Skip to main content

Advertisement

Log in

Ab Initio Molecular Dynamics Studies of the Electric-Field-Induced Catalytic Effects on Liquids

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Electric fields produce a range of effects by interacting with atoms, molecules, and complex matter modifying the activation barriers of chemical reactions, shaping their free-energy landscapes and reaction pathways, and hence holding a crucial place in catalysis. Owing to the development of novel theories and advanced computational approaches, nowadays supercomputing resources are routinely exploited to investigate the catalytic effects observed when intense electric fields are applied on condensed matter. Within this context, ab initio molecular dynamics simulations coupled with free-energy methods represent unique computational tools allowing for the fine characterization of the role played by static electric fields in activating chemical processes in liquids. Furthermore, the achievement of including crucial nuclear quantum effects in path-integral ab initio molecular dynamics simulations paves the way toward the systematic investigation of the field-induced catalytic effects on matter treated as a fully quantum object. In this review, a series of recent findings on the catalytic effects produced by applying strong electric fields on liquids, with implications not only in technological and industrial realms but also in investigating the “origins of life” enigma, are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Shaik S, de Visser SP, Kumar D (2004) External electric field will control the selectivity of enzymatic-like bond activations. J Am Chem Soc 126:11746–11749

    Article  CAS  PubMed  Google Scholar 

  2. Meir R, Chen H, Lai W, Shaik S (2010) Oriented electric fields accelerate Diels–Alder reactions and control the endo/exo selectivity. ChemPhysChem 11:301–310

    Article  CAS  PubMed  Google Scholar 

  3. English NJ, Waldron CJ (2015) Perspectives on external electric fields in molecular simulation: progress, prospects and challenges. Phys Chem Chem Phys 17:12407–12440

    Article  CAS  PubMed  Google Scholar 

  4. de Pomerai DI, Smith B, Dawe A et al (2003) Microwave radiation can alter protein conformation without bulk heating. FEBS Lett 543:93–97

    Article  PubMed  Google Scholar 

  5. Porcelli M, Cacciapuoti G, Fusco S et al (1998) Non-thermal effects of microwaves on proteins: thermophilic enzymes as model system. FEBS Lett 402:102–106

    Article  Google Scholar 

  6. Futera CJ, English NJ (2017) Communication: Influence of external static and alternating electric fields on water from long-time non-equilibrium ab initio molecular dynamics. J Chem Phys 147:031102

    Article  PubMed  Google Scholar 

  7. Lamoreux G, Roux B (2003) Modeling induced polarization with classical Drude oscillators: theory and molecular dynamics simulation algorithm. J Chem Phys 119:3025

    Article  Google Scholar 

  8. Schröder C, Steinhauser O (2010) Simulating polarizable molecular ionic liquids with Drude oscillators. J Chem Phys 133:154511

    Article  PubMed  Google Scholar 

  9. Heid E, Boresch S, Schröder C (2020) Polarizable molecular dynamics simulations of ionic liquids: influence of temperature control. J Chem Phys 152:094105

    Article  CAS  PubMed  Google Scholar 

  10. Lai W, Chen H, Cho K-B, Shaik S (2010) External electric field can control the catalytic cycle of cytochrome P450cam: a QM/MM study. J Phys Chem Lett 1:2082–2087

    Article  CAS  Google Scholar 

  11. Stuyver T, Huang J, Mallick D, Danovich D, Shaik S (2019) TITAN: a code for modeling and generating electric fields-features and applications to enzymatic reactivity. J Comput Chem 41:74–82

    Article  PubMed  Google Scholar 

  12. Marx D, Hutter J (2009) Ab initio molecular dynamics—basic theory and advanced methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  13. Umari P, Pasquarello A (2002) Ab initio molecular dynamics in a finite homogeneous electric field. Phys Rev Lett 89:157602

    Article  CAS  PubMed  Google Scholar 

  14. King-Smith RD, Vanderbilt D (1993) Theory of polarization of crystalline solids. Phys Rev B 47:1651

    Article  CAS  Google Scholar 

  15. Resta R (1994) Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev Mod Phys 66:899

    Article  CAS  Google Scholar 

  16. Berry MV (1984) Quantal phase factors accompanying adiabatic changes. Proc R Soc Lond A 392:45

    Article  Google Scholar 

  17. Ceriotti M, Bussi G, Parrinello M (2009) Nuclear quantum effects in solids using a colored-noise thermostat. Phys Rev Lett 103:030603

    Article  PubMed  Google Scholar 

  18. Ceriotti M, Manolopoulos DE, Parrinello M (2011) Accelerating the convergence of path integral dynamics with a generalized Langevin equation. J Chem Phys 134:084104

    Article  PubMed  Google Scholar 

  19. Ceriotti M, Manolopoulos DE (2012) Efficient first-principles calculation of the quantum kinetic energy and momentum distribution of nuclei. Phys Rev Lett 109:100604

    Article  PubMed  Google Scholar 

  20. Markland TE, Ceriotti M (2018) Nuclear quantum effects enter the mainstream. Nat Rev 2:0109

    CAS  Google Scholar 

  21. Cassone G (2020) Nuclear quantum effects largely influence molecular dissociation and proton transfer in liquid water under an electric field. J Phys Chem Lett 11:8983–8988

    Article  CAS  PubMed  Google Scholar 

  22. Ceriotti M, Cuny J, Parrinello M, Manolopoulos DE (2013) Nuclear quantum effects and hydrogen bond fluctuations in water. Proc Natl Acad Sci USA 110:15591–15596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marsalek O, Markland TE (2017) Quantum dynamics and spectroscopy of ab initio liquid water: the interplay of nuclear and electronic quantum effects. J Phys Chem Lett 8:1545–1551

    Article  CAS  PubMed  Google Scholar 

  24. Lan J, Ribkyn VV, Iannuzzi M (2020) Ionization of water as an effect of quantum delocalization at aqueous electrode interfaces. J Phys Chem Lett 11:3724–3730

    Article  CAS  PubMed  Google Scholar 

  25. Laio A, Parrinello M (2002) Escaping free energy minima. Proc Natl Acad Sci USA 99:12562–12566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bussi G, Laio A (2020) Using metadynamics to explore complex free-energy landscapes. Nat Rev Phys 2:200–212

    Article  Google Scholar 

  27. Aragones AC, Haworth NL, Darwish N et al (2016) Electrostatic catalysis of a Diels–Alder reaction. Nature 531:88–91

    Article  CAS  PubMed  Google Scholar 

  28. Che F, Gray JT, Ha S et al (2018) Elucidating the roles of electric fields in catalysis: a perspective. ACS Catal 8:5153–5174

    Article  CAS  Google Scholar 

  29. Cassone G, Pietrucci F, Saija F et al (2017) One-step electric-field driven methane and formaldehyde synthesis from liquid methanol. Chem Sci 8:2329–2336

    Article  CAS  PubMed  Google Scholar 

  30. Shaik S, Mandal D, Ramanan R (2016) Oriented electric fields as future smart reagents in chemistry. Nat Chem 8:1091–1098

    Article  CAS  PubMed  Google Scholar 

  31. Wang Z, Danovich D, Ramanan R, Shaik S (2018) Oriented-external electric fields create absolute enantioselectivity in Diels–Alder reactions: importance of the molecular dipole moment. J Am Chem Soc 140:13350–13359

    Article  CAS  PubMed  Google Scholar 

  32. Nunes RW, Vanderbilt D (1994) Real-space approach to calculation of electric polarization and dielectric constants. Phys Rev Lett 73:712

    Article  CAS  PubMed  Google Scholar 

  33. Nunes RW, Gonze X (2001) Berry-phase treatment of the homogeneous electric field perturbation in insulators. Phys Rev B 63:155107

    Article  Google Scholar 

  34. Resta R (1998) Quantum-mechanical position operator in extended systems. Phys Rev Lett 80:1800

    Article  CAS  Google Scholar 

  35. Wannier GH (1960) Wave functions and effective Hamiltonian for Bloch electrons in an electric field. Phys Rev 117:432

    Article  Google Scholar 

  36. Nenciu G (1991) Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians. Rev Mod Phys 63:91

    Article  Google Scholar 

  37. Gonze X, Ghosez P, Godby RW (1995) Density-polarization functional theory of the response of a periodic insulating solid to an electric field. Phys Rev Lett 74:4035

    Article  CAS  PubMed  Google Scholar 

  38. Gonze X, Ghosez P, Godby RW (1997) Density-functional theory of polar insulators. Phys Rev Lett 78:294

    Article  CAS  Google Scholar 

  39. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471

    Article  CAS  PubMed  Google Scholar 

  40. Giannozzi P, Baroni S, Bonini N (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys 21:395502

    Google Scholar 

  41. Hutter J, Iannuzzi M, Schiffmann F, VandeVondele J (2014) CP2K: Atomistic simulations of condensed matter systems. Wiley Interdiscip Rev 4:15–25

    CAS  Google Scholar 

  42. Vandevondele J, Krack M, Mohamed F et al (2005) QUICKSTEP: Fast and accurate Density Functional calculations using a mixed gaussian and plane waves approach. Comput Phys Commun 167:103–128

    Article  CAS  Google Scholar 

  43. Saitta AM, Saija F, Giaquinta PV (2012) Ab initio molecular dynamics study of dissociation of water under an electric field. Phys Rev Lett 108:207801

    Article  PubMed  Google Scholar 

  44. Cassone G, Creazzo F, Giaquinta PV et al (2016) Ab initio molecular dynamics study of an aqueous NaCl solution under an electric field. Phys Chem Chem Phys 18:23164–23173

    Article  CAS  PubMed  Google Scholar 

  45. Cassone G, Creazzo F, Giaquinta PV et al (2017) Ionic diffusion and proton transfer in aqueous solutions of alkali metal salts. Phys Chem Chem Phys 19:20420–20429

    Article  CAS  PubMed  Google Scholar 

  46. Cassone G, Calogero G, Sponer J, Saija F (2018) Mobilities of iodide anions in aqueous solutions for applications in natural dye-sensitized solar cells. Phys Chem Chem Phys 20:13038–13046

    Article  CAS  PubMed  Google Scholar 

  47. Cassone G, Creazzo F, Saija F (2019) Ionic diffusion and proton transfer of MgCl\(_2\) and CaCl\(_2\) aqueous solutions: an ab initio study under electric field. Mol. Sim. 45:373–380

  48. Cassone G, Giaquinta PV, Saija F, Saitta AM (2015) Liquid methanol under a static electric field. J Chem Phys 142:054502

    Article  PubMed  Google Scholar 

  49. Cassone G, Pietrucci F, Saija F et al (2017) Novel electrochemical route to cleaner fuel dimethyl ether. Sci Rep 7:6901

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cassone G, Sofia A, Sponer J et al (2020) Ab initio molecular dynamics study of methanol–water mixtures under external electric fields. Molecules 25:3371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cassone G, Sofia A, Rinaldi G, Sponer J (2019) Catalyst-free hydrogen synthesis from liquid ethanol: an ab initio molecular dynamics study. J Phys Chem C 123:9202–9208

    Article  CAS  Google Scholar 

  52. Saitta AM, Saija F (2014) Miller experiments in atomistic computer simulations. Proc Natl Acad Sci USA 111:13768–13773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cassone G, Sponer J, Sponer JE et al (2018) Synthesis of (d)-erythrose from glycolaldehyde aqueous solutions under electric field. Chem Commun 54:3211–3214

    Article  CAS  Google Scholar 

  54. Ferus M, Laitl V, Knizek A et al (2018) HNCO-based synthesis of formamide in planetary atmospheres. Astron Astrophys 616:A150

    Article  Google Scholar 

  55. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  PubMed  Google Scholar 

  56. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  57. Perdew JP, Burke K, Ernzerhof M (1997) ibidem. Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  58. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  59. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  60. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of Density Functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  PubMed  Google Scholar 

  61. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected Density Functional Theory. J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  62. Krack M (2005) Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor Chem Acc 114:145–152

    Article  CAS  Google Scholar 

  63. Branduardi D, Gervasio FL, Parrinello M (2007) From A to B in free energy space. J Chem Phys 126:054103

    Article  PubMed  Google Scholar 

  64. Pietrucci F, Saitta AM (2015) Formamide reaction network in gas phase and solution via a unified theoretical approach: toward a reconciliation of different prebiotic scenarios. Proc Natl Acad Sci USA 112:15030–15035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pietrucci F (2017) Strategies for the exploration of free energy landscapes: unity in diversity and challenges ahead. Rev Phys 2:32–45

    Article  Google Scholar 

  66. Bonomi M, Branduardi D, Bussi G et al (2009) PLUMED: a portable plugin for free energy calculations with molecular dynamics. Comput Phys Commun 180:1961–1972

    Article  CAS  Google Scholar 

  67. Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G (2014) PLUMED2: new feathers for an old bird. Comput Phys Commun 185:604–613

    Article  CAS  Google Scholar 

  68. Bolhuis PG, Chandler D, Dellago C, Geissler PL (2002) TRANSITION PATH SAMPLING: throwing ropes over rough mountain passes, in the dark. Annu Rev Phys Chem 53:291–318

    Article  CAS  PubMed  Google Scholar 

  69. Chen M, Zheng L, Santra B et al (2018) Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer. Nat Chem 10:413–419

    Article  PubMed  Google Scholar 

  70. Rozsa V, Pan D, Giberti F, Galli G (2018) Ab initio spectroscopy and ionic conductivity of water under Earth mantle conditions. Proc Natl Acad Sci USA 115:6952–6957

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hassanali A, Giberti F, Cuny J et al (2013) Proton transfer through the water gossamer. Proc Natl Acad Sci USA 110:13723–13728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Futera Z, Tse JS, English NJ (2020) Possibility of realizing superionic ice VII in external electric fields of planetary bodies. Sci Adv 21:eaaz2915

    Article  Google Scholar 

  73. Geissler PL, Dellago C, Chandler D et al (2001) Autoionization in liquid water. Science 291:2121–2124

    Article  CAS  PubMed  Google Scholar 

  74. Dellago C, Bolhuis PG, Geissler PL (2002) Transition path sampling. Adv Chem Phys 123:1–78

    CAS  Google Scholar 

  75. Cassone G, Giaquinta PV, Saija F, Saitta AM (2014) Proton conduction in water ices under an electric field. J Phys Chem B 118:4419–4424

    Article  CAS  PubMed  Google Scholar 

  76. Cassone G, Giaquinta PV, Saija F, Saitta AM (2014) Effect of electric field orientation on the mechanical and electrical properties of water ices: an ab-initio study. J Phys Chem B 118:12717–12724

    Article  CAS  PubMed  Google Scholar 

  77. Stuve EM (2012) Ionization of water in interfacial electric fields: an electrochemical view. Chem Phys Lett 519–520:1–17

    Article  Google Scholar 

  78. Lee WK, Tsoi S, Whitener KE et al (2013) Robust reduction of graphene fluoride using an electrostatically biased scanning probe. Nano Res 6:767–774

    Article  CAS  Google Scholar 

  79. Hammadi Z, Descoins M, Salançon E, Morin R (2012) Proton and light ion nanobeams from field ionization of water. Appl Phys Lett 101:243110

    Article  Google Scholar 

  80. Martinez RJ, Farrell J (2019) Quantifying electric field enhancement of water dissociation rates in bipolar membranes. Ind Eng Chem Res 58:782–789

    Article  CAS  Google Scholar 

  81. Rothfuss CJ, Medvedev VK, Stuve EM (2003) The influence of the surface electric field on water ionization: a two step dissociative ionization and desorption mechanism for water ion cluster emission from a platinum field emitter tip. J Electroanal Chem 554–555:133–143

    Article  Google Scholar 

  82. Laage D, Elsaesser T, Hynes JT (2017) Perspective: Structure and ultrafast dynamics of biomolecular hydration shells. Struct Dyn 4:044018

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kundu A, Dahms F, Fingerhut BP et al (2019) Hydrated excess protons in acetonitrile/water mixtures: solvation species and ultrafast proton motions. J Phys Chem Lett 10:2287–2294

    Article  CAS  PubMed  Google Scholar 

  84. Sellner B, Valiev M, Kathmann SM (2013) Charge and electric field fluctuations in aqueous NaCl electrolytes. J Phys Chem B 117:10869–10882

    Article  CAS  PubMed  Google Scholar 

  85. Dougan L, Bates SP, Hargreaves R et al (2004) Methanol–water solutions: a bi-percolating liquid mixture. J Chem Phys 121:6456

    Article  CAS  PubMed  Google Scholar 

  86. Lenton S, Rhys NH, Towey JJ et al (2018) Temperature-dependent segregation in alcohol–water binary mixtures is driven by water clustering. J Phys Chem B 122:7884–7894

    Article  CAS  PubMed  Google Scholar 

  87. Olah GA, Goeppert A, Prakash GKS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–498

    Article  CAS  PubMed  Google Scholar 

  88. Miri MJ, Bailey AV, Takacs GA (2008) Introduction to hydrogen technology. Wiley, Hoboken

    Google Scholar 

  89. Häussinger P, Lohmüller R, Watson AM (2011) Ullman’s encyclopedia of industrial chemistry. Wiley, Hoboken

    Google Scholar 

  90. Erisman JW, Sutton MA, Galloway J et al (2008) How a century of ammonia synthesis changed the world. Nat Geo 1:636–639

    Article  CAS  Google Scholar 

  91. Grochala W (2015) First was hydrogen. Nat Chem 7:264

    Article  CAS  PubMed  Google Scholar 

  92. Jacobson MZ, Colella WG, Golden DM (2005) Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science 308:1901–1905

    Article  CAS  PubMed  Google Scholar 

  93. Haile SM, Boysen DA, Chisholm CRI, Merle RM (2001) Solid acids as fuel cell electrolytes. Nature 410:910–913

    Article  CAS  PubMed  Google Scholar 

  94. Marzari N, Mostofi AA, Yates JR et al (2012) Maximally localized Wannier functions: theory and applications. Rev Mod Phys 84:1419–1475

    Article  CAS  Google Scholar 

  95. Miller SL (1953) A production of aminoacids under possible primitive Earth conditions. Science 117:528–529

    Article  CAS  PubMed  Google Scholar 

  96. Cassone G, Saija F, Sponer J et al (2018) Dust motions in magnetized turbulence: source of chemical complexity. Astrophys J Lett 866:L23

    Article  Google Scholar 

  97. Saladino R, Carota E, Botta G et al (2016) First evidence on the role of heavy ion irradiation of meteorites and formamide in the origin of biomolecules. Orig Life Evol Biosph 46:515–521

    Article  CAS  PubMed  Google Scholar 

  98. Saladino R, Carota E, Botta G et al (2015) Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc Natl Acad Sci USA 112:E2746–E2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rotelli L, Trigo-Rodríguez JM, Moyano-Cambero CE et al (2016) The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment. Sci Rep 6:38888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sponer JE, Mladek A, Sponer J et al (2012) Formamide-based prebiotic synthesis of nucleobases: a kinetically accessible reaction route. J Phys Chem A 116:720–726

    Article  CAS  PubMed  Google Scholar 

  101. Saitta AM, Saija F, Pietrucci F, Guyot F (2015) Reply to bada and cleaves: ab initio free-energy landscape of Miller-like prebiotic reactions. Proc Natl Acad Sci USA 112:E343–E344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Petroff CA, Cassone G, Sponer J, Hutchison GR (2021) Intrinsically polar piezoelectric self-assembled oligopeptide monolayers. Adv Math 33:2007486

    Article  CAS  Google Scholar 

  103. Hammadi Z, Astier JP, Morin R, Veesler S (2007) Protein crystallization induced by a localized voltage. Cryst Growth Des 7:1472–1475

    Article  CAS  Google Scholar 

  104. Miller SL, Urey HC (1959) Organic compound synthesis on the primitive Earth. Science 130:245

    Article  CAS  PubMed  Google Scholar 

  105. Miller SL (1957) The mechanism of synthesis of amino acids by electric discharges. Biochem Biophys Acta 23:480–489

    Article  CAS  PubMed  Google Scholar 

  106. Lazcano A, Bada JL (2003) The 1953 Stanley L. Miller experiment: fifty years of prebiotic organic chemistry. Orig Life Evol Biosph 33:235–242

    Article  CAS  PubMed  Google Scholar 

  107. Jalbout AF, Abrell L, Adamowicz L et al (2007) Sugar synthesis from a gas-phase formose reaction. Astrobiology 7:433–442

    Article  CAS  PubMed  Google Scholar 

  108. Steer AM, Bia N, Smith DK, Clarke PA (2017) Prebiotic synthesis of 2-deoxy-d-ribose from interstellar building blocks promoted by amino esters or amino nitriles. Chem Commun 53:10362–10365

    Article  CAS  Google Scholar 

  109. Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20:722

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Cassone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassone, G., Sponer, J. & Saija, F. Ab Initio Molecular Dynamics Studies of the Electric-Field-Induced Catalytic Effects on Liquids. Top Catal 65, 40–58 (2022). https://doi.org/10.1007/s11244-021-01487-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01487-0

Keywords

Navigation