, Sexton JP, Port JD, Waring RM (2010) Controlling invasive species in complex social landscapes. Front Ecol Environ 8:210–216

    Article  Google Scholar 

  • Eritja R, Escosa R, Lucientes J et al (2005) Worldwide invasion of vector mosquitoes: present European distribution and challenges for Spain. Biol Invasions 7:87–97

    Article  Google Scholar 

  • Essl F (2007) From ornamental to detrimental? The incipient invasion of Central Europe by Paulownia tomentosa. Preslia 79:377–389

    Google Scholar 

  • Essl F, Dullinger S, Rabitsch W, Hulme PE, Huelber K, JarošíkV KI, Krausmann F, Kühn I, Nentwig W, Vilà M, Genovesi P, Gherardi F, Desprez-Loustau ML, Roques A, Pyšek P (2011) Socio-economic legacy yields an invasion debt. Proc Natl Acad Sci 108:203–207. https://doi.org/10.1073/pnas.1011728108

    Article  PubMed  Google Scholar 

  • Fazey I, Fischer J, Lindenmayer DB (2005) What do conservation biologists publish. Biol Conserv 124:63–73

    Article  Google Scholar 

  • Fonseca DM, Unlu I, Crepeau T et al (2013) Area-wide management of Aedes albopictus. Part 2: Gauging the efficacy of traditional integrated pest control measures against urban container mosquitoes. Pest Manag Sci 69:1351–1361. https://doi.org/10.1002/ps.3511

    Article  CAS  PubMed  Google Scholar 

  • Foster CN, O’Loughlin LS, Sato CF et al (2019) How practitioners integrate decision triggers with existing metrics in conservation monitoring. J Environ Manage 230:94–101. https://doi.org/10.1016/j.jenvman.2018.09.067

    Article  PubMed  Google Scholar 

  • Foxcroft LC (2009) Developing thresholds of potential concern for invasive alien species: hypotheses and concepts. Koedoe 50. https://doi.org/10.4102/koedoe.v51i1.157

  • Foxcroft LC, Richardson DM (2003) Managing alien plant invasions in the Kruger National Park, South Africa. In: Child LE, Brock JH, Brundu G, Prach K, Pyšek P, Wade PM, Williamson M (eds) Plant invasions: ecological threats and management solutions. Backhuys Publishers, Leiden, The Netherlands, pp 385–404

    Google Scholar 

  • Furukawa T, Fujiwara K, Kiboi SK, Mutiso PBC (2011) Threshold change in forest understory vegetation as a result of selective fuelwood extraction in Nairobi, Kenya. For Ecol Manag 262:962–969. https://doi.org/10.1016/j.foreco.2011.05.030

    Article  Google Scholar 

  • Gaertner M, Novoa A, Fried J, Richardson DM (2016) Managing invasive species in cities: a decision support framework applied to Cape Town. Biol Invasions 19:3707–3723. https://doi.org/10.1007/s10530-017-1587-x

    Article  Google Scholar 

  • Gaertner M, Wilson JRU, Cadotte MW, MacIvor JS, Zenni RD, Richardson DM (2017) Non-native species in urban environments: Patterns, processes, impacts and challenges. Biol Invasions 19:3461–3469. https://doi.org/10.1007/s10530-017-1598-7

    Article  Google Scholar 

  • Gamboa B (2009) Assessment of the Potential Environmental Impact of a Green Ash Borer Infestation in Denver, Colorado. University College, Environmental Policy and Management Capstones, p 54

    Google Scholar 

  • Game ET, Kareiva P, Possingham HP (2013) Six common mistakes in conservation priority setting. Conserv Biol 27:480–485

    Article  PubMed  PubMed Central  Google Scholar 

  • Godefroid S (2001) Temporal analysis of the Brussels flora as indicator for changing environmental quality. Landsc Urban Plan 52:203–224. https://doi.org/10.1016/S0169-2046(00)00117-1

    Article  Google Scholar 

  • González-Moreno P, Diez JM, Ibáñez I, Font X, Vilà M (2014) Plant invasions are context-dependent: multiscale effects of climate, human activity and habitat. Divers Distrib 20:720–731. https://doi.org/10.1111/ddi.12206

    Article  Google Scholar 

  • Gosper CR, Prober SM, Yates CJ, Scott JK (2015) Combining asset- and species-led alien plant management priorities in the world’s most intact Mediterranean-climate landscape. Biodivers Conserv 24:2789–2807. https://doi.org/10.1007/s10531-015-0973-x

    Article  Google Scholar 

  • Gregory R, Failing L, Harstone M, Long G, McDaniels T, Ohlson D (2012) Structured decision making: A practical guide to environmental management choices. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Grimalt S, Thompson D, Chartrand D, McFarlane J, Helson B, Lyons B, Meating J, Scarr T (2011) Foliar residue dynamics of azadirachtins following direct stem injection into white and green ash trees for control of emerald ash borer. Pest Manag Sci 67:1277–1284

    Article  CAS  PubMed  Google Scholar 

  • Guntenspergen GR (2014) Application of Threshold Concepts in Natural Resource Decision Making. Springer, New York, USA

    Book  Google Scholar 

  • Haines-Young R, Potschin M (2010) The links between biodiversity ecosystem services and human well-being. In: Raffaelli D, Frid C (eds) Ecosystem Ecology: A New Synthesis. Cambridge University Press, Cambridge, pp 110–139

    Chapter  Google Scholar 

  • Herms DA, McCullough DG (2014) The emerald ash borer invasion of North America: history, biology, ecology, impacts and management. Annu Rev Entomol 59:13–30

    Article  CAS  PubMed  Google Scholar 

  • Hershdorfer ME, Fernandez-Gimenez ME, Howery LD (2007) Key attributes influence the performance of local weed management programs in the southwest United States. Rangel Ecol Manag 60:225–234

    Article  Google Scholar 

  • Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7

    Article  Google Scholar 

  • Huebner CD, Nowak DJ, Pouyat R V, Bodine AR (2012) Nonnative invasive plants: Maintaining biotic and soceioeconomic integrity along the urban-rural-natural gradient. Urban–Rural Interfaces Link People Nature. 71–98. https://doi.org/10.2136/2012.urban-rural.c5

  • Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. J Appl Ecol 43:835–847

    Article  Google Scholar 

  • Hulme PE (2020) Plant invasions in New Zealand: global lessons in prevention, eradication and control. Biol Invasions 22:1539–1562. https://doi.org/10.1007/s10530-020-02224-6

    Article  Google Scholar 

  • Irlich UM, Potgieter LJ, Stafford L, Gaertner M (2017) Recommendations for municipalities to become compliant with national legislation on biological invasions. Bothalia 47:a2156. https://doi.org/10.4102/abc.v47i2.2156

    Article  Google Scholar 

  • Juliano SA, Lounibos LP (2005) Ecology of invasive mosquitoes: effects on resident species and on human health. Ecol Lett 8:558–574

    Article  PubMed  PubMed Central  Google Scholar 

  • Kowarik I (2011) Novel urban ecosystems, biodiversity, and conservation. Environ Pollut 159:1974–1983

    Article  CAS  PubMed  Google Scholar 

  • Kowarik I, von der Lippe M (2018) Plant population success across urban ecosystems: A framework to inform biodiversity conservation in cities. J Appl Ecol 55:2354–2361. https://doi.org/10.1111/1365-2664.13144

    Article  Google Scholar 

  • Kumschick S, Richardson DM (2013) Species-based risk assessments for biological invasions: Advances and challenges. Divers Distrib 19:1095–1105

    Article  Google Scholar 

  • La Morgia V, Paoloni D, Genovesi P (2017) Eradicating the grey squirrel Sciurus carolinensis from urban areas: an innovative decision-making approach based on lessons learnt in Italy. Pest Manag Sci 73:354–363. https://doi.org/10.1002/ps.4352

    Article  CAS  PubMed  Google Scholar 

  • La Sorte FA, Aronson MFJ, Williams NSG, Celesti-Grapow L, Cilliers S, Clarkson BD, Dolan RW, Hipp A, Klotz S, Kühn I, Pyšek P, Siebert S, Winter M (2014) Beta diversity of urban floras among European and non-European cities. Glob Ecol Biogeogr 23:769–779

    Article  Google Scholar 

  • Lambdon PW, Pyšek P, Basnou C et al (2008) Alien flora of Europe: Species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101–149

    Google Scholar 

  • Lambert AM, Saltonstall K, Long R, Dudley TL (2016) Biogeography of Phragmites australis lineages in the southwestern United States. Biol Invasions 18:2597–2617. https://doi.org/10.1007/s10530-016-1164-8

    Article  Google Scholar 

  • Leung B, Roura-Pascual N, Bacher S, Heikkilä J, Brotons L, Burgman MA, Dehnen-Schmutz K, Essl F, Hulme PE, Richardson DM (2012) TEASIng apart alien species risk assessments: a framework for best practices. Ecol Lett 15:1475–1493

    Article  PubMed  Google Scholar 

  • Li X, Holmes TP, Boyle KJ, Crocker EV, Nelson CD (2019) Hedonic analysis of forest pest invasion: the case of Emerald Ash Borer. Forests 10:820

    Article  Google Scholar 

  • Livingstone SW, Cadotte MW, Isaac ME (2018) Ecological engagement determines ecosystem service valuation: A case study from Rouge National Urban Park in Toronto, Canada. Ecosyst Serv 30:86–97. https://doi.org/10.1016/j.ecoser.2018.02.006

    Article  Google Scholar 

  • Lookingbill TR, Schmit JP, Tessel SM, Suarez-Rubio M, Hilderbrand RH (2014) Assessing national park resource condition along an urban–rural gradient in and around Washington, DC, USA. Ecol Indic 42:147–159

    Article  Google Scholar 

  • Loyd KA, DeVore JL (2010) An evaluation of feral cat management options using a decision analysis network. Ecol Soc 15. http://www.ecologyandsociety.org/vol15/iss4/art10/

  • Lustig A, James A, Anderson D, Plank M (2019) Pest control at a regional scale: Identifying key criteria using a spatially explicit, agent-based model. J Appl Ecol 56:1515–1527. https://doi.org/10.1111/1365-2664.13387

    Article  Google Scholar 

  • Macdonald IAW, Richardson DM (1986) Alien species in terrestrial ecosystems of the fynbos biome. In Macdonald IAW, Kruger FJ, Ferrar AA (eds) Ecology and management of biological invasions in southern Africa: proceedings of the National Synthesis Symposium on the Ecology of Biological Invasions. Cape Town: Oxford University Press

  • Majorošová M (2016) DPSIR framework – A decision – making tool for municipalities. Slovak J Civ Eng 24:45–50. https://doi.org/10.1515/sjce-2016-0021

    Article  Google Scholar 

  • Manica M, Filipponi F, D’Alessandro A et al (2016) Spatial and temporal hot spots of Aedes albopictus abundance inside and outside a South European Metropolitan Area. PLoS Negl Trop Dis 10:1–17. https://doi.org/10.1371/journal.pntd.0004758

    Article  Google Scholar 

  • Martin J, Runge MC, Nichols JD, Lubow BC, Kendall WL (2009) Structured decision making as a conceptual framework to identify thresholds for conservation and management. Ecol Appl 19:1079–1090

    Article  PubMed  Google Scholar 

  • McGeoch MA, Butchart SHM, Spear D et al (2010) Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Divers Distrib 16:95–108

    Article  Google Scholar 

  • McGeoch MA, Genovesi P, Bellingham PJ, Costello MJ, McGrannachan C, Sheppard A (2016) Prioritizing species, pathways, and sites to achieve conservation targets for biological invasion. Biol Invasions 18:299–314

    Article  Google Scholar 

  • Moldan B, Janoušková S, Hák T (2012) How to understand and measure environmental sustainability: Indicators and targets. Ecol Indic 17:4–13

    Article  Google Scholar 

  • Mostert E, Gaertner M, Holmes PM et al (2018) A multi-criterion approach for prioritizing areas in urban ecosystems for active restoration following invasive plant control. Environ Manag 62:1150–1167. https://doi.org/10.1007/s00267-018-1103-9

    Article  Google Scholar 

  • Mumaw L, Bekessy S (2017) Wildlife gardening for collaborative public–private biodiversity conservation. Aust J Environ Manag 24:242–260. https://doi.org/10.1080/14486563.2017.1309695

    Article  Google Scholar 

  • Nottingham CM, Glen AS, Stanley MC (2019) Proactive development of invasive species damage functions prior to species reintroduction. Glob Ecol Conserv 17:e00534. https://doi.org/10.1016/j.gecco.2019.e00534

    Article  Google Scholar 

  • Novoa A, Dehnen-Schmutz K, Fried J et al (2017) Does public awareness increase support for invasive species management? Promising evidence across taxa and landscape types. Biol Invasions 19:3691–3705. https://doi.org/10.1007/s10530-017-1592-0

    Article  Google Scholar 

  • Oertli B, Parris KM (2019) Review: Toward management of urban ponds for freshwater biodiversity. Ecosphere 10. https://doi.org/10.1002/ecs2.2810

  • Olden JD, Tamayo M (2014) Incentivizing the public to support invasive species management: Eurasian milfoil reduces lakefront property values. PLoS One 9:15–20. https://doi.org/10.1371/journal.pone.0110458

    Article  CAS  Google Scholar 

  • Olson M (1965) The logic of collective action: public goods and the theory of groups. Harvard University Press, Cambridge

    Google Scholar 

  • Paap T, de Beer ZW, Migliorini D et al (2018) The polyphagous shot hole borer (PSHB) and its fungal symbiont Fusarium euwallaceae: a new invasion in South Africa. Australas Plant Pathol 47:231–237. https://doi.org/10.1007/s13313-018-0545-0

    Article  Google Scholar 

  • Padayachee AL, Procheş Ş, Wilson JRU (2019) Prioritising potential incursions for contingency planning: pathways, species, and sites in Durban (eThekwini) South Africa as an example. Neobiota 47:1

    Article  Google Scholar 

  • Palmer S, Martin D, Delauer V, Rogan J (2014) Vulnerability and adaptive capacity in response to the Asian Longhorned Beetle infestation in Worcester, Massachusetts. Hum Ecol 42:965–977. https://doi.org/10.1007/s10745-014-9695-z

    Article  Google Scholar 

  • Panetta FD, Gooden B (2017) Managing for biodiversity: impact and action thresholds for invasive plants in natural ecosystems. NeoBiota 34:53–66. https://doi.org/10.3897/neobiota.34.11821

    Article  Google Scholar 

  • Pejchar L, Mooney HA (2009) Invasive species, ecosystem services and human well-being. Trends Ecol Evol 24:497–504

    Article  PubMed  Google Scholar 

  • Pergl J, Sádlo J, Petrusek A et al (2016) Black, Grey and Watch Lists of alien species in the Czech Republic based on environmental impacts and management strategy. NeoBiota 28:1–37. https://doi.org/10.3897/neobiota.28.4824

    Article  Google Scholar 

  • Perrings C, Fenichel E, Kinzig A (2010) Globalization and invasive alien species: trade, pests, and pathogens. In: Perrings C, Mooney HA, Williamson M (eds) Bioinvasions and globalization: ecology, economics, management and policy. Oxford University Press, New York, pp 42–55

    Google Scholar 

  • Pert PL, Butler JRA, Bruce C, Metcalfe D (2012) A composite threat indicator approach to monitor vegetation condition in the Wet Tropics, Queensland, Australia. Ecol Indic 18:191–199. https://doi.org/10.1016/j.ecolind.2011.11.018

    Article  Google Scholar 

  • Petri L, Aragaki S, Gomes EPC (2018) Management priorities for exotic plants in an urban atlantic forest reserve. Acta Bot Brasilica 32:631–641. https://doi.org/10.1590/0102-33062017abb0317

    Article  Google Scholar 

  • Pickett STA, Cadenasso ML, Grove JM et al (2001) Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu Rev Ecol Evol Syst 32:127–157. https://doi.org/10.1146/annurev.ecolsys.32.081501.114012

    Article  Google Scholar 

  • Pirofski LA, Casadevall A (2012) Q&A: What is a pathogen? A question that begs the point. BMC Biol 10:1–3

    Article  Google Scholar 

  • Please PM, Hine DW, Skoien P et al (2018) Prioritizing community behaviors to improve wild dog management in peri-urban areas. Hum Dimens Wildl 23:39–53. https://doi.org/10.1080/10871209.2017.1385877

    Article  Google Scholar 

  • Potgieter LJ, Cadotte MW (2020) The application of selected invasion frameworks to urban ecosystems. NeoBiota 62:365

    Article  Google Scholar 

  • Potgieter LJ, Douwes E, Gaertner M, Measey GJ, Paap T, Richardson DM (2020) Biological invasions in South Africa’s urban ecosystems: Patterns, processes, impacts and management. In: van Wilgen BW, Measey GJ, Richardson DM, Wilson JRU, Zengeya T (eds) Biological invasions in South Africa. Springer, Berlin, pp 275–309. https://doi.org/10.1007/978-3-030-32394-3_11

  • Potgieter LJ, Gaertner M, Irlich UM, O’Farrell PJ, Stafford L, Vogt H, Richardson DM (2018) Managing urban plant invasions: a multi-criteria prioritization approach. Environ Manag 62:1168–1185

    Article  Google Scholar 

  • Potgieter LJ, Gaertner M, Kueffer C, Larson BMH, Livingstone S, O’Farrell P, Richardson DM (2017) Alien plants as mediators of ecosystem services and disservices in urban systems: a global review. Biol Invasions 19:3571–3588. https://doi.org/10.1007/s10530-017-1589-8

    Article  Google Scholar 

  • Potgieter LJ, Gaertner M, O’Farrell PJ, Richardson DM (2019a) Perceptions of impact: Invasive alien plants in the urban environment. J Environ Manag 229:76–87. https://doi.org/10.1016/j.jenvman.2018.05.080

    Article  Google Scholar 

  • Potgieter LJ, Gaertner M, O’Farrell PJ, Richardson DM (2019b) A fine-scale assessment of the ecosystem service-disservice dichotomy in the context of urban ecosystems affected by alien plant invasions. For Ecosyst 6:46. https://doi.org/10.1186/s40663-019-0200-4

    Article  Google Scholar 

  • Pyšek P, Jarošík V, Pergl J et al (2009) The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Divers Distrib 15:891–903

    Article  Google Scholar 

  • Pyšek P, Richardson DM, Pergl J, Jarošík V, Sixtová Z, Weber E (2008) Geographical and taxonomic biases in invasion ecology. Trends Ecol Evol 23:237–244

    Article  PubMed  Google Scholar 

  • Qu Y, Lu M (2018) Identifying conservation priorities and management strategies based on ecosystem services to improve urban sustainability in Harbin, China. PeerJ 6:e4597. https://doi.org/10.7717/peerj.4597

    Article  PubMed  PubMed Central  Google Scholar 

  • Ragas REG, Mangubat JR, Rasco ET (2019) Weed density and diversity under two weed management practices in sloping lands of banana plantation in Davao City, Philippines. Mindanao J Sci Technol 17:167–182

    Google Scholar 

  • Rebele F (1994) Urban ecology and special features of urban ecosystems. Glob Ecol Biogeogr Lett 4:173–187

    Article  Google Scholar 

  • Rose S (1997) Influence of suburban edges on invasion of Pittosporum undulatum into the bushland of northern Sydney, Australia. Austral Ecol 22:89–99. https://doi.org/10.1111/j.1442-9993.1997.tb00644.x

    Article  Google Scholar 

  • Rose S, Fairweather PG (1997) Changes in floristic composition of urban bushland invaded by Pittosporum undulatum in northern Sydney, Australia. Aust J Bot 45:123–149

    Article  Google Scholar 

  • Shackleton RT, Adriaens T, Brundu G, Dehnen-Schmutz K, Estévez R, Fried J, Larson BMH, Liu S, Marchante E, Marchante H, Moshobane C, Novoa A, Reed M, Richardson DM (2019) Stakeholder engagement in the study and management of invasive alien species. J Environ Manag 229:88–101. https://doi.org/10.1016/j.jenvman.2018.04.044

    Article  Google Scholar 

  • Simberloff D (2006) Préface. In: Pascal M, Lorvelec O, Vigne J-D (eds) Invasions Biologiques et Extinctions. 11 200 Ans d’Histoire des Vertébrés en France. Paris: Éditions Belin, pp 5–7

  • Simberloff D, Martin JL, Genovesi P et al (2013) Impact of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  PubMed  Google Scholar 

  • Smith M, Cecchi L, Skjøth CA, Karrer G, Sikoparija B (2013) Common ragweed: a threat to environmental health in Europe. Environ Int 61:115–126

    Article  CAS  PubMed  Google Scholar 

  • Strubbe D, Matthysen E, Graham CH (2010) Assessing the potential impact of invasive ring-necked parakeets Psittacula krameri on native nuthatches Sitta europeae in Belgium. J Appl Ecol 47:549–557. https://doi.org/10.1111/j.1365-2664.2010.01808.x

    Article  Google Scholar 

  • Tamburello L, Maggi E, Benedetti-Cecchi L et al (2015) Variation in the impact of non-native seaweeds along gradients of habitat degradation: A meta-analysis and an experimental test. Oikos 124:1121–1131. https://doi.org/10.1111/oik.02197

    Article  Google Scholar 

  • van Wilgen BW, Forsyth GG, Prins P (2012) The management of fire-adapted ecosystems in an urban setting: the case of Table Environmental Management Mountain National Park, South Africa. Ecol Soc 17:8. https://doi.org/10.5751/ES-04526-170108

    Article  Google Scholar 

  • van Wilgen BW, Wilson JR (eds) (2018) The status of biological invasions and their management in South Africa in 2017. South African National Biodiversity Institute, Kirstenbosch and DST-NRF Centre of Excellence for Invasion Biology, Stellenbosch

  • Vardarman J, Berchová-Bímová K, Pěknicová J (2018) The role of protected area zoning in invasive plant management. Biodivers Conserv 27:1811–1829. https://doi.org/10.1007/s10531-018-1508-z

    Article  Google Scholar 

  • Vaz AS, Kueffer C, Kull CA et al (2017) Integrating ecosystem services and disservices: insights from plant invasions. Ecosyst Serv 23:94–107. https://doi.org/10.1016/j.ecoser.2016.11.017

    Article  Google Scholar 

  • Véle A, Horák J (2018) The importance of host characteristics and canopy openness for pest management in urban forests. Urban for Urban Green 36:84–89. https://doi.org/10.1016/j.ufug.2018.10.012

    Article  Google Scholar 

  • Veran S, Piry S, Ternois V et al (2016) Modeling spatial expansion of invasive alien species: Relative contributions of environmental and anthropogenic factors to the spreading of the harlequin ladybird in France. Ecography (cop) 39:665–675. https://doi.org/10.1111/ecog.01389

    Article  Google Scholar 

  • Virtue JG, Groves RH, Panetta FD (2001) Towards a system to determine the national significance of weeds in Australia. In: Groves RH, Panetta FD, Virtue JG (eds) Weed Risk Assessment. CSIRO Publishing (Collingwood, Australia), pp 124–152

  • Vítková M, Müllerová J, Sádlo J et al (2017) Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For Ecol Manag 384:287–302. https://doi.org/10.1016/j.foreco.2016.10.057

    Article  Google Scholar 

  • Wallace KJ, Laughlin DC, Clarkson BD (2017) Exotic weeds and fluctuating microclimate can constrain native plant regeneration in urban forest restoration. Ecol Appl 27:1268–1279. https://doi.org/10.1002/eap.1520

    Article  CAS  PubMed  Google Scholar 

  • Ward D, Morgan F (2014) Modelling the impacts of an invasive species across landscapes: A step-wise approach. PeerJ 2:e435. https://doi.org/10.7717/peerj.435

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward DF, Green C, Harris RJ et al (2010) Twenty years of Argentine ants in New Zealand: Past research and future priorities for applied management. N Z Entomol 33:68–78. https://doi.org/10.1080/00779962.2010.9722193

    Article  Google Scholar 

  • Williams CK, Parer I, Coman BJ, Burley J, Braysher ML (1995) Managing vertebrate pests: rabbits. Australian Government Publishing Service, Canberra, Bureau of Resource Sciences/CSIRO Division of Wildlife and Ecology

    Google Scholar 

  • Williams JA, West CJ (2000) Environmental weeds in Australia and New Zealand: issues and approaches to management. Austral Ecol 25:425–444

    Article  Google Scholar 

  • Wilson JR, Panetta FD, Lindgren C (2016) Detecting and responding to alien plant incursions. Cambridge University Press

    Book  Google Scholar 

  • Woolley CK, Hartley S (2019) Activity of free-roaming domestic cats in an urban reserve and public perception of pet-related threats to wildlife in New Zealand. Urban Ecosyst 22:1123–1137. https://doi.org/10.1007/s11252-019-00886-2

    Article  Google Scholar 

  • Yam RSW, Huang KP, Hsieh HL et al (2015) An ecosystem-service approach to evaluate the role of non-native species in urbanized wetlands. Int J Environ Res Public Health 12:3926–3943. https://doi.org/10.3390/ijerph120403926

    Article  PubMed  PubMed Central  Google Scholar 

  • Yemshanov D, Haight RG, Chen C, et al (2019) Managing biological invasions in urban environments with the acceptance sampling approach. PLoS One 14. https://doi.org/10.1371/journal.pone.0220687

  • Cook CN, Hockings M, Carter RW (2010) Conservation in the dark? The information used to support management decisions. Front Ecol Environ 8:181–6

  • Ehrenfeld JG (2008) Exotic invasive species in urban wetlands: environmental correlates and implications for wetland management. J Appl Ecol 45:1160–9

  • Krug RM, Roura-Pascual N, Richardson DM (2009) Prioritising areas for the management of invasive alien plants in the CFR: different strategies, different priorities? S Afr J Bot 75:408–409

  • Kumschick S, Bacher S, Dawson W, Heikkilä J, Sendek A, Pluess T, Robinson TB, Kühn I (2012) A conceptual framework for prioritization of invasive alien species for management according to their impact. Neobiota 15:69–100. https://doi.org/10.3897/neobiota.15.3323

  • Mostert E, Gaertner M, Holmes PM, O’Farrell PJ, Richardson DM (2019) A multi-criterion approach for prioritizing areas in urban ecosystems for active restoration following invasive plant control. Environ Manage 62:1150–1167. https://doi.org/10.1007/s00267-018-1103-9

  • Padayachee AL, Irlich UM, Faulkner KT, Gaertner M, Procheş S, Wilson JRU, Rouget M (2017) How do invasive species travel to and through urban environments? Biol Invasions 19:3557–3570. https://doi.org/10.1007/s10530-017-1596-9

Download references

Funding

Funding was provided by the Connaught Global Challenges Award, the Office of the Vice-President International, the School of Graduate Studies and the HKU-U of T Strategic Partnership Fund at the University of Toronto, and the Office of the Vice-Principal Research at the University of Toronto Scarborough. DMR acknowledges support from the DSI-NRF Centre of Excellence for Invasion Biology, the National Research Foundation of South Africa, the Millennium Trust, and the Oppenheimer Memorial Trust (grant 18576/03). MWC acknowledges funding from the Natural Sciences and Engineering Research Council of Canada (#386151). AJB was supported by the Strategic Science Investment Fund of the New Zealand Ministry of Business, Innovation and Employment. CNC was supported by an ARC Discovery Early Career Researcher Award (DE180100854).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. LJP collected and analysed the data and led the writing of the manuscript. All authors contributed critically to the draft and gave final approval for publication.

Corresponding author

Correspondence to L. J. Potgieter.

Ethics declarations

Consent for publication

The authors give consent to publish this work in Urban Ecosystems, if accepted.

Conflicts of interest

The authors declare that they have no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potgieter, L.J., Aronson, M.F.J., Brandt, A.J. et al. Prioritization and thresholds for managing biological invasions in urban ecosystems. Urban Ecosyst 25, 253–271 (2022). https://doi.org/10.1007/s11252-021-01144-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-021-01144-0

Keywords

Navigation