Skip to main content
Log in

Fluid–Structure Interaction with Kelvin–Voigt Damping: Analyticity, Spectral Analysis, Exponential Decay

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We consider a fluid–structure interaction model defined on a doughnut-like domain. It consists of the dynamic Stokes equations evolving on the exterior sub-domain, coupled with an elastic structure occupying the interior sub-domain. A key factor—a novelty over past literature—is that the structure equation includes a strong (viscoelastic) damping term of Kelvin–Voigt type at the interior. This affects the boundary conditions at the interface between the two media and accounts for a highly unbounded “perturbation”. Results include: (i) analyticity of s.c semigroup of contractions defining the overall coupled system, (ii) its (uniform) exponential decay, along with (iii) sharp spectral properties of its generator. Some results are geometry-dependant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Avalos, G., Triggiani, R.: The coupled PDE-system arising in fluid-structure interaction. Part I: Explicit semigroup generator and its spectral properties (with G. Avalos). AMS Contemp. Math. Fluids Waves 440, 15–55 (2007)

    Article  Google Scholar 

  2. Avalos, G., Triggiani, R.: Uniform Stabilization of a coupled PDE system arising in fluid–structure interaction with boundary dissipation at the interface. Discret. Cont. Dyn. Syst. 22, 817–833 (2008)

    Article  MathSciNet  Google Scholar 

  3. Avalos, G., Triggiani, R.: Boundary feedback stabilization of a coupled parabolic-hyperbolic Stokes–Lamé PDE system. J. Evol. Equ. 9, 341–370 (2009)

    Article  MathSciNet  Google Scholar 

  4. Avalos, G., Lasiecka, I., Triggiani, R.: Higher regularity of a coupled parabolic-hyperbolic fluid–structure interaction system. Georgian Math. J. 15, 403–437 (2008)

    Article  MathSciNet  Google Scholar 

  5. Avalos, G., Lasiecka, I., Triggiani, R.: Heat–wave interaction in 2–3 dimensions: optimal rational decay rate. J. Math. Anal. Appl. 437(2), 782–815 (2016)

    Article  MathSciNet  Google Scholar 

  6. Balakrishnan, A.V.: Semigroups of Operators: Theory and Applications. Springer, Basel (1998)

    Google Scholar 

  7. Constantin, P., Foias, C.: Navier–Stokes Equations. University of Chicago Press, Chicago (1989)

    MATH  Google Scholar 

  8. Chen, G., Russell, D.L.: A mathematical model for linear elastic systems with structural damping. Quart. Appl. Math. 433–454 (1982)

  9. Chen, S., Triggiani, R.: Proof of two conjectures of G. Chen and D.L. Russell on structural damping for elastic systems: the case \( \alpha = 1/2\) (with S.Chen). Springer-Verlag Lecture Notes in Mathematics 1354 (1988), 234–256. Proceedings of Seminar on Approximation and Optimization, University of Havana, Cuba (January 1987)

  10. Chen, S., Triggiani, R.: Proof of the extensions of two conjectures on structural damping for elastic system. Pac. J. Math. 136, 15–55 (1989)

    Article  MathSciNet  Google Scholar 

  11. Chen, S., Triggiani, R.: Gevrey class semigroups arising from elastic systems with gentle dissipation: the case \( 0 < \alpha < \frac{1}{2}\). Proc. Am. Math. Soc. 110, 401–415 (1990)

    MathSciNet  MATH  Google Scholar 

  12. Chen, S., Triggiani, R.: Characterization of domains of fractional powers of certain operators arising in elastic systems, and applications. J. Differ. Equ. 88, 279–293 (1990)

    Article  MathSciNet  Google Scholar 

  13. Chen, S., Triggiani, R.: Gevrey class semigroups arising from elastic systems with gentle perturbation. Proc. Am. Math. Soc. 110, 401–415 (1990)

    MATH  Google Scholar 

  14. Ignatova, M., Kukavica, I., Lasiecka, I., Tuffaha, A.: On well-posedness for a free boundary fluid–structure model. J. Math. Phys. 53, 15624 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Ignatova, M., Kukavica, I., Lasiecka, I., Tuffaha, A.: On wellposedness and small data global existence for an interface damped free boundary fluid–structure interaction model-. Nonlinearity 27(3), 467–499 (2014)

    Article  MathSciNet  Google Scholar 

  16. Kesavan, S.: Topic in Functional Analysis and Applications. New Age International(P)Ltd, Chennai (1989)

    MATH  Google Scholar 

  17. Kaltenbacher, B., Kukavica, I., Lasiecka, I., Triggiani, R., Tuffaha, A., Webster, J.T.: Mathematical Theory of Evolutionary Fluid–Flow Structure Interactions. Oberwolfach Seminars, Volume 48, Birkhauser

  18. Kukavica, I., Tuffaha, A., Ziane, M.: Strong solutions to a nonlinear fluid–structure interaction system. J. Differ. Equ. 247, 1452–1478 (2009)

    Article  MathSciNet  Google Scholar 

  19. Kukavica, I., Tuffaha, A., Ziane, M.: Strong solutions to a nonlinear fluid–structure interaction system. Adv. Differ. Equ. 15, 231–254 (2010)

    MATH  Google Scholar 

  20. Lu, Y.: Uniform decay rates for the energy in nonlinear fluid–structure interaction with monotone viscous damping. PJM 2(2), 215–232 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Lasiecka, I., Lu, Y.: Asymptotic stability of finite energy in Navier–Stokes-elastic wave interaction. Semigroup forum 82, 61–82 (2011)

    Article  MathSciNet  Google Scholar 

  22. Lasiecka, I., Lu, Y.: Interface feedback control stabilization to a nonlinear fluid–structure interaction model. Nonlinear Anal. 75, 1449–1460 (2012)

    Article  MathSciNet  Google Scholar 

  23. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Vol. 1 (680 pp.), Vol. 2 (422 pp.). Encyclopedia of Mathematics and Its Applications Series, Cambridge University Press, Cambridge (January 2000)

  24. Lasiecka, I., Triggiani, R.: Heat-structure interaction with viscoelastic damping: analyticity with sharp analytic sector, exponential decay, fractional powers. Commun. Pure Appl. Anal. 15, 1515–1543 (2016)

    Article  MathSciNet  Google Scholar 

  25. Lasiecka, I.,Triggiani, R.: Domain of fractional powers of matrix-valued operators: a general approach, invited paper. Operator Semigroups meet Complex Analysis, Harmonic Analysis and Mathematical Physics, Birkauser, Vol. 250, dedicated to C.Batty (2015), pp 297–311

  26. Mahawattege, R.: Analysis and control of fluid-structure interaction with visco-elastic Kelvin–Voigt damping. PhD thesis, University of Memphis

  27. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  Google Scholar 

  28. Pruss, J.: On the spectrum of \(C_0\) semigroups. Trans. Am. Math. Soc. 284, 847–857 (1984)

    MATH  Google Scholar 

  29. Taylor, A., Lay, D.: Introduction to Functional Analysis, 2nd edn. Wiley, New York (1980)

    MATH  Google Scholar 

  30. Teman, R.: Navier–Stokes Equations and Non-linear Functional Analysis, North Holland, Amsterdam (1978). Differ. Int. Equ. 3, 503–522 (1990) (Also, preliminary version in Proceedings INRIA Conference, Paris, France (June 1988), Springer-Verlag Lecture Notes)

  31. Triggiani, R.: Finite rank, relatively bounded perturbations of semi-groups generators. III. A sharp result on the lack of uniform stabilization. Differ. Int. Equ. 3, 503–522 (1990)

    MathSciNet  MATH  Google Scholar 

  32. Triggiani, R.: A heat-structure interaction model with Neumann or Dirichlet boundary control at the interface: optimal regularity, control theoretic implications. Appl. Math. Optim. 73, 571–594 (2016)

    Article  MathSciNet  Google Scholar 

  33. Triggiani, R.: A matrix-valued generator \(A\) with strong boundary coupling: a critical subspace of \(D((-A)^{1/2})\) and \(D((-A^*)^{1/2})\) and implications. Evol. Equ. Control Theory 5(1), 185–199 (2016)

    Article  MathSciNet  Google Scholar 

  34. Triggiani, R.: Domain of fractional powers of the heat-structure operator with visco-elastic damping: regularity and control-theoretic implication. J. Evol. Equ. 17(1), 573–597 (2017)

    Article  MathSciNet  Google Scholar 

  35. Triggiani, R.: Linear parabolic-hyperbolic fluid-structure interaction models. The case of static interface. Chapter 2 in “Mathematical Theory of Evolutionary Fluid-Flow Structure Interaction”, pp. 53–172, Birkhauser (2018). Oberwolfach Seminars vol 48, B. Kaltenbacher, I. Kukavica, I. Lasiecka, R. Triggiani, A. Tuffaha, J. Webster

  36. Triggiani, R.: Heat-viscoelastic plate interaction via bending moments and shear forces operators: analyticity, spectral analysis, exponential decay. Appl. Math Optim. 82, 755–797 (2020)

    Article  MathSciNet  Google Scholar 

  37. Triggiani, R., Zhang, J.: Heat–viscoelastic plate interaction: analyticity, spectral analysis, exponential decay. Evol. Equ. Control Thoery 1(1), 153–182 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Zhang, J.: The analyticity and exponential decay of a Stokes–Wave coupling system with visco-elastic damping in the variational frame work. Evol. Equ. Control Theory 6(1), 135–154 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank two referees for their much appreciated comments. Research partially supported by the National Science Foundation under Grant DMS-1713506. This paper was written while R.T was a MSRI Research Professor during the 2021 Spring Semester, “Mathematical problems in fluid dynamics”, held at the Mathematical Sciences Research Institute, University of California, Berkeley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasika Mahawattege.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahawattege, R., Triggiani, R. Fluid–Structure Interaction with Kelvin–Voigt Damping: Analyticity, Spectral Analysis, Exponential Decay. Appl Math Optim 84 (Suppl 2), 1821–1863 (2021). https://doi.org/10.1007/s00245-021-09812-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09812-5

Keywords

Navigation