1 Introduction

The stochastic Landau–Lifshitz–Gilbert equations (SLLGEs) describe the behaviour of the magnetisation under the influence of the randomly fluctuating effective field. In this work, we consider the SLLGEs with solutions taking values in the two-dimensional sphere \(\mathbb S^2\) in \(\mathbb R^3\). Let D be an open bounded interval of the real line. For simplicity, let D be the interval (0, 1). Let \({\mathcal {H}}_{\mathrm{{eff}}}\) denote the \(L^2\)-gradient of the energy functional \({\mathcal {E}}\) and is called the effective field, i.e. \({\mathcal {H}}_{\mathrm{{eff}}}(u)=-\nabla _u{\mathcal {E}}(u).\) Let \({\mathbf {M}}:[0, T]\times D\rightarrow \mathbb R^3\) denote the magnetisation of a ferromagnetic material occupying the domain D. The deterministic Landau–Lifshitz–Gilbert equations take the form

$$\begin{aligned} \left\{ \begin{array}{ll} \frac{\partial {\mathbf {M}}}{\partial t}=\lambda _1 {\mathbf {M}}\times {\mathcal {H}}_{\mathrm{{eff}}} ({\mathbf {M}})- \lambda _2 {\mathbf {M}}\times \left( {\mathbf {M}}\times {\mathcal {H}}_{\mathrm{{eff}}} ({\mathbf {M}})\right) , &{}\quad t\in (0, T),\, x\in D,\\ {\mathbf {M}}_{x}(t,0)=0={\mathbf {M}}_{x}(t,1), &{}\quad t\in (0, T),\\ {\mathbf {M}}(0, \cdot )={\mathbf {M}}_0, &{}\quad x\in D. \end{array}\right. \end{aligned}$$
(1)

The parameters \(\lambda _1 \ne 0,\lambda _2>0\) are real constants. We assume that the material is saturated at the initial time, i.e.

$$\begin{aligned} |{\mathbf {M}}_0(x)|_{{\mathbb {R}}^3}=1 \quad \text{ for } \text{ a.e. }\quad x \in D. \end{aligned}$$
(2)

If both anisotropy and the exchange energies are present (see Visintin [30] and Cimrák [11]), the total magnetic energy \({\mathcal {E}}\) of the LLGEs is given by

$$\begin{aligned} {\mathcal {E}}({\mathbf {M}}) = {\mathcal {E}}_{an}({\mathbf {M}}) + {\mathcal {E}}_{ex}({\mathbf {M}}) =\int _D \Big (\psi ({\mathbf {M}}(x))+\dfrac{1}{2} | \nabla {\mathbf {M}}(x)|^2 \Big )dx, \end{aligned}$$

where \({\mathcal {E}}_{an}({\mathbf {M}}) :=\int _D \psi ({\mathbf {M}}(x)) dx\) is the anisotropy energy and \({\mathcal {E}}_{ex}({\mathbf {M}}) := \int _D |\nabla {\mathbf {M}}(x)|^2 dx\) is the exchange energy. The effective field \({\mathcal {H}}_{\mathrm{{eff}}}({\mathbf {M}})\) takes the form \(\varDelta {\mathbf {M}}- \nabla \psi ({\mathbf {M}}).\) In such case, the total magnetic energy is given by

$$\begin{aligned} {\mathcal {E}}=\frac{1}{2} \int _D | \nabla {\mathbf {M}}(x)|^2 \,dx \end{aligned}$$

and we obtain \({\mathcal {H}}_{\mathrm{{eff}}}({\mathbf {M}}) = \varDelta {\mathbf {M}}\). In particular, the LLGEs is given by

$$\begin{aligned} \left\{ \begin{array}{ll} \frac{\partial {\mathbf {M}}}{\partial t}=\lambda _1 {\mathbf {M}}\times \varDelta {\mathbf {M}}-\lambda _2 {\mathbf {M}}\times ({\mathbf {M}}\times \varDelta {\mathbf {M}}),&{}\quad \text { in } (0,T)\times D, \\ \frac{\partial {\mathbf {M}}}{\partial \mathbf {{\varvec{n}}}}=0, &{}\quad \text { on } (0,T)\times \partial D,\\ {\mathbf {M}}(0,\cdot )={\mathbf {M}}_0, &{}\quad \text { in } D. \end{array}\right. \end{aligned}$$
(3)

where \(\mathbf {{\varvec{n}}}\) is the unit outward normal vector field on the boundary \(\partial D\) and \(\frac{\partial {\varvec{M}}}{\partial \mathbf {{\varvec{n}}}}\) is the directional derivative of \({\varvec{M}}\) in the direction \(\mathbf {{\varvec{n}}}\). Here we assume that the material is saturated at the initial time.

It is well-known that the stationary solutions of system (1) correspond to the equilibrium states of the ferromagnet and are not unique in general. An interesting question in the theory of ferromagnetism is to describe phase transitions between different equilibrium states induced by thermal fluctuations of the field \({\mathcal {H}}_{\mathrm{{eff}}}\). Thus, conventionally, randomly fluctuating fields act responsible for magnetization fluctuations, see Neel [29]. It essentially characterizes deviations from the average magnetization trajectory in an ensemble of noninteracting nanoparticles, see Brown in [2]. According to Brown, the magnetization \({\mathbf {M}}\) evolves randomly, and for the stochastic version of system (1), one needs to modify the system in order to incorporate random fluctuations of the field \({\mathcal {H}}_{\mathrm{{eff}}}\) into the dynamics of \({\mathbf {M}}\) and to describe noise-induced transitions between equilibrium states of the ferromagnet. In this context, we refer to [3, 4] for further clarification of adding noise to the effective field \({\mathcal {H}}_{\mathrm{{eff}}}\).

The theory of rough paths was initiated by Terry Lyons in his seminal work [26] as an extension of the classical theory of controlled differential equations. Since its introduction, the theory of ordinary and partial differential equations driven by rough paths has developed intensively. We refer the reader to study the papers of Gubinelli et al. [13, 16,17,18], Friz et al. [9, 10, 14]. We quote the recent preprint [20], where using rough path formulation, existence, uniqueness and regularity for the SLLGE with Stratonovich noise on the one-dimensional torus has been studied.

In this paper, we are interested in the following form of the LLGEs equation:

$$\begin{aligned} \left\{ \begin{array}{llll} d{\mathbf {M}}=\left( \lambda _1 {\mathbf {M}}\times \varDelta {\mathbf {M}}-\lambda _2 {\mathbf {M}}\times ({\mathbf {M}}\times \varDelta {\mathbf {M}})\right) \,dt +\left( {\mathbf {M}}\times g\right) \,d{\varvec{X}},&{}\quad \text { in }(0,T)\times D\\ \frac{\partial {\mathbf {M}}}{\partial n}(t,x)=0,&{}\quad \text{ for }\, (t,x) \in (0,\infty )\times \partial D,\\ {\mathbf {M}}(0,x)={\mathbf {M}}_0(x),&{}\quad \mathrm {for}\quad x \in D,\\ |{\mathbf {M}}_0(x)|_{{\mathbb {R}}^3}=1, &{}\quad \text{ for } \text{ a.e. }\quad x \in D, \end{array}\right. \end{aligned}$$
(4)

where \({\varvec{X}}\) is a geometric rough path. We adapt Lyons’ rough paths theory to study system (1) driven by an irregular noise. By proposing a suitable transformation, we convert system (1) to a fully nonlinear time-dependent partial differential equation without rough paths term. The primary interest is the regular approximation of the geometric rough path.

The rough path theory is informally connected to Wong–Zakai results as it necessarily allows to construct solutions as limits of Wong–Zakai type approximations, for references, see, e.g. the seminal paper by Lyons [26], and the recent monograph by Lyons et al. [27]. There are various works on rough PDEs where weak solutions are constructed by exploiting energy arguments. Here in our work, we applied this way of constructing a solution. For a quick survey, we refer to Bailleul et al. [1], Deya et al. [12], Hocquet et al. [21], Hofmanová et al. [22]. We refer the readers to Section 1.5 in [8] for detailed discussion.

In [19], the authors have studied equations similar to SLLGEs in \({{\mathbb {R}}}^d\), for any \(d>0\). However, the noise corresponds to a choice of \({\varvec{g}}\) in equation (4) to be constant across the domain D, i.e., it can be independent of space and time variables. It is not clear how the concept of solution is defined. Brzeźniak et al. in [3] have proved existence of weak martingale solutions of SLLGEs taking values in a sphere \({\mathbb {S}}^2\). Furthermore, Li et al. in [5] have generalized the results in [3] with non-zero anisotropic energy \({\mathcal {E}}_{an}\) and multidimensional noise. Finite dimensional analysis of this problem has been discussed in [23, 25]. Brzeźniak et al. have studied in [4] the one-dimensional case and prove the large deviations principle to the SLLGEs for small noise asymptotic. Brzeźniak et al. have proved in [6, 7] existence of weak martingale solution for SLLGEs in three dimensions perturbed by jump noise in the Marcus canonical form with non-zero anisotropic energy \({\mathcal {E}}_{an}\), see [6] and non-zero exchange energy \({\mathcal {E}}_{ex}\) only, see [7]. Recently, in [8, 28], the authors have employed Wong–Zakai approximation technique to obtain the solvability and convergence of the time dependent transformed PDEs. The open questions framed in [8] have motivated us, as a first step to adapt Lyons’ rough paths theory to study LLGEs driven by geometric rough paths in one dimension.

As a particular case, we can take Stratonovich Brownian rough paths as geometric rough paths. Furthermore, we plan to extend our techniques to a more general setting when the stochastic process is no longer one-dimensional (and nor the corresponding vector fields commute). The motivation to use geometric rough path comes from [24], where they discuss the heat equation with a geometric rough path.

1.1 Problem Description

We introduce some notations and summarize the most important definition of rough paths which are taken from [14].

Notations For a domain \(D\subset {{\mathbb {R}}}^d\) with \(d=1,2,3\), we will use the notation \({\mathbb {L}}^p\) for the space \(L^p(D; {\mathbb {R}}^3)\) and \({\mathbb {W}}^{m,p}\) for the Sobolev space \(W^{m.p}(D; {\mathbb {R}}^3)\). We will often write \({\mathbb {H}}^m\) instead of \({\mathbb {W}}^{m,2}\). We will also denote, for a Banach space V, by \({{ {\mathcal {C}} }}^{\alpha }([0,T],V)\) the space of all \(\alpha \)–Hölder continuous functions \(f:[0,T]\rightarrow V\) with \(\alpha \in [0,1]\). We define the path increment \(f_{s,t}=f_t-f_s\) where \(f_t:=f(t)\) (we will write \({\dot{f}}\) for \(\frac{df}{dt}\)). For \(f\in {{ {\mathcal {C}} }}^{\alpha }([0,T],V)\), the usual \(\alpha \)-Hölder semi-norm is given by

$$\begin{aligned} |f|_{\alpha ,[0,T],V}:=\sup _{s\not = t \in [0,T]} \frac{|f_{s,t}|}{ |t-s|^\alpha }. \end{aligned}$$

For simplicity we write the semi-norm as \(|f|_{\alpha ,[0,T]}\) or \(|f|_{\alpha }\), if there is no danger confusion.

A rough path on an interval [0, T] with values in a Banach space V then consists of a continuous function \(X:[0,T]\rightarrow V\), as well as a continuous “second order process” \({\mathbb {X}}:[0,T]^2\rightarrow V\times V\), subjected to certain conditions which are given by Definition 3. Generically, we write \({\mathscr {C}}^{\alpha }([0,T],V)\) for the space of \(\alpha \)-Hölder rough paths and \({\mathscr {C}}_g^{\alpha }([0,T],V)\) for the space of \(\alpha \)–Hölder geometric rough paths over a Banach space V. For a Banach space H and \(\alpha \in (\frac{1}{3},\frac{1}{2}]\), we denote the space of controlled rough paths by \({\mathcal {D}}_{X}^ {2\alpha }([0,T],H)\). We note that \({\mathscr {C}}_g^{\alpha }([0,T],V)\) is a closed subset of \({\mathscr {C}}^{\alpha }([0,T],V)\). Hence, we can define \({\mathscr {C}}_g^{0,\alpha }([0,T],V)\) as the closure of lifts of smooth paths in \({\mathscr {C}}^{\alpha }([0,T],V)\). One has the obvious inclusion \({\mathscr {C}}_g^{0,\alpha }([0,T],V)\subset {\mathscr {C}}_g^{\alpha }([0,T],V)\). Furthermore, we recall that for any \(\alpha \in (1/3,1/2)\) with probability one, the corresponding Stratonovich lift is \({\varvec{B}}^{\text {strat}}=(B,{\mathbb {B}})\in {\mathscr {C}}_g^{0,\alpha }([0,T],{{\mathbb {R}}})\) where \({\mathbb {B}}_{s,t}:=\int _{s}^{t} B_{s,r}\circ dB_r\). For more details about rough paths and their integration, we refer to Appendix 2 and the book [14].

In this paper, we consider the case \(d=1\) and \(\alpha \in (\frac{1}{3},\frac{1}{2})\) and assume that D to be a bounded open interval in \({\mathbb {R}}\). In particular, we take \(D=(0, 1)\). The LLGEs in consideration in this paper is of the form

$$\begin{aligned} \left\{ \begin{array}{ll} &{} d{\varvec{M}}= \Big (\lambda _1 {\varvec{M}}\times {\varvec{M}}_{xx}-\lambda _2 {\varvec{M}}\times ({\varvec{M}}\times {\varvec{M}}_{xx})\Big )~ dt \\ &{} \qquad \qquad + ({\varvec{M}}\times {\varvec{g}})~d{\varvec{X}},\text { in } (0,T)\times D,\\ &{}{\varvec{M}}_x (t, 0) =0={\varvec{M}}_x (t, 1) ,\forall t\in (0,T),\\ &{}{\varvec{M}}(0,\cdot )= {\varvec{M}}_0 \text { in }D, \end{array}\right. \end{aligned}$$
(5)

where \(T>0\) is fixed, \({\varvec{g}}:D\rightarrow {\mathbb {R}}^3\) is given function such that \({\varvec{g}}\in {\mathbb {W}}^{4,\infty }\), and \({\varvec{X}}=(X,{\mathbb {X}})\in {\mathscr {C}}_g^{\alpha }([0,T],{{\mathbb {R}}})\). We recall the fact that if \({\tilde{{\varvec{X}}}}=(X-X_0,{\mathbb {X}})\) then \({{\tilde{{\varvec{X}}}}}\in {\mathscr {C}}_g^{\alpha }([0,T],{{\mathbb {R}}})\) and \(\int _{0}^{t}f~d{{\tilde{{\varvec{X}}}}}=\int _{0}^{t}f~d{\varvec{X}}\) for any \(f\in {\mathcal {D}}_{X}^ {2\alpha }([0,T],{{\mathbb {R}}}^3)\). Without loss of generality we assume that \(X_0=0\).

One of the most fundamental questions related to problems similar to the above is whether the solutions depend in a continuous way of the coefficients (the geometric rough path in our case). Let us describe our approach to this question. We first recall that \({\mathscr {C}}_g^{\alpha }([0,T],{{\mathbb {R}}})\) is a closed subset of \({\mathscr {C}}^{\alpha }([0,T],{{\mathbb {R}}})\). Thus we can choose \({\varvec{X}}^{(n)}=\big (X^{(n)},{\mathbb {X}}^{(n)}\big )\), \(n\in {\mathbb {N}}\) be a sequence in \({\mathscr {C}}_g^{\alpha }([0,T],{{\mathbb {R}}})\) such that

$$\begin{aligned} {\varvec{X}}^{(n)} \rightarrow {\varvec{X}}\text { in }{\mathscr {C}}_g^{\alpha }([0,T],{{\mathbb {R}}}). \end{aligned}$$
(6)

Let us now consider the corresponding system (7) approximating (5)

$$\begin{aligned} \left\{ \begin{array}{ll} &{}d{\varvec{M}}^{(n)} = \Big (\lambda _1 {\varvec{M}}^{(n)}\times {\varvec{M}}_{xx}^{(n)}-\lambda _2 {\varvec{M}}^{(n)} \times ({\varvec{M}}^{(n)}\times {\varvec{M}}_{xx}^{(n)})\Big )~ dt \\ &{}\qquad \qquad \quad + ({\varvec{M}}^{(n)}\times {\varvec{g}})~d{\varvec{X}}^{(n)}\text { in } (0,T)\times D,\\ &{}{\varvec{M}}^{(n)}_x (t, 0) =0={\varvec{M}}^{(n)}_x (t, 1) ,\quad \forall t\in (0,T),\\ &{}{\varvec{M}}^{(n)}(0,\cdot )= {\varvec{M}}_0 \text { in }D. \end{array}\right. \end{aligned}$$
(7)

We note that if \({\varvec{X}}\in {\mathscr {C}}_g^{0,\alpha }([0,T],{{\mathbb {R}}})\subset {\mathscr {C}}_g^{\alpha }([0,T],{{\mathbb {R}}})\) then one can choose \(X^{(n)}\) to be a sequence of piecewise smooth path or (piecewise) \({{ {\mathcal {C}} }}^{1}\) paths and \({\mathbb {X}}^{(n)}_{s,t}=\int _{s}^{t} X^{(n)}_{s,r} dX_{r}^{(n)}\), see page 17 of [14]. Moreover, in the stochastic case one can take Stratonovich Brownian rough paths \({\varvec{B}}^{\text {strat}}\) as \({\varvec{X}}\) and also sequence \({\varvec{B}}^{(n)}\) defined in Proposition 3.6 of [14] as \({\varvec{X}}^{(n)}\). For more details we refer to Sect. 4.1 and the book [14].

Our primary goal is to prove that the solution to the system (5) exists and is a unique strong solution in controlled rough path spaces, which indeed is a limit as \(n\rightarrow \infty \) of the solutions of sequence of the corresponding system (7) approximating (5). In particular, we show the convergence with respect to the distance \(d_{X,X^{(n)},2\alpha ,[0,T]}\) (see Definition 4 in Appendix 2).

We now briefly describe the content of the paper. In Sect. 2, we introduce an auxiliary ODE and state some auxiliary facts necessary for the transformation of system (7) to a deterministic PDE without rough paths term. Sections 3 and 4 are devoted to the proof of the main results. In Sect. 3, we show how a unique weak solution to (7) can be obtained from a unique weak solution of the reformulated equation in controlled rough path spaces; see Theorem 1. Section 4 is devoted to the proof of the convergence of solutions to the weak solution of the reformulated form; see Theorem 4 . Finally, in the Appendix, for the reader’s ease, we list several facts that are used in the course of the analysis. We split the Appendix into four subsections. First, in Appendix 1, we present several auxiliary lemmata which are essential to prove Theorem 1. Next, in Appendix 2 we handle some technical issues required in this paper, i.e., we introduce few results (see Lemmas 10, 11 and Corollary 5). These results, another contribution of the paper and have their own interest. In the last two subsections, we recall some simple results and algebraic identities used in this paper.

2 The Auxiliary Equations

In this section, we present some basic results on the the spaces and operators involved in the course of analysis. We also introduce new processes \({\varvec{m}}\) and \({\varvec{m}}^{(n)}\) gained by the Doss-Sussman transformation from the corresponding processes \({\varvec{M}}\) and \({\varvec{M}}^{(n)}\). We refer to [4, 8, 15] for further details about the properties of these processes.

2.1 Preliminaries

We define the Laplacian with the Neumann boundary conditions acting on \({{\mathbb {R}}}^3\)-valued functions by

$$\begin{aligned} D(A)&:= \{{\varvec{m}}\in {\mathbb {H}}^2: {\varvec{m}}_x(0)= {\varvec{m}}_x(1)=0 ~\text {on } \partial D\},\\ A{\varvec{m}}&:= -\varDelta {\varvec{m}}=-{\varvec{m}}_{xx},\quad {\varvec{m}}\in D(A). \end{aligned}$$

We know that the unbounded operator A is self-adjoint in \({\mathbb {L}}^2\) and \( A_1^{-1}\) is compact for \(A_1:=I+A\). Therefore, there exists an orthonormal basis \(\{e_n\}_{n=1}^{\infty }\) of \({\mathbb {L}}^2\) consisting of eigenvectors of A. Furthermore, we know that, if \(V:=D(A_1^{1/2})\) is endowed with the graph norm, then V coincides with \({\mathbb {H}}^1\). Later on, we will write \(V\hookrightarrow {\mathbb {L}}^2\hookrightarrow V'\) which is a Gelfand triple.

We now present the following interpolation inequality which will be used in later sections.

$$\begin{aligned} |{\mathbf {v}}|_{{\mathbb {L}}^{\infty }}^2 \le k^2 |{\mathbf {v}}|_{{\mathbb {L}}^2} |{\mathbf {v}}|_{{\mathbb {H}}^1},\quad \forall {\mathbf {v}}\in {\mathbb {H}}^1. \end{aligned}$$
(8)

Next, let us we recall an elementary result from [4].

Lemma 1

Let \({\mathbf {v}}\in {\mathbb {H}}^1\) such that \( |{\mathbf {v}}(x)|_{{\mathbb {R}}^3}=1\) for all \(x \in D\). Then in \(({\mathbb {H}}^1)'\), we have

$$\begin{aligned} {\mathbf {v}}\times ({\mathbf {v}}\times {\mathbf {v}}_{xx})=-|{\mathbf {v}}_x|_{{{\mathbb {R}}^3}}^2{\mathbf {v}}-{\mathbf {v}}_{xx}. \end{aligned}$$
(9)

Let us define the map \(G:{\mathbb {L}}^2 \rightarrow {\mathbb {L}}^2\) by

$$\begin{aligned}{}[G {\mathbf {u}}](x)={\mathbf {u}}(x) \times {\varvec{g}}(x), \quad \forall \, {\mathbf {u}} \in {\mathbb {L}}^2,\quad x\in D. \end{aligned}$$
(10)

Lemma 2

Suppose \({\varvec{g}}\in {\mathbb {L}}^{\infty }\). Then, G is a bounded linear map and well defined.

In Appendix 3, Lemma  12, we list the properties of G. Let \({\mathbb {H}}^2(D;{\mathbb {S}}^2)\) be the set of all \({\mathbb {R}}^3\)-valued functions defined on the domain D belonging to the Sobolev space \({\mathbb {H}}^1:=H^1(D; \mathbb R^3)\) and satisfy the saturation condition (2). In particular, let

$$\begin{aligned} {\mathbb {H}}^2(D;{\mathbb {S}}^2):=\Bigl \{{\mathbf {m}}\in {\mathbb {H}}^2 \text{ such } \text{ that } |{\mathbf {m}}(x)|_{{\mathbb {R}}^3}=1 \text{ for } \text{ a.a. } x \in D \Bigr \}. \end{aligned}$$
(11)

In other words, \({\mathbb {H}}^2(D;{\mathbb {S}}^2)\) is the set of all functions belonging to the Sobolev space \({\mathbb {H}}^2\) whose values are in the sphere. Since D is one-dimensional, \({\mathbb {H}}^2\) is embedded in \(C(D;{\mathbb {R}}^3)\) and the ‘a.e.’ condition in (11) can be substituted by ‘all’.

2.2 The Doss–Sussmann Transformation and the Corresponding New Processes \({\mathbf {m}}\) and \({\mathbf {m}}^{(n)}\)

Following the discussions in [8, 15], we define a new process \({\varvec{m}}\) from \({\varvec{M}}\) by

$$\begin{aligned} {\varvec{m}}(t,\varvec{x}):= e^{-X(t)G}{\varvec{M}}(t,\varvec{x})\quad \forall t\ge 0,~a.e.~ \varvec{x}\in D, \end{aligned}$$
(12)

where the operator G is introduced in (10). We know, by identity (91) and Lemma 12, that \(e^{\cdot G},~Ge^{\cdot G}\) and \(G^2e^{\cdot G}\) are bounded functions. Therefore, by Proposition 7.6 of [14], we obtain

$$\begin{aligned} e^{X(t)G}-e^{X(s)G}= & {} \int _{s}^{t} Ge^{X(r)G}~d{\varvec{X}}_r, \end{aligned}$$
(13a)
$$\begin{aligned} e^{-X(t)G}-e^{-X(s)G}= & {} -\int _{s}^{t} Ge^{-X(r)G}~d{\varvec{X}}_r, \end{aligned}$$
(13b)

and \(e^{X(\cdot )G}\in {\mathcal {D}}_{X}^ {2\alpha }([0,T],{\mathcal {L}}({\mathbb {L}}^2))\). In Lemma 5, we will show that if a process \({\varvec{M}}\) solves (5), then \({\varvec{m}}\) defined by (12) solves the following non-linear time dependent PDE with random coefficients given below. Later on, in Sect. 3, we will show that there exists indeed a process \({\varvec{m}}\) solving (14). Let us consider

$$\begin{aligned} \left\{ \begin{array}{ll} &{}{\dot{{\varvec{m}}}}(t) =\lambda _1{\varvec{m}}(t)\times \varvec{m}_{xx}(t) -\lambda _2{\varvec{m}}(t)\times ({\varvec{m}}(t)\times \varvec{m}_{xx}(t)) \\ &{} \qquad \qquad +F(t,\varvec{m}), ~~\text {in }(0,T)\times D,\\ &{}{\varvec{m}}_x (t, 0) =0={\varvec{m}}_x (t, 1) ,\quad \forall t\in (0,T),\\ &{}{\varvec{m}}(0,\cdot )= {\varvec{m}}_0 \text { in }D, \end{array}\right. \end{aligned}$$
(14)

where F is given by

$$\begin{aligned} F(t,{\varvec{m}})=\lambda _1{\varvec{m}}\times {\tilde{C}}(X(t),{\varvec{m}}(t,\cdot ))-\lambda _2{\varvec{m}}\times ({\varvec{m}}\times {\tilde{C}}(X(t),{\varvec{m}}(t,\cdot ))). \end{aligned}$$
(15)

Here, \({\tilde{C}}\) is an operator coming up in Lemma 15 and is given by

$$\begin{aligned} {\tilde{C}}(s,\varvec{v}):=e^{-sG}\big ((\sin s)C+(1-\cos s)(GC+CG) \big )\varvec{v}, \end{aligned}$$
(16)

where \(s\in {{\mathbb {R}}}\), \(\varvec{v}\in {\mathbb {W}}_0^{1,\infty }\) and C is an operator coming up in Lemma 14 and is given by

$$\begin{aligned} C\varvec{v}=\varvec{v}\times \varvec{g}_{xx}+2\sum _{i=1}^{d}\frac{\partial \varvec{v}}{\partial x_i}\times \frac{\partial \varvec{g}}{\partial x_i}. \end{aligned}$$
(17)

From the assumption \(X(0)=0\), we note that the initial condition (2) is equivalent to an analogous one for \({\varvec{m}}_0\), i.e.

$$\begin{aligned} |{\mathbf {m}}_0(x)|_{{\mathbb {R}}^3}=1 \quad \text{ for } \text{ a.e. }\quad x \in D. \end{aligned}$$
(18)

Note that, we could consider the transformation (12) for all \(t\ge 0\). Moreover, as one can easily prove \(\vert [e^{tG}(u)](x) \vert _{{\mathbb {R}}^3}= \vert u(x) \vert _{{\mathbb {R}}^3}\) for all \(t\in [0, T]\), for a.a. \(x\in D\), we see that the following saturation conditions for \({\varvec{M}}\) and \({\varvec{m}}\) are equivalent:

$$\begin{aligned} |{\mathbf {M}}(t,x)|_{{\mathbb {R}}^3}&=1 \quad \text{ for } \text{ a.e. }\quad x \in D, \text{ for } \text{ all }\quad t\in [0, T], \end{aligned}$$
(19)
$$\begin{aligned} |{\mathbf {m}}(t,x)|_{{\mathbb {R}}^3}&=1 \quad \text{ for } \text{ a.e. }\quad x \in D, \text{ for } \text{ all }\quad t\in [0, T]. \end{aligned}$$
(20)

For proof of the saturation condition (20), we refer to Lemma 3.15 of [8]. Repeating the same algebraic calculations as done in [15], i.e. using the definition of G and the identity (17), we obtain

$$\begin{aligned} GC{\mathbf {m}}+CG{\mathbf {m}}&=({\mathbf {m}}\times {\varvec{g}}_{xx}) \times {\varvec{g}}+ ({\mathbf {m}}\times {\varvec{g}}) \times {\varvec{g}}_{xx}+ 2\Big (({\mathbf {m}}_{x} \times {\varvec{g}}_x) \times {\varvec{g}}\nonumber \\&\quad +({\mathbf {m}}_{x} \times {\varvec{g}}) \times {\varvec{g}}_{x}+({\mathbf {m}}\times {\varvec{g}}_{x}) \times {\varvec{g}}_x \Big ). \end{aligned}$$
(21)

Substituting (21) in (16), we get

$$\begin{aligned} F(t,{\mathbf {m}})= \lambda _1 {\mathbf {m}}\times {\tilde{C}}(X(t),{\mathbf {m}})-\lambda _2 {\mathbf {m}}\times ({\mathbf {m}}\times {\tilde{C}}(X(t),{\mathbf {m}})), \end{aligned}$$
(22)

where \({\tilde{C}}(X(t),{\mathbf {m}})\) has now the following form

$$\begin{aligned} {\tilde{C}}(X(t),{\mathbf {m}})&=e^{-X(t)G} \sin (X(t))\Big ({\mathbf {m}}\times {\varvec{g}}_{xx}+ 2 {\mathbf {m}}_{x} \times {\varvec{g}}_{x}\Big )\\&\quad +e^{-X(t)G}[1-\cos (X(t))]\Big (({\mathbf {m}}\times {\varvec{g}}_{xx}) \times {\varvec{g}}+ ({\mathbf {m}}\times {\varvec{g}}) \times {\varvec{g}}_{xx}\\&\quad + 2\Big (({\mathbf {m}}_{x} \times {\varvec{g}}_x) \times {\varvec{g}}+({\mathbf {m}}_{x} \times {\varvec{g}}) \times {\varvec{g}}_{x} +({\mathbf {m}}\times {\varvec{g}}_{x}) \times {\varvec{g}}_x \Big )\Big ). \end{aligned}$$

Applying identity (91), we obtain the following representation

$$\begin{aligned} {\tilde{C}}(X(t),{\mathbf {m}}) = S (X) {\mathfrak {S}}({\mathbf {m}}) +{\mathcal {C}}(X) {\mathfrak {C}}({\mathbf {m}}), \end{aligned}$$
(23)

where we define the following abbreviations

$$\begin{aligned} S (X)~&:=\sin (X(t))-\sin ^2(X(t))G+\sin (X(t))G^2-\frac{1}{2}\sin (2X(t))G^2, \end{aligned}$$
(24)
$$\begin{aligned} {\mathfrak {S}}({\mathbf {m}})&:={\mathbf {m}}\times {\varvec{g}}_{xx}+ 2 {\mathbf {m}}_{x} \times {\varvec{g}}_{x}, \end{aligned}$$
(25)
$$\begin{aligned} {\mathcal {C}}(X)~&:=1-\cos (X(t))+\Big [\frac{1}{2}\sin (2X(t))-\sin (X(t))\Big ] G\nonumber \\&\quad +\Big [1-2\cos (X(t))+\cos ^2(X(t))\Big ]G^2\nonumber \\ {\mathfrak {C}}({\mathbf {m}})&:=({\mathbf {m}}\times {\varvec{g}}_{xx}) \times {\varvec{g}}+ ({\mathbf {m}}\times {\varvec{g}}) \times {\varvec{g}}_{xx}+ 2\Big (({\mathbf {m}}_{x} \times {\varvec{g}}_x) \times {\varvec{g}}\end{aligned}$$
(26)
$$\begin{aligned}&\quad +({\mathbf {m}}_{x} \times {\varvec{g}}) \times {\varvec{g}}_{x} +({\mathbf {m}}\times {\varvec{g}}_{x}) \times {\varvec{g}}_x \Big ). \end{aligned}$$
(27)

Remark 1

Using the representation in (23) and the fact that \( {\varvec{g}}\in {\mathbb {W}}^{2,\infty }(D)\), we know that there exists a constant \(K>0\) such that

$$\begin{aligned} |{\tilde{C}}(X(t),{\mathbf {m}})|_{{{\mathbb {R}}}^3}&\le K\Big [|{\mathfrak {S}}({\mathbf {m}})|_{{{\mathbb {R}}}^3}+|{\mathfrak {C}}({\mathbf {m}})|_{{{\mathbb {R}}}^3} \Big ],\\ |{\tilde{C}}_x(X(t),{\mathbf {m}})|_{{{\mathbb {R}}}^3}&\le K\Big [|{\mathfrak {S}}({\mathbf {m}})|_{{{\mathbb {R}}}^3}+|{\mathfrak {S}}_x({\mathbf {m}})|_{{{\mathbb {R}}}^3}+|{\mathfrak {C}}({\mathbf {m}})|_{{{\mathbb {R}}}^3}+|{\mathfrak {C}}_x({\mathbf {m}})|_{{\mathbb {L}}^2} \Big ],\\ |{\tilde{C}}_{xx}(X(t),{\mathbf {m}})|_{{{\mathbb {R}}}^3}&\le K\Big [|{\mathfrak {S}}({\mathbf {m}})|_{{{\mathbb {R}}}^3}+|{\mathfrak {S}}_x({\mathbf {m}})|_{{{\mathbb {R}}}^3}+|{\mathfrak {S}}_{xx}({\mathbf {m}})|_{{{\mathbb {R}}}^3}+|{\mathfrak {C}}({\mathbf {m}})|_{{{\mathbb {R}}}^3}\\&\quad \quad +|{\mathfrak {C}}_x({\mathbf {m}})|_{{{\mathbb {R}}}^3}+|{\mathfrak {C}}_{xx}({\mathbf {m}})|_{{{\mathbb {R}}}^3} \Big ]. \end{aligned}$$

Using the following inequalities

$$\begin{aligned} \left\{ \begin{array}{ll} |{\mathfrak {S}}({\mathbf {m}})|_{{{\mathbb {R}}}^3}&{}\le K \Big [ |{\varvec{m}}|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_x|_{{{\mathbb {R}}}^3}\Big ],\\ |{\mathfrak {S}}_x({\mathbf {m}})|_{{{\mathbb {R}}}^3}&{}\le K \Big [ |{\varvec{m}}|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_x|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_{xx}|_{{{\mathbb {R}}}^3}\Big ],\\ |{\mathfrak {S}}_{xx}({\mathbf {m}})|_{{{\mathbb {R}}}^3}&{}\le K \Big [ |{\varvec{m}}|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_x|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_{xx}|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_{xxx}|_{{{\mathbb {R}}}^3}\Big ], \\ |{\mathfrak {C}}({\mathbf {m}})|_{{{\mathbb {R}}}^3}&{}\le K \Big [ |{\varvec{m}}|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_x|_{{{\mathbb {R}}}^3}\Big ],\\ |{\mathfrak {C}}_x({\mathbf {m}})|_{{{\mathbb {R}}}^3}&{}\le K \Big [ |{\varvec{m}}|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_x|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_{xx}|_{{{\mathbb {R}}}^3}\Big ],\\ |{\mathfrak {C}}_{xx}({\mathbf {m}})|_{{{\mathbb {R}}}^3}&{}\le K \Big [ |{\varvec{m}}|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_x|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_{xx}|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_{xxx}|_{{{\mathbb {R}}}^3}\Big ], \end{array}\right. \end{aligned}$$
(28)

we obtain

$$\begin{aligned} |{\tilde{C}}(X(t),{\mathbf {m}})|_{{{\mathbb {R}}}^3}&\le K \Big [ |{\varvec{m}}|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_x|_{{{\mathbb {R}}}^3}\Big ], \end{aligned}$$
(29)
$$\begin{aligned} |{\tilde{C}}_x(X(t),{\mathbf {m}})|_{{{\mathbb {R}}}^3}&\le K \Big [ |{\varvec{m}}|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_x|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_{xx}|_{{{\mathbb {R}}}^3}\Big ], \end{aligned}$$
(30)
$$\begin{aligned} |{\tilde{C}}_{xx}(X(t),{\mathbf {m}})|_{{{\mathbb {R}}}^3}&\le K \Big [ |{\varvec{m}}|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_x|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_{xx}|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_{xxx}|_{{{\mathbb {R}}}^3}\Big ]. \end{aligned}$$
(31)

Finally, by straightforward calculations we can estimate the nonlinearity F defined in (22). In particular, there exists a constant \(K>0\) such that using (20), we have

$$\begin{aligned} |{F}(t,{\mathbf {m}})|_{{\mathbb {L}}^2}&\le K \Big [|\lambda _1|+\lambda _2\Big ] \Big [1+|{\varvec{m}}_x|_{{\mathbb {L}}^2}\Big ], \end{aligned}$$
(32)
$$\begin{aligned} |{F}_x(t,{\mathbf {m}})|_{{\mathbb {L}}^2}&\le K \Big [|\lambda _1|+\lambda _2\Big ] \Big [1+|{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}\Big ]\Big [1+|{\varvec{m}}_x|_{{\mathbb {L}}^{2}}+|{\varvec{m}}_{xx}|_{{\mathbb {L}}^{2}}\Big ], \end{aligned}$$
(33)
$$\begin{aligned} |{F}_{xx}(t,{\mathbf {m}})|_{{\mathbb {L}}^2}&\le K \Big [|\lambda _1|+\lambda _2\Big ] \Big [1+|{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}\Big ]\Big [1+|{\varvec{m}}_x|_{{\mathbb {L}}^{2}}+|{\varvec{m}}_{xx}|_{{\mathbb {L}}^{2}}+|{\varvec{m}}_{xxx}|_{{\mathbb {L}}^{2}}\Big ]. \end{aligned}$$
(34)

Let us now consider the corresponding system (36) approximating (14). Again, let us define a new auxiliary process \({\varvec{m}}^{(n)}\) from \({\varvec{M}}^{(n)}\) and \(X^{(n)}\) by

$$\begin{aligned} {\varvec{m}}^{(n)}(t,\varvec{x}):= e^{-X^{(n)}(t)G}{\varvec{M}}^{(n)}(t,\varvec{x})\quad \forall t\ge 0,~a.e.~ \varvec{x}\in D. \end{aligned}$$
(35)

By the same calculations as above and Lemma 7, one can show that if \({\varvec{M}}^{(n)}\) is a solution to (7), then \({\varvec{m}}^{(n)}\) is a solution to

$$\begin{aligned} \left\{ \begin{array}{ll} &{} {\dot{{\varvec{m}}}}^{(n)} =\lambda _1{\varvec{m}}^{(n)}\times {\varvec{m}}_{xx}^{(n)} -\lambda _2{\varvec{m}}^{(n)}\times ({\varvec{m}}^{(n)}\times \varvec{m}_{xx}^{(n)})\\ &{}\qquad \quad \quad +F^{(n)}(\cdot ,\varvec{m}^{(n)}),\text { in } (0,T)\times D,\\ &{}{\varvec{m}}^{(n)}_x (t, 0) =0={\varvec{m}}^{(n)}_x (t, 1) ,\quad \forall t\in (0,T),\\ &{}{\varvec{m}}^{(n)}(0,\cdot )= {\varvec{m}}_0 \text { in }D, \end{array}\right. \end{aligned}$$
(36)

and vice versa. Here,

$$\begin{aligned} F^{(n)}(\cdot ,{\varvec{m}}^{(n)})=\lambda _1{\varvec{m}}^{(n)}\times {\tilde{C}}(X^{(n)},{\varvec{m}}^{(n)})-\lambda _2{\varvec{m}}^{(n)}\times ({\varvec{m}}^{(n)}\times {\tilde{C}}(X^{(n)},{\varvec{m}}^{(n)})). \end{aligned}$$
(37)

Moreover, in Theorem 3, we will show that system (36) has indeed a unique solution.

3 Existence and Uniqueness of the Solutions to the Systems (5) and (7)

We begin with the definition of (strong) solution to the system (5).

Definition 1

Let \(T>0\) and \({\varvec{X}}=(X,{\mathbb {X}})\in {\mathscr {C}}_g^{\alpha }([0,T],{{\mathbb {R}}})\) with \(\alpha \in (\frac{1}{3},\frac{1}{2})\). A path \({\varvec{M}}\in {{ {\mathcal {C}} }}^{\alpha }([0,T],{\mathbb {L}}^2)\) is said to be a (strong) solution of the system (5) if the following properties hold:

  1. (i)

    \({\varvec{M}}\) satisfies the following saturation condition

    $$\begin{aligned} |{\varvec{M}}(t,x)|_{{{\mathbb {R}}}^3}=1\text { for a.e. }x\in D,\text { for all }t\in [0,T]; \end{aligned}$$
  2. (ii)

    \({\varvec{M}}\) satisfies the second equation of (5) and \(\sup _{t \in [0,T]}|{\varvec{M}}(t)|_{{\mathbb {H}}^2}<\infty ;\)

  3. (iii)

    \({\varvec{M}}\) is controlled by \({\varvec{X}}\), i.e. there exists a path \({\varvec{M}}'\in {{ {\mathcal {C}} }}^{\alpha }([0,T],{\mathbb {L}}^2)\) (being called Gubinelli derivative) such that the reminder term \({\mathscr {R}}^Y\) is given implicitly through the relation \( Y_{s,t}=Y_s'X_{s,t} + {\mathscr {R}}_{s,t}^ Y, \) and satisfies \(|{\mathscr {R}}^Y |_{2\alpha ,H}<\infty \). Moreover,

    $$\begin{aligned} ({\varvec{M}},{\varvec{M}}')\in {\mathcal {D}}_{X}^ {2\alpha }([0,T],{\mathbb {L}}^2); \end{aligned}$$
  4. (iv)

    \({\varvec{M}}\) satisfies the rough differential equation given by

    $$\begin{aligned} {\varvec{M}}(t,x)= & {} {\varvec{M}}_0(x)+ \lambda _1 \int _{0}^{t} {\varvec{M}}(s,x)\times {\varvec{M}}_{xx}(s,x)~ds\\&-\lambda _2 \int _{0}^{t} {\varvec{M}}(s,x) \times ({\varvec{M}}(s,x)\times {\varvec{M}}_{xx}(s,x))~ ds\\&+ \int _{0}^{t}({\varvec{M}}(s,x)\times {\varvec{g}}(x))~d{\varvec{X}}_s, \end{aligned}$$

    where the third integral is interpreted in the sense of (77).

In this section, we prove the following theorem which shows that the solution to the system (5) (resp.  (7)) exists and is unique.

Theorem 1

Let \({\varvec{X}}=(X,{\mathbb {X}}) \in {\mathscr {C}}_g^{\alpha }([0,T],{{\mathbb {R}}})\). Let \({\varvec{X}}^{(n)}=\big (X^{(n)},{\mathbb {X}}^{(n)}\big )\), \(n\in {\mathbb {N}}\) be a sequence in \({\mathscr {C}}_g^{\alpha }([0,T],{{\mathbb {R}}})\) such that

$$\begin{aligned} {\varvec{X}}^{(n)} \rightarrow {\varvec{X}}\text { in }{\mathscr {C}}_g^{\alpha }([0,T],{{\mathbb {R}}}). \end{aligned}$$

If \({\varvec{M}}_0,{\varvec{M}}_0^{(n)}\in {\mathbb {H}}^2(D;{\mathbb {S}}^2)\), then there exist unique (strong) solutions \({\varvec{M}}\) and \({\varvec{M}}^{(n)}\) to the respective systems (5) and (7). In addition, we have

  1. (i)

    \(({\varvec{M}},{\varvec{M}}\times {\varvec{g}})\in {\mathcal {D}}_{X}^ {2\alpha }([0,T],{\mathbb {L}}^2)\),

  2. (ii)

    \(({\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}})\in {\mathcal {D}}_{X^{(n)}}^ {2\alpha }([0,T],{\mathbb {L}}^2)\),

  3. (iii)

    and \({\varvec{M}},{\varvec{M}}^{(n)}\in L^{\infty }(0,T;{\mathbb {H}}^2)\).

Before we present the proof of Theorem 1, we introduce Theorem 2 and Theorem 3. In the first theorem, we show the existence, uniqueness and regularity of the solution to the system (14). In the second theorem, we obtain the same for system (36). Then, using the Doss–Sussmann transformation, we show that from the existence of a unique solution to systems (14) and (36), respectively, follows the existence of the solution of systems (5) and (7), respectively. Similarly, the convergence is proven.

Let us start with introducing the definition of (weak) solution \({\varvec{m}}\) to the system (14) and the theorem for existence and regularity of \({\varvec{m}}\).

Definition 2

Let \(T>0\). A path \({\varvec{m}}\in {{ {\mathcal {C}} }}^{2\alpha }([0,T],{\mathbb {L}}^2)\) is said to be a (weak) solution to the system (14) if the following properties hold:

  1. (i)

    \({\varvec{m}}\) satisfies the following saturation condition

    $$\begin{aligned} |{\varvec{m}}(t,x)|_{{{\mathbb {R}}}^3}=1\text { for a.e. }x\in D,\text { for all }t\in [0,T]; \end{aligned}$$
  2. (ii)

    \({\varvec{m}}\) satisfies the second equation of (14) and \(\sup _{t \in [0,T]}|{\varvec{m}}(t)|_{{\mathbb {H}}^2}<\infty ;\)

  3. (iii)

    \({\varvec{m}}\) satisfies the time dependent differential equation for all \(\phi \in {\mathbb {H}}^1,\) \(t \in [0,T]\)

    $$\begin{aligned} \langle {\varvec{m}}(t), \phi \rangle _{{\mathbb {L}}^2}&=\langle {\mathbf {m}}(0), \phi \rangle _{{\mathbb {L}}^2}-\lambda _1 \int _0^t \int _D \langle {\varvec{m}}_x(s,x), \phi _x(x) \times {\varvec{m}}(s,x) \rangle _{{\mathbb {R}}^3} dx\, ds \nonumber \\&\quad -\lambda _2 \int _0^t \int _D \langle {\varvec{m}}_x(s,x), ({\mathbf {m}}\times \phi )_x(s,x) \times {\varvec{m}}(s,x) \rangle _{{\mathbb {R}}^3} dx\, ds\nonumber \\&\quad +\int _0^t \int _D \langle F(s,{\mathbf {m}}(s,x)),\phi (x)\rangle _{{\mathbb {R}}^3} dx\, ds. \end{aligned}$$
    (38)

Theorem 2

Let \({\mathbf {m}}_0 \in {\mathbb {H}}^2(D;{\mathbb {S}}^2).\) Then there exists a weak solution \({\mathbf {m}}\) to the system (14) in the sense of Definition 2 satisfying the following:

  1. (i)

    there exists a positive constant C, depending on \(T, \lambda _1,\lambda _2, |{\mathbf {m}}_0|_{{\mathbb {H}}^2}\), such that

    $$\begin{aligned} \sup _{t \in [0,T]} |{\mathbf {m}}(t)|_{{\mathbb {H}}^2} \le C; \end{aligned}$$
  2. (ii)

    for almost every \(t \in [0,\infty ),\quad {\mathbf {m}}(t) \times {\mathbf {m}}_{xx}(t) \in {\mathbb {L}}^2\) and for every \(T>0,\) there exists a positive constant C, depending on \(T, \lambda _1,\lambda _2, |{\mathbf {m}}_0|_{{\mathbb {H}}^2}\), such that we have

    $$\begin{aligned} \int _0^T |{\mathbf {m}}(t) \times {\mathbf {m}}_{xx}(t)|_{{\mathbb {L}}^2}^2 dt \le C. \end{aligned}$$
    (39)

Furthermore, we obtain that \({\varvec{m}}\in H^1(0,T;{\mathbb {L}}^2)\cap L^{\infty }(0,T;{\mathbb {H}}^2)\) and \({\varvec{m}}\) is also a strong solution of the system (14).

Proof

For proof, we refer to Theorem 3.2 and Lemma 3.13 of [8]. In addition, for the regularity property of \({\varvec{m}}\), we refer to Lemma 8 and Lemma 9 in Appendix 2. \(\square \)

In the same way as above (see Definition 2 and Theorem 2), we can define weak solutions for the system of equations (36) and obtain the following theorem.

Theorem 3

Let \({\mathbf {m}}_0 \in {\mathbb {H}}^2(D;{\mathbb {S}}^2).\) Then there exists a weak solution \({\mathbf {m}}^{(n)}\) to the system (36), i.e., it satisfies the following:

  1. (i)

    for every \(T>0,\)

    $$\begin{aligned} \sup _{t \in [0,T]} |{\mathbf {m}}^{(n)}(t)|_{{\mathbb {H}}^2} \le C(T, \lambda _2, |{\mathbf {m}}_0|_{{\mathbb {H}}^2}); \end{aligned}$$
    (40)
  2. (ii)

    for almost every \(t \in [0,\infty ),\quad {\mathbf {m}}^{(n)}(t) \times {\mathbf {m}}^{(n)}_{xx}(t) \in {\mathbb {L}}^2\) and every \(T>0\) we have

    $$\begin{aligned} \int _0^T |{\mathbf {m}}^{(n)}(t) \times {\mathbf {m}}^{(n)}_{xx}(t)|_{{\mathbb {L}}^2}^2 dt \le C(T,\lambda _2,|{\mathbf {m}}_0|_{{\mathbb {H}}^2}); \end{aligned}$$
    (41)
  3. (iii)

    \(|{\mathbf {m}}^{(n)}(t,x)|_{{\mathbb {R}}^3}=1,\quad \) a.e. \(x \in D\) and for all \(t \in [0, T]\);

  4. (iv)

    for all \(\phi \in {\mathbb {H}}^1,\)

    $$\begin{aligned} \langle {\mathbf {m}}^{(n)}(t), \phi \rangle _{{\mathbb {L}}^2}&=\langle {\mathbf {m}}(0), \phi \rangle _{{\mathbb {L}}^2}\\&\quad -\lambda _1 \int _0^t \int _D \langle {\mathbf {m}}^{(n)}_x(s,x), \phi _x(x) \times {\mathbf {m}}^{(n)}(s,x) \rangle _{{\mathbb {R}}^3} dx\, ds \\&\quad -\lambda _2 \int _0^t \int _D \langle {\mathbf {m}}^{(n)}_x(s,x), ({\mathbf {m}}^{(n)} \times \phi )_x(s,x) \times {\mathbf {m}}^{(n)}(s,x) \rangle _{{\mathbb {R}}^3} dx\, ds\\&\quad +\int _0^t \int _D \langle F(s,{\mathbf {m}}^{(n)}(s,x)),\phi (x)\rangle _{{\mathbb {R}}^3} dx\, ds, \end{aligned}$$

    holds for all \(t \in [0,T].\)

Moreover, we obtain that \({\varvec{m}}^{(n)}\in H^1(0,T;{\mathbb {L}}^2)\cap L^{\infty }(0,T;{\mathbb {H}}^2)\) and \({\varvec{m}}^{(n)}\) is the strong solution of the system (36).

Proof of Theorem 1

Thanks to Theorem 2, there exists a unique strong solution \({\varvec{m}}\in H^1(0,T;{\mathbb {L}}^2)\cap L^{\infty }(0,T;{\mathbb {H}}^2)\) to the system (14). Hence, applying Lemma 5, we conclude that there exists a unique strong solution \({\varvec{M}}\in L^{\infty }(0,T;{\mathbb {H}}^2)\) of the system (5) and \(({\varvec{M}},{\varvec{M}}\times {\varvec{g}})\in {\mathcal {D}}_{X}^ {2\alpha }([0,T],{\mathbb {L}}^2)\). Finally, using Lemma 10, we conclude that the integration against rough paths in (5) is well defined. Proceeding in similar lines, one can observe that there exists a unique strong solution \({\varvec{M}}^{(n)}\in L^{\infty }(0,T;{\mathbb {H}}^2)\) to the system (7) and \(({\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}})\in {\mathcal {D}}_{X}^ {2\alpha }([0,T],{\mathbb {L}}^2)\), thus completing the proof. \(\square \)

4 Convergence of Solution in Controlled Rough Path Spaces

In this section we prove the convergence result in the space \({\mathcal {D}}_{X}^ {2\alpha }([0,T],{\mathbb {L}}^2)\).

Theorem 4

Let \({\varvec{M}}\) and \({\varvec{M}}^{(n)}\) be the solutions to the systems (5) and (7), respectively. Then we have the following convergence

$$\begin{aligned} {\varvec{M}}^{(n)}\rightarrow & {} {\varvec{M}}\text { in }{{\mathcal {D}}_{X}^ {2\alpha }([0,T],{\mathbb {L}}^2)}, \text { as } n\rightarrow \infty . \end{aligned}$$

Before going into the proof of Theorem 4, we introduce and prove some lemmata and corollaries. These lemmata are essential to show Theorem 4.

Lemma 3

Let \({\varvec{m}}\) and \({\varvec{m}}^{(n)}\) be the solutions to the systems (14) and (36), respectively. Then we have the following convergence

$$\begin{aligned} {\varvec{m}}^{(n)}\rightarrow & {} {\varvec{m}}\text { in }L^{\infty }(0,T;{\mathbb {L}}^2), \text { as } n\rightarrow \infty . \end{aligned}$$

Proof

By similar arguments as with the proof of Lemma 5.2 in [8], one can show that there exists a constant \(C>0\) and an integrable function \(\varphi _C\), so that we have the following estimate

$$\begin{aligned} |{\mathbf {m}}^{(n)}(t)-{\mathbf {m}}(t)|^2_{{\mathbb {L}}^2}&\le \Big (|{\mathbf {m}}^{(n)}(0)-{\mathbf {m}}(0)|^2_{{\mathbb {L}}^2}+C\int _0^t|X^{(n)}(s)-X(s)|ds\Big ) \\&\quad \times e^{2\int _0^t \varphi _C(s) ds}, \end{aligned}$$

for \(t\in [0,T]\). Using (6), we obtain

$$\begin{aligned} {\varvec{m}}^{(n)}\rightarrow & {} {\varvec{m}}\text { in }L^{\infty }(0,T;{\mathbb {L}}^2), \text { as } n\rightarrow \infty . \end{aligned}$$

\(\square \)

Corollary 1

Let \({\varvec{M}}\) and \({\varvec{M}}^{(n)}\) be the solutions to the systems (5) and (7), respectively. Then we have the following convergence

$$\begin{aligned} {\varvec{M}}^{(n)}\rightarrow & {} {\varvec{M}}\text { in }L^{\infty }(0,T;{\mathbb {L}}^2), \text { as } n\rightarrow \infty . \end{aligned}$$

Proof

We note that

$$\begin{aligned} {\mathbf {M}}^{(n)}(t)-{\mathbf {M}}(t)&= e^{X^{(n)}(t)G} {\mathbf {m}}^n(t)-e^{X(t)G} {\mathbf {m}}(t)\\ {}&=e^{X^{(n)}(t)G} \Big ({\mathbf {m}}^n(t)-{\mathbf {m}}(t) \Big )+ \Big (e^{X^{(n)}(t)G} -e^{X(t)G} \Big ){\mathbf {m}}(t). \end{aligned}$$

Since \(\varvec{X}^{(n)}\rightarrow \varvec{X}\) in \({\mathscr {C}}_g^{\alpha }([0,T],{{\mathbb {R}}})\) (compare (6)), we can observe that \(X^{(n)}\rightarrow X\) in \(L^{\infty }(0,T;{{\mathbb {R}}})\). Therefore, using the identity (91) we have \(e^{X^{(n)}G}\rightarrow e^{XG}\) in \(L^{\infty }(0,T;{\mathcal {L}}({\mathbb {L}}^2))\), where \({\mathcal {L}}({\mathbb {L}}^2)\) denote space of bounded linear operators on \({\mathbb {L}}^2\). Finally, from Lemma 3, we obtain

$$\begin{aligned} {\varvec{M}}^{(n)}\rightarrow & {} {\varvec{M}}\text { in }L^{\infty }(0,T;{\mathbb {L}}^2), \text { as } n\rightarrow \infty , \end{aligned}$$

which is the assertion. \(\square \)

In the next lemma, we investigate the convergence of sequence \({\varvec{m}}_{xx}^{(n)}\) in \(L^{\infty }(0,T;{\mathbb {L}}^2)\).

Lemma 4

Let \({\varvec{m}}\) and \({\varvec{m}}^{(n)}\) be the solutions to the systems (14) and (36), respectively. Then we have the following convergence

$$\begin{aligned} {\varvec{m}}_{xx}^{(n)}\rightarrow & {} {\varvec{m}}_{xx}\text { in }L^{\infty }(0,T;{\mathbb {L}}^2), \text { as } n\rightarrow \infty . \end{aligned}$$

Proof

Let \(u={\varvec{m}}_{xx}\), \(u^{(n)}={\varvec{m}}_{xx}^{(n)}\) and \(z=u^{(n)}-u\). We proceed in the same way as we advance in the proof of Lemma 9 in Appendix 2. Substituting z in system (14), we get the following identity

$$\begin{aligned} \frac{\partial z}{\partial t}= & {} \lambda _1 \left( 2{\varvec{m}}_x\times z_x+{\varvec{m}}\times z_{xx}\right) -\lambda _2 \Big [z\times ({\varvec{m}}\times z) \\&+2{\varvec{m}}_x\times ({\varvec{m}}_x\times z)+2{\varvec{m}}_x\times ({\varvec{m}}\times z_x)\\&+2{\varvec{m}}\times ({\varvec{m}}_x\times z_x)+<{\varvec{m}}, z_{xx}>{\varvec{m}}-<{\varvec{m}},{\varvec{m}}> z_{xx}\Big ]+ F_{xx}(t,{\varvec{m}}). \end{aligned}$$

Substituting \(z=u^{(n)}-u\), we obtain

$$\begin{aligned} \frac{\partial z}{\partial t}= & {} \lambda _1 \bigg [2\Big ({\varvec{m}}_x^{(n)}\times u_x^{(n)}-{\varvec{m}}_x\times u_x\Big )+\Big ({\varvec{m}}^{(n)} \times u^{(n)}_{xx}-{\varvec{m}}\times u_{xx}\Big )\bigg ]\\&-\lambda _2 \bigg [\Big (u^{(n)}\times ({\varvec{m}}^{(n)}\times u^{(n)})-u\times ({\varvec{m}}\times u)\Big )+2\Big ({\varvec{m}}^{(n)}_x\times ({\varvec{m}}^{(n)}_x\times u^{(n)})\\&-{\varvec{m}}_x\times ({\varvec{m}}_x\times u)\Big )+2\Big ({\varvec{m}}^{(n)}_x\times ({\varvec{m}}^{(n)}\times u^{(n)}_x)-{\varvec{m}}_x\times ({\varvec{m}}\times u_x)\Big )\\&+2\Big ({\varvec{m}}^{(n)}\times ({\varvec{m}}^{(n)}_x\times u^{(n)}_x)-{\varvec{m}}\times ({\varvec{m}}_x\times u_x) \Big )+\Big (<{\varvec{m}}^{(n)}, z^{(n)}_{xx}>{\varvec{m}}^{(n)}\\&-<{\varvec{m}}, z_{xx}>{\varvec{m}}\Big )-(z^{(n)}_{xx}-z_{xx})\Big ]+ \Big [F^{(n)}_{xx}(t,{\varvec{m}}^{(n)})-F_{xx}(t,{\varvec{m}})\Big ]. \end{aligned}$$

Testing with z and integrating over the interval (0, 1), we obtain

$$\begin{aligned} \frac{1}{2}\frac{d}{dt}|z|_{{\mathbb {L}}^2}^2&= \lambda _1\int _{0}^{1} \bigg<2\Big ({\varvec{m}}_x^{(n)}\times u_x^{(n)}-{\varvec{m}}_x\times u_x\Big ) +\Big ({\varvec{m}}^{(n)} \times u^{(n)}_{xx}-{\varvec{m}}\times u_{xx}\Big ),z\bigg>~dx\nonumber \\&\quad -\lambda _2 \int _{0}^{1}\bigg<\Big (u^{(n)}\times ({\varvec{m}}^{(n)}\times u^{(n)})-u\times ({\varvec{m}}\times u)\Big )\nonumber \\&\quad \nonumber +2\Big ({\varvec{m}}^{(n)}_x\times ({\varvec{m}}^{(n)}_x\times u^{(n)})-{\varvec{m}}_x\times ({\varvec{m}}_x\times u)\Big )\nonumber \\&\quad +2\Big ({\varvec{m}}^{(n)}_x\times ({\varvec{m}}^{(n)}\times u^{(n)}_x)-{\varvec{m}}_x\times ({\varvec{m}}\times u_x)\Big )\nonumber \\&\quad +2\Big ({\varvec{m}}^{(n)}\times ({\varvec{m}}^{(n)}_x\times u^{(n)}_x)-{\varvec{m}}\times ({\varvec{m}}_x\times u_x) \Big )\nonumber \\&\quad +\Big (<{\varvec{m}}^{(n)}, z^{(n)}_{xx}>{\varvec{m}}^{(n)}-<{\varvec{m}}, z_{xx}>{\varvec{m}}\Big ) -\Big (z^{(n)}_{xx}-z_{xx}\Big ),z\bigg>~dx\nonumber \\&\quad + \int _{0}^{1}\Big <F^{(n)}_{xx}(t,{\varvec{m}}^{(n)})-F_{xx}(t,{\varvec{m}}),z\Big >~dx\nonumber \\&:= \sum _{j=1}^3I_j. \end{aligned}$$
(42)

Now we estimate each \(I_j\)’s for \(j=1, 2, 3\).

Estimate of \(I_1\): Integrating by parts and using the fact that \(z_x=0\) and \(z^{(n)}_x=0\) at \(x=0\) and \(x=1\), we obtain

$$\begin{aligned} I_1&\le |\lambda _1|\bigg [ |{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }}\int _{0}^{1}|z_x|~|z|~dx+|{\varvec{m}}_x^{(n)}-{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}\int _{0}^{1} |u_x|~|z|~dx\\&\quad \quad +|{\varvec{m}}^{(n)}-{\varvec{m}}|_{{\mathbb {L}}^{\infty }}\int _{0}^{1}|u_x|~|z_x|~dx\bigg ]. \end{aligned}$$

Using Young’s inequality, we obtain for any \(\varepsilon >0\),

$$\begin{aligned} I_1&\le \varepsilon |\lambda _1|~|z_x|^2_{{\mathbb {L}}^2}+|\lambda _1|\bigg [\frac{|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }}^2}{2\varepsilon }+\frac{1}{2\varepsilon } \bigg ] |z|_{{\mathbb {L}}^2}^2\nonumber \\&\quad \quad +|\lambda _1|\bigg [\frac{\varepsilon }{2}|{\varvec{m}}_x^{(n)}-{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}^2+\frac{|{\varvec{m}}^{(n)}-{\varvec{m}}|_{{\mathbb {L}}^{\infty }}^2}{2\varepsilon }\bigg ]|u_x|_{{\mathbb {L}}^2}^2\nonumber \\&=: \psi _1 ~|z_x|^2_{{\mathbb {L}}^2}+\varphi _1 ~|z|^2_{{\mathbb {L}}^2}+\chi _1. \end{aligned}$$
(43)

Above, we introduced the abbreviation \(\psi _1:=\varepsilon |\lambda _1|\), \(\varphi _1:=|\lambda _1|\big [{|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }}^2}/({2\varepsilon })+{1}/({2\varepsilon }) \big ]\) and \(\chi _1:= |\lambda _1|\big [\varepsilon /{2}\,|{\varvec{m}}_x^{(n)}-{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}^2+{|{\varvec{m}}^{(n)}-{\varvec{m}}|_{{\mathbb {L}}^{\infty }}^2}/({2\varepsilon })\big ]|u_x|_{{\mathbb {L}}^2}^2\).

Estimate of \(I_2\): By a simple vector algebraic identity and equation (20), we obtain

$$\begin{aligned} I_2&= -\lambda _2 \int _{0}^{1}\Big<u^{(n)}\times ({\varvec{m}}^{(n)}\times u^{(n)})-u\times ({\varvec{m}}\times u),z\Big>~dx\\ \nonumber&\quad \quad -2\lambda _2\int _{0}^{1}\Big<{\varvec{m}}^{(n)}_x\times ({\varvec{m}}^{(n)}_x\times u^{(n)})-{\varvec{m}}_x\times ({\varvec{m}}_x\times u),z\Big>~dx\\ \nonumber&\quad \quad -2\lambda _2\int _{0}^{1}\Big<{\varvec{m}}^{(n)}_x\times ({\varvec{m}}^{(n)}\times u^{(n)}_x)-{\varvec{m}}_x\times ({\varvec{m}}\times u_x),z\Big>~dx\\ \nonumber&\quad \quad -2\lambda _2\int _{0}^{1}\Big<{\varvec{m}}^{(n)}\times ({\varvec{m}}^{(n)}_x\times u^{(n)}_x)-{\varvec{m}}\times ({\varvec{m}}_x\times u_x),z \Big>~dx\\ \nonumber&\quad \quad -\lambda _2 \int _{0}^{1}\Big [ \big<{\varvec{m}}^{(n)}, z^{(n)}_{xx}\big>\big<{\varvec{m}}^{(n)},z\big>\Big ]~dx -\big<{\varvec{m}}, z_{xx}\big>\big <{\varvec{m}},z\big >\Big ]~dx-\lambda _2|z_x|^2_{{\mathbb {L}}^2}\\ \nonumber&:= \sum _{j=1}^{5} I_{2,j}-\lambda _2|z_x|^2_{{\mathbb {L}}^2}. \end{aligned}$$
(44)

We now derive estimates \(I_{2,j}\) with \(j=1,2,\cdots ,5\) for a fixed \(\varepsilon \). Proceeding in a similar manner as in \(I_1(t)\), we get

$$\begin{aligned} I_{2,1}&\le \frac{\varepsilon }{2}|z_x|_{{\mathbb {L}}^2}^2+\frac{\lambda _2^2 |{\varvec{m}}_x^{(n)}|^2_{{\mathbb {L}}^{\infty }}|{\varvec{m}}^{(n)}|^2_{{\mathbb {L}}^{\infty }}}{\varepsilon }|z|_{{\mathbb {L}}^2}^2+ \lambda _2 |{\varvec{m}}_x^{(n)}|^2_{{\mathbb {L}}^{\infty }}|z|^2_{{\mathbb {L}}^2}\\&\quad +\frac{\varepsilon }{2}|z_x|_{{\mathbb {L}}^2}^2+\frac{\varepsilon }{2}|z|_{{\mathbb {L}}^2}^2+\frac{\lambda _2^2 |{\varvec{m}}_x^{(n)}|^2_{{\mathbb {L}}^{\infty }}|{\varvec{m}}^{(n)}-{\varvec{m}}|^2_{{\mathbb {L}}^{\infty }}}{2\varepsilon } \Big [|u|_{{\mathbb {L}}^2}^2+ |u_x|_{{\mathbb {L}}^2}^2\Big ]\\&\quad +\frac{\varepsilon }{2}|z|_{{\mathbb {L}}^2}^2+\frac{\lambda _2^2 |{\varvec{m}}_x^{(n)}|^2_{{\mathbb {L}}^{\infty }}|{\varvec{m}}_x^{(n)}-{\varvec{m}}_x|^2_{{\mathbb {L}}^{\infty }}}{2\varepsilon }|u|_{{\mathbb {L}}^2}^2\\&= \varepsilon |z_x|_{{\mathbb {L}}^2}^2+ \Big [\frac{\lambda _2^2 |{\varvec{m}}_x^{(n)}|^2_{{\mathbb {L}}^{\infty }}|{\varvec{m}}^{(n)}|^2_{{\mathbb {L}}^{\infty }}}{\varepsilon }+ \lambda _2 |{\varvec{m}}_x^{(n)}|^2_{{\mathbb {L}}^{\infty }}+\varepsilon \Big ]|z|^2_{{\mathbb {L}}^2}\\&\quad +\frac{\lambda _2^2 |{\varvec{m}}_x^{(n)}|^2_{{\mathbb {L}}^{\infty }}}{2\varepsilon } \Big (|{\varvec{m}}^{(n)}-{\varvec{m}}|^2_{{\mathbb {L}}^{\infty }}\Big [|u|_{{\mathbb {L}}^2}^2+ |u_x|_{{\mathbb {L}}^2}^2\Big ]+|{\varvec{m}}_x^{(n)}-{\varvec{m}}_x|^2_{{\mathbb {L}}^{\infty }}|u|_{{\mathbb {L}}^2}^2\Big )\\&=: \psi _{2,1} ~|z_x|^2_{{\mathbb {L}}^2}+\varphi _{2,1} ~|z|^2_{{\mathbb {L}}^2}+\chi _{2,1}. \end{aligned}$$

Now we estimate \(I_{2,2}\). Applying Young’s inequality, we have

$$\begin{aligned} I_{2,2}&\le \Big [2\lambda _2 |{\varvec{m}}_x^{(n)}|^2_{{\mathbb {L}}^{\infty }}+\varepsilon \lambda _2 |{\varvec{m}}_x^{(n)}-{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}\Big (|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}\Big )\Big ]|z|_{{\mathbb {L}}^2}^2\\&\quad +\frac{1}{\varepsilon }\lambda _2 |{\varvec{m}}_x^{(n)}-{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}\Big (|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}\Big )|u|_{{\mathbb {L}}^2}^2\\&:= \varphi _{2,2} ~|z|^2_{{\mathbb {L}}^2}+\chi _{2,2}. \end{aligned}$$

Proceeding in similar manner as in \(I_{2,2}\), we get for \(I_{2,3}\) and \(I_{2,4}\)

$$\begin{aligned}I_{2,3}&\le 2\lambda _2\Big [\varepsilon \Big (|{\varvec{m}}^{(n)}-{\varvec{m}}|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x^{(n)}-{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}|_{{\mathbb {L}}^{\infty }}\Big )\\&\quad + |{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}\Big ]|z|_{{\mathbb {L}}^2}^2\\&\quad +\frac{1}{\varepsilon }\lambda _2 \Big (|{\varvec{m}}^{(n)}-{\varvec{m}}|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x^{(n)}-{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}|_{{\mathbb {L}}^{\infty }}\Big )|u_x|_{{\mathbb {L}}^2}^2\\&:= \varphi _{2,3} ~|z|^2_{{\mathbb {L}}^2}+\chi _{2,3},\\ I_{2,4}&\le 2\lambda _2\Big [\varepsilon \Big (|{\varvec{m}}^{(n)}-{\varvec{m}}|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x^{(n)}-{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}|_{{\mathbb {L}}^{\infty }}\Big )\\&\quad + |{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}\Big ]|z|_{{\mathbb {L}}^2}^2\\&\quad +\frac{1}{\varepsilon }\lambda _2 \Big (|{\varvec{m}}^{(n)}-{\varvec{m}}|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x^{(n)}-{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}|_{{\mathbb {L}}^{\infty }}\Big )|u_x|_{{\mathbb {L}}^2}^2\\&=: \varphi _{2,4} ~|z|^2_{{\mathbb {L}}^2}+\chi _{2,4}. \end{aligned}$$

Now, by similar argument as applied to \(I_{2,1}\), we obtain

$$\begin{aligned} I_{2,5}&\le \frac{2+\gamma _3^2}{2\varepsilon }|z|_{{\mathbb {L}}^2}^2+\frac{3\varepsilon }{2} |z_x|_{{\mathbb {L}}^2}^2+\Big (\frac{\gamma _1^2\varepsilon }{2}+\frac{\gamma _2^2}{2\varepsilon } \Big )|u_x^{(n)}|_{{\mathbb {L}}^2}^2 +\Big (\frac{\gamma _4^2\varepsilon }{2}+\frac{\gamma _5^2}{2\varepsilon } \Big )|u_x|_{{\mathbb {L}}^2}^2\\&=: \psi _{2,5} ~|z_x|^2_{{\mathbb {L}}^2}+\varphi _{2,5} ~|z|^2_{{\mathbb {L}}^2}+\chi _{2,5}, \end{aligned}$$

where

$$\begin{aligned} \gamma _1&= |{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}_x^{(n)}-{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}^{(n)}-{\varvec{m}}|_{{\mathbb {L}}^{\infty }},\\ \gamma _2&=|{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}^{(n)}-{\varvec{m}}|_{{\mathbb {L}}^{\infty }},\\ \gamma _3&=|{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}|_{{\mathbb {L}}^{\infty }},\\ \gamma _4&= |{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}^{(n)}-{\varvec{m}}|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}_x^{(n)}-{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }},\\ \gamma _5&=|{\varvec{m}}|_{{\mathbb {L}}^{\infty }}|{\varvec{m}}^{(n)}-{\varvec{m}}|_{{\mathbb {L}}^{\infty }}. \end{aligned}$$

Combining the estimates of \(I_{2,j}\), \(j=1,2,\cdots ,5\) and substituting back in (44), we get

$$\begin{aligned} I_2&\le (\psi _{2,1}+\psi _{2,5}) ~|z_x|_{{\mathbb {L}}^2}+\Big [\sum _{j=1}^{5}\varphi _{2,j}\Big ] ~|z|_{{\mathbb {L}}^2}+\Big [\sum _{j=1}^5 \chi _{2,j}\Big ]\nonumber \\&=: (\psi _2-\lambda _2) ~|z_x|^2_{{\mathbb {L}}^2}+\varphi _2 ~|z|^2_{{\mathbb {L}}^2}+\chi _2. \end{aligned}$$
(45)

Estimate of \(I_3\): To simplify the notation, we introduce \(y={\varvec{m}}^{(n)}-{\varvec{m}}\). By the identities (24) and (26), it can be observed that \({\mathcal {C}},{\mathcal {C}}_{x},{\mathcal {C}}_{xx}, S , S _{x}\) and \( S _{xx}\) are Lipschitz continuous functions. In particular, there exists a constant \(K=K(|{\varvec{g}}|_{W^{4,\infty }})>0\) such that the following holds:

$$\begin{aligned} \left\{ \begin{array}{ll} | S (X^{(n)}(t))- S (X(t))|&{}\le K~|X^{(n)}(t)-X(t)|,\\ | S _x(X^{(n)}(t))- S _x(X(t))|&{}\le K~|X^{(n)}(t)-X(t)|,\\ | S _{xx}(X^{(n)}(t))- S _{xx}(X(t))|&{}\le K~|X^{(n)}(t)-X(t)|,\\ |{\mathcal {C}}(X^{(n)}(t))-{\mathcal {C}}(X(t))|&{}\le K~|X^{(n)}(t)-X(t)|,\\ |{\mathcal {C}}_x(X^{(n)}(t))-{\mathcal {C}}_x(X(t))|&{}\le K~|X^{(n)}(t)-X(t)|,\\ {\mathcal {C}}_{xx}(X^{(n)}(t))-{\mathcal {C}}_{xx}(X(t))|&{}\le K~|X^{(n)}(t)-X(t)|. \end{array}\right. \end{aligned}$$
(46)

Furthermore, an elementary calculation using the identities (25) and (27) yields that

$$\begin{aligned} \left\{ \begin{array}{ll} |{\mathfrak {S}}({\mathbf {m}}^{(n)})-{\mathfrak {S}}({\mathbf {m}})|_{{{\mathbb {R}}}^3}&{}\le K \Big [ |y|_{{{\mathbb {R}}}^3}+|y_x|_{{{\mathbb {R}}}^3}\Big ],\\ |{\mathfrak {S}}_x({\mathbf {m}}^{(n)})-{\mathfrak {S}}_x({\mathbf {m}})|_{{{\mathbb {R}}}^3}&{}\le K \Big [ |y|_{{{\mathbb {R}}}^3}+|y_x|_{{{\mathbb {R}}}^3}+|z|_{{{\mathbb {R}}}^3}\Big ],\\ |{\mathfrak {S}}_{xx}({\mathbf {m}}^{(n)})-{\mathfrak {S}}_{xx}({\mathbf {m}})|_{{{\mathbb {R}}}^3}&{}\le K \Big [ |y|_{{{\mathbb {R}}}^3}+|y_x|_{{{\mathbb {R}}}^3}+|z|_{{{\mathbb {R}}}^3}+|z_x|_{{{\mathbb {R}}}^3}\Big ], \\ |{\mathfrak {C}}({\mathbf {m}}^{(n)})-{\mathfrak {C}}({\mathbf {m}})|_{{{\mathbb {R}}}^3}&{}\le K \Big [ |y|_{{{\mathbb {R}}}^3}+|y_x|_{{{\mathbb {R}}}^3}\Big ],\\ |{\mathfrak {C}}_x({\mathbf {m}}^{(n)})-{\mathfrak {C}}_x({\mathbf {m}})|_{{{\mathbb {R}}}^3}&{}\le K \Big [ |y|_{{{\mathbb {R}}}^3}+|y_x|_{{{\mathbb {R}}}^3}+|z|_{{{\mathbb {R}}}^3}\Big ],\\ |{\mathfrak {C}}_{xx}({\mathbf {m}}^{(n)})-{\mathfrak {C}}_{xx}({\mathbf {m}})|_{{{\mathbb {R}}}^3}&{}\le K \Big [ |y|_{{{\mathbb {R}}}^3}+|y_x|_{{{\mathbb {R}}}^3}+|z|_{{{\mathbb {R}}}^3}+|z_x|_{{{\mathbb {R}}}^3}\Big ]. \end{array}\right. \end{aligned}$$
(47)

Hence using the estimates (46), (47) and the identity (28) we have

$$\begin{aligned} |{\tilde{C}}(X^{(n)}(t),{\mathbf {m}}^{(n)})-{\tilde{C}}(X(t),{\mathbf {m}})|_{{{\mathbb {R}}}^3}&\le K \Big [ |y|_{{{\mathbb {R}}}^3}+|y_x|_{{{\mathbb {R}}}^3}\Big ]\nonumber \\&\quad +K \Big [ |{\varvec{m}}|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_x|_{{{\mathbb {R}}}^3}\Big ]|X^{(n)}-X|, \end{aligned}$$
(48a)
$$\begin{aligned} |{\tilde{C}}_x(X^{(n)}(t),{\mathbf {m}}^{(n)})-{\tilde{C}}_x(X(t),{\mathbf {m}})|_{{{\mathbb {R}}}^3}&\le K \Big [ |y|_{{{\mathbb {R}}}^3}+|y_x|_{{{\mathbb {R}}}^3}+|z|_{{{\mathbb {R}}}^3}\Big ]\nonumber \\&\quad +K \Big [ |{\varvec{m}}|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_x|_{{{\mathbb {R}}}^3} \nonumber \\&\quad \quad +|u|_{{{\mathbb {R}}}^3}\Big ]|X^{(n)}-X|, \end{aligned}$$
(48b)
$$\begin{aligned} |{\tilde{C}}_{xx}(X^{(n)}(t),{\mathbf {m}}^{(n)})-{\tilde{C}}_{xx}(X(t),{\mathbf {m}})|_{{{\mathbb {R}}}^3}&\le K \Big [ |y|_{{{\mathbb {R}}}^3}+|y_x|_{{{\mathbb {R}}}^3}+|z|_{{{\mathbb {R}}}^3}+|u_x|_{{{\mathbb {R}}}^3}\Big ]\nonumber \\&\quad +K \Big [ |{\varvec{m}}|_{{{\mathbb {R}}}^3}+|{\varvec{m}}_x|_{{{\mathbb {R}}}^3}+|u|_{{{\mathbb {R}}}^3}\nonumber \\&\quad \quad +|u_x|_{{{\mathbb {R}}}^3}\Big ]|X^{(n)}-X|. \end{aligned}$$
(48c)

Now we are ready to estimate \(I_3\). Using the identity (22) and a simple vector algebraic identity, we obtain:

$$\begin{aligned} I_3&= \lambda _1\int _{0}^{1} \Big<{\varvec{m}}_{xx}^{(n)}\times {\tilde{C}}(X^{(n)},{\varvec{m}}^{(n)})-{\varvec{m}}_{xx}\times {\tilde{C}}(X,{\varvec{m}}),z\Big>~dx\nonumber \\&\quad +2\lambda _1\int _{0}^{1} \Big<{\varvec{m}}_x^{(n)}\times {\tilde{C}}_x(X^{(n)},{\varvec{m}}^{(n)})-{\varvec{m}}_x\times {\tilde{C}}_x(X,{\varvec{m}}),z\Big>~dx\nonumber \\&\quad +\lambda _1\int _{0}^{1}\Big<{\varvec{m}}^{(n)} \times {\tilde{C}}_{xx}(X^{(n)},{\varvec{m}}^{(n)})-{\varvec{m}}\times {\tilde{C}}_{xx}(X,{\varvec{m}}),z\Big>~dx\nonumber \\&\quad -\lambda _2 \int _{0}^{1}\Big<u^{(n)}\times ({\varvec{m}}^{(n)}\times {\tilde{C}}(X^{(n)},{\varvec{m}}^{(n)}))-u\times ({\varvec{m}}\times {\tilde{C}}(X,{\varvec{m}})),z\Big>~dx\nonumber \\&\quad -\lambda _2\int _{0}^{1}\Big<{\varvec{m}}^{(n)}\times (u^{(n)}\times {\tilde{C}}(X^{(n)},{\varvec{m}}^{(n)}))-{\varvec{m}}\times (u\times {\tilde{C}}(X,{\varvec{m}})),z\Big>~dx\nonumber \\&\quad -2\lambda _2\int _{0}^{1}\Big<{\varvec{m}}^{(n)}_x\times ({\varvec{m}}^{(n)}_x\times {\tilde{C}}(X^{(n)},{\varvec{m}}^{(n)}))\nonumber \\&\quad \quad \quad -{\varvec{m}}_x\times ({\varvec{m}}_x\times {\tilde{C}}(X,{\varvec{m}})),z\Big>~dx\nonumber \\&\quad -2\lambda _2\int _{0}^{1}\Big<{\varvec{m}}^{(n)}_x\times ({\varvec{m}}^{(n)}\times {\tilde{C}}_x(X^{(n)},{\varvec{m}}^{(n)}))\nonumber \\&\quad \quad \quad -{\varvec{m}}_x\times ({\varvec{m}}\times {\tilde{C}}_x(X,{\varvec{m}})),z\Big>~dx\nonumber \\&\quad -2\lambda _2\int _{0}^{1}\Big<{\varvec{m}}^{(n)}\times ({\varvec{m}}^{(n)}_x\times {\tilde{C}}_x(X^{(n)},{\varvec{m}}^{(n)}))\nonumber \\&\quad \quad \quad -{\varvec{m}}\times ({\varvec{m}}_x\times {\tilde{C}}_x(X,{\varvec{m}})),z \Big>~dx\nonumber \\&\quad -\lambda _2\int _{0}^{1}\Big <{\varvec{m}}^{(n)}\times ({\varvec{m}}^{(n)}\times {\tilde{C}}_{xx}(X^{(n)},{\varvec{m}}^{(n)}))\nonumber \\&\quad \quad \quad -{\varvec{m}}\times ({\varvec{m}}\times {\tilde{C}}_{xx}(X,{\varvec{m}})),z\Big >~dx\nonumber \\&=: \sum _{j=1}^{9} I_{3,j}. \end{aligned}$$
(49)

We now derive estimates \(I_{3,j}\) with \(j=1,2,\cdots ,9\) for fixed \(\varepsilon \). Using (48a), (29) and Young’s inequality, we have

$$\begin{aligned} I_{3,1}&\le \frac{K}{2\varepsilon } |\lambda _1| \Big [\Big (|y|_{{\mathbb {L}}^{\infty }}+|y_x|_{{\mathbb {L}}^{\infty }} \Big )+|X^{(n)}-X|\Big [ |{\varvec{m}}|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}\Big ]\Big ] |z|_{{\mathbb {L}}^2}^{2}\\&\quad +\frac{K\varepsilon }{2} |\lambda _1| \Big [\Big (|y|_{{\mathbb {L}}^{\infty }}+|y_x|_{{\mathbb {L}}^{\infty }} \Big )+|X^{(n)}-X|\Big [ |{\varvec{m}}|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}\Big ]\Big ] |u^{(n)}|_{{\mathbb {L}}^2}^2\\&=: \varphi _{3,1} ~|z|^2_{{\mathbb {L}}^2}+\chi _{3,1}. \end{aligned}$$

Again using (48a), (29) and Young’s inequality, we get

$$\begin{aligned} I_{3,4}&\le \frac{K}{2\varepsilon } \lambda _2 \bigg [\Big (|{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}|X^{(n)}-X|+|y|_{{\mathbb {L}}^{\infty }}\Big )\Big ( |{\varvec{m}}|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}\Big )\\&\quad +|{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}\Big (|y|_{{\mathbb {L}}^{\infty }}+|y_x|_{{\mathbb {L}}^{\infty }} \Big )\bigg ] |z|_{{\mathbb {L}}^2}^{2}+\frac{K\varepsilon }{2} \lambda _2\bigg [|{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}\Big (|y|_{{\mathbb {L}}^{\infty }}+|y_x|_{{\mathbb {L}}^{\infty }} \Big )\\&\quad +\Big (|{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}|X^{(n)}-X|+|y|_{{\mathbb {L}}^{\infty }}\Big )\Big ( |{\varvec{m}}|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}\Big )\bigg ] |u^{(n)}|_{{\mathbb {L}}^2}^{2}\\&=: \varphi _{3,4} ~|z|^2_{{\mathbb {L}}^2}+\chi _{3,3}. \end{aligned}$$

Proceeding in similar manner as in \(I_{3,4}\), we have

$$\begin{aligned} I_{3,5}&\le \frac{K}{2\varepsilon } \lambda _2 \bigg [\Big (|{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}|X^{(n)}-X|+|y|_{{\mathbb {L}}^{\infty }}\Big )\Big ( |{\varvec{m}}|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}\Big )\\&\quad +|{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}\Big (|y|_{{\mathbb {L}}^{\infty }}+|y_x|_{{\mathbb {L}}^{\infty }} \Big )\bigg ] |z|_{{\mathbb {L}}^2}^{2}+\frac{K\varepsilon }{2} \lambda _2\bigg [|{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}\Big (|y|_{{\mathbb {L}}^{\infty }}+|y_x|_{{\mathbb {L}}^{\infty }} \Big )\\&\quad +\Big (|{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}\big [|X^{(n)}-X|+1\big ]+|y|_{{\mathbb {L}}^{\infty }}\Big )\Big ( |{\varvec{m}}|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}\Big )\bigg ] |u^{(n)}|_{{\mathbb {L}}^2}^{2}\\&=: \varphi _{3,5} ~|z|^2_{{\mathbb {L}}^2}+\chi _{3,5}. \end{aligned}$$

Again, proceeding as in \(I_{3,4}\), we obtain

$$\begin{aligned} I_{3,6}&\le 2K \lambda _2 |{\varvec{m}}^{(n)}|^2_{{\mathbb {L}}^{\infty }}\bigg [\Big (|y|_{{\mathbb {L}}^{\infty }}+|y_x|_{{\mathbb {L}}^{\infty }} \Big )\\&\quad +|X^{(n)}-X|\Big [ |{\varvec{m}}|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}\Big ]\bigg ] |z|_{{\mathbb {L}}^2}^{2}\\&\quad + 2K \lambda _2 |{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }}|y_x|_{{\mathbb {L}}^{\infty }}\Big [ |{\varvec{m}}|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}\Big ] |z|_{{\mathbb {L}}^2}^{2}\\&\quad + 2K \lambda _2 |{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}|y_x|_{{\mathbb {L}}^{\infty }}\Big [ |{\varvec{m}}|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}\Big ] |z|_{{\mathbb {L}}^2}^{2}\\&=: \varphi _{3,6} ~|z|^2_{{\mathbb {L}}^2}. \end{aligned}$$

Now applying (48b), (30) and Young’s inequality, we obtain

$$\begin{aligned} I_{3,2}&\le 2|\lambda _1|\bigg [ K|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }} \Big (\frac{1}{\varepsilon }+1\Big )+ \frac{3}{2\varepsilon }K\Big (|X^{(n)}-X|+|y_x|_{{\mathbb {L}}^{\infty }} \bigg )\bigg ]|z|_{{\mathbb {L}}^2}^2 \\&\quad +K\Big [|X^{(n)}-X|+|y_x|_{{\mathbb {L}}^{\infty }}\Big ]\bigg (\frac{\varepsilon }{2}|{\varvec{m}}|_{{\mathbb {L}}^2}^2+\frac{\varepsilon }{2}|{\varvec{m}}_x|_{{\mathbb {L}}^2}^2+\frac{\varepsilon }{2}|u|_{{\mathbb {L}}^2}^2 \bigg )\\&\quad + 2K|\lambda _1||{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }} \bigg (\frac{\varepsilon }{2}|y|_{{\mathbb {L}}^2}^2+\frac{\varepsilon }{2}|y_x|_{{\mathbb {L}}^2}^2\bigg )\\&=: \varphi _{3,2} ~|z|^2_{{\mathbb {L}}^2}+\chi _{3,2}. \end{aligned}$$

Again using (48b), (30) and Young’s inequality, we get

$$\begin{aligned} I_{3,7}&\le 2K\lambda _2\bigg [\frac{3}{2\varepsilon }\Big [|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }} |{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}|X^{(n)}-X|\\&\quad +|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }}|y|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}|_{{\mathbb {L}}^{\infty }}|y_x|_{{\mathbb {L}}^{\infty }}\Big ]\\&\quad +\Big (\frac{1}{\varepsilon }+1\Big )|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }} |{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }} \bigg ]|z|_{{\mathbb {L}}^2}^2\\&\quad +2K|\lambda _2||{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }} |{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }} \frac{\varepsilon }{2}|y|_{{\mathbb {L}}^2}^2\\&\quad +2K\lambda _2|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }} |{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }} \frac{\varepsilon }{2}|y_x|_{{\mathbb {L}}^2}^2\\&\quad +2K|\lambda _2|\bigg (|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }} |{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}|X^{(n)}-X|\\&\quad +|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }}|y|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}|_{{\mathbb {L}}^{\infty }}|y_x|_{{\mathbb {L}}^{\infty }}\bigg )\bigg (\frac{\varepsilon }{2}|{\varvec{m}}|_{{\mathbb {L}}^2}^2+\frac{\varepsilon }{2}|{\varvec{m}}_x|_{{\mathbb {L}}^2}^2+\frac{\varepsilon }{2}|u|_{{\mathbb {L}}^2}^2\bigg )\\&=: \varphi _{3,7} ~|z|^2_{{\mathbb {L}}^2}+\chi _{3,7}. \end{aligned}$$

Proceeding in similar manner as in \(I_{3,7}\), we have

$$\begin{aligned} I_{3,8}&\le 2K\lambda _2\bigg [\frac{3}{2\varepsilon }\Big [|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }} |{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}|X^{(n)}-X|\\&\quad +|{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}|y_x|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}|y|_{{\mathbb {L}}^{\infty }}\Big ]\\&\quad +\Big (\frac{1}{\varepsilon }+1\Big )|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }} |{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }} \bigg ]|z|_{{\mathbb {L}}^2}^2+2K|\lambda _2||{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }} |{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }} \frac{\varepsilon }{2}|y|_{{\mathbb {L}}^2}^2\\&\quad +2K\lambda _2|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }} |{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }} \frac{\varepsilon }{2}|y_x|_{{\mathbb {L}}^2}^2\\&\quad +2K|\lambda _2|\bigg (|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }} |{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}|X^{(n)}-X|\\&\quad +|{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}|y_x|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}_x|_{{\mathbb {L}}^{\infty }}|y|_{{\mathbb {L}}^{\infty }}\bigg )\bigg (\frac{\varepsilon }{2}|{\varvec{m}}|_{{\mathbb {L}}^2}^2+\frac{\varepsilon }{2}|{\varvec{m}}_x|_{{\mathbb {L}}^2}^2+\frac{\varepsilon }{2}|u|_{{\mathbb {L}}^2}^2 \bigg )\\&=: \varphi _{3,8} ~|z|^2_{{\mathbb {L}}^2}+\chi _{3,8}. \end{aligned}$$

Now using Young’s inequality, (48b) and (30), we get

$$\begin{aligned} I_{3,3}&\le |\lambda _1| \bigg [ K|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }} \Big (\frac{3}{2\varepsilon }+1\Big )+ \frac{2}{\varepsilon }K\Big (|X^{(n)}-X|+|y|_{{\mathbb {L}}^{\infty }} \bigg )\bigg ]|z|_{{\mathbb {L}}^2}^2 \\&\quad + \frac{K\varepsilon }{2} |\lambda _1||{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }}|z_x|_{{\mathbb {L}}^2}^2+ K |\lambda _1||{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }} \bigg (\frac{\varepsilon }{2}|y|_{{\mathbb {L}}^2}^2+\frac{\varepsilon }{2}|y_x|_{{\mathbb {L}}^2}^2\bigg )\\&\quad +K|\lambda _1|\Big [|X^{(n)}-X|+|y|_{{\mathbb {L}}^{\infty }}\Big ]\bigg (\frac{\varepsilon }{2}|{\varvec{m}}|_{{\mathbb {L}}^2}^2+\frac{\varepsilon }{2}|{\varvec{m}}_x|_{{\mathbb {L}}^2}^2+\frac{\varepsilon }{2}|u|_{{\mathbb {L}}^2}^2+\frac{\varepsilon }{2}|u_x|_{{\mathbb {L}}^2}^2 \bigg )\\&=: \psi _{3,3} ~|z_x|^2_{{\mathbb {L}}^2}+\varphi _{3,3} ~|z|^2_{{\mathbb {L}}^2}+\chi _{3,3}. \end{aligned}$$

Again using (48c), (31) and Young’s inequality, we get

$$\begin{aligned} I_{3,9}&\le K \lambda _2 \bigg (|{\varvec{m}}^{(n)}|^2_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}^{(n)}|^2_{{\mathbb {L}}^{\infty }} |X^{(n)}-X|\\&\quad \quad +|{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}~|y|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}|_{{\mathbb {L}}^{\infty }}~|y|_{{\mathbb {L}}^{\infty }}\bigg ) |z|_{{\mathbb {L}}^2}^2\\&\quad +K \lambda _2 |{\varvec{m}}^{(n)}|^2_{{\mathbb {L}}^{\infty }} \frac{\varepsilon }{2}|z_x|_{{\mathbb {L}}^2}^2+K \lambda _2 |{\varvec{m}}^{(n)}|^2_{{\mathbb {L}}^{\infty }} \bigg (\frac{\varepsilon }{2}|y|_{{\mathbb {L}}^2}^2+\frac{\varepsilon }{2}|y_x|_{{\mathbb {L}}^2}^2 \bigg )\\&\quad + K \lambda _2\Big [ |{\varvec{m}}^{(n)}|^2_{{\mathbb {L}}^{\infty }} |X^{(n)}-X|+|{\varvec{m}}^{(n)}|_{{\mathbb {L}}^{\infty }}~|y|_{{\mathbb {L}}^{\infty }}+|{\varvec{m}}|_{{\mathbb {L}}^{\infty }}~|y|_{{\mathbb {L}}^{\infty }}\Big ]\bigg (\frac{\varepsilon }{2}|{\varvec{m}}|_{{\mathbb {L}}^2}^2\\&\quad +\frac{\varepsilon }{2}|{\varvec{m}}_x|_{{\mathbb {L}}^2}^2+\frac{\varepsilon }{2}|u|_{{\mathbb {L}}^2}^2+\frac{\varepsilon }{2}|u_x|_{{\mathbb {L}}^2}^2 \bigg )\\&=: \psi _{3,9} ~|z_x|^2_{{\mathbb {L}}^2}+\varphi _{3,9} ~|z|^2_{{\mathbb {L}}^2}+\chi _{3,9}. \end{aligned}$$

Thus combining the estimates of \(I_{3,j}\), \(j=1,2,\cdots ,9\) and substituting back in (49), we have

$$\begin{aligned} I_3&\le (\psi _{3,3}+\psi _{3,9}) ~|z_x|_{{\mathbb {L}}^2}+\Big [\sum _{j=1}^{9}\varphi _{3,j}\Big ] ~|z|_{{\mathbb {L}}^2}+\Big [\sum _{j\ne 6} \chi _{3,j}\Big ]\nonumber \\&=: \psi _3 ~|z_x|^2_{{\mathbb {L}}^2}+\varphi _3 ~|z|^2_{{\mathbb {L}}^2}+\chi _3. \end{aligned}$$
(50)

Substituting (43), (45) and (50) in (42) we have

$$\begin{aligned} \frac{1}{2}\frac{d}{dt}|z|_{{\mathbb {L}}^2}^2&\le \Big [\sum _{j=1}^{3}\psi _{j}\Big ] ~|z_x|_{{\mathbb {L}}^2}+\Big [\sum _{j=1}^{3}\varphi _{j}\Big ] ~|z|_{{\mathbb {L}}^2}+\Big [\sum _{j= 1}^3 \chi _{j}\Big ]\nonumber \\&= \bigg [\Big ( \frac{5}{2}+|\lambda _1|\Big [1+\frac{K|{\varvec{m}}_x^{(n)}|_{{\mathbb {L}}^{\infty }}}{2} \Big ]+\frac{K|{\varvec{m}}^{(n)}|^2_{{\mathbb {L}}^{\infty }}}{2}\lambda _2\Big ) \varepsilon -\lambda _2\bigg ] ~|z_x|^2_{{\mathbb {L}}^2} \end{aligned}$$
(51)
$$\begin{aligned}&\quad +\Big [\sum _{j=1}^{3}\varphi _{j}\Big ] ~|z|_{{\mathbb {L}}^2}+\Big [\sum _{j= 1}^3 \chi _{j}\Big ]. \end{aligned}$$
(52)

We note by (20) and Corollary 4, we have \({\varvec{m}}^{(n)},{\varvec{m}}_x^{(n)}\in L^{\infty }(0,T;{\mathbb {L}}^{\infty })\) for all \(n\in {\mathbb {N}}\). Therefore we can choose \(\varepsilon \) such that

$$\begin{aligned} \frac{1}{2}\frac{d}{dt}|z(t)|_{{\mathbb {L}}^2}^2&\le \Big [\sum _{j=1}^{3}\varphi _{j}\Big ] ~|z|_{{\mathbb {L}}^2}+\Big [\sum _{j= 1}^3 \chi _{j}\Big ] =: \varphi (t) |z(t)|_{{\mathbb {L}}^2}+\chi (t). \end{aligned}$$
(53)

By Lemma 8, we note that \({\varvec{m}},{\varvec{m}}^{n}\in L^{\infty }(0,T;{\mathbb {H}}^1)\cap L^2(0,T;D(A))\). From Lemma 9 and Corollary 4, we obtain \({\varvec{m}}^{(n)},{\varvec{m}},{\varvec{m}}_x^{(n)},{\varvec{m}}_{x}\in L^{\infty }(0,T;{\mathbb {L}}^{\infty })\), \({\varvec{m}}_{xx},{\varvec{m}}_{xx}^{(n)}\in L^{\infty }(0,T;{\mathbb {L}}^{2})\) and \(u_{x},u_{x}^{(n)}\in L^{2}(0,T;{\mathbb {L}}^{2})\). Thus \(\varphi \) and \(\chi \) are integrable on [0, T]. Using Gronwall’s inequality we get

$$\begin{aligned} |z(t)|_{{\mathbb {L}}^2}^2\le \Big (|z_0|^2_{{\mathbb {L}}^2} +\int _{0}^{t}\chi (s)~ds\Big )e^{2\int _{0}^{t}\varphi (s)~ds}. \end{aligned}$$

Now by Lemma 3 and (8), we note that

$$\begin{aligned} |{\varvec{m}}_x^{(n)}-{\varvec{m}}_x|^2_{L^{\infty }(0,T;{\mathbb {L}}^{\infty })}&\le k^2 |{\varvec{m}}_x^{(n)}-{\varvec{m}}_x|^2_{L^{\infty }(0,T;{\mathbb {L}}^{2})}|{\varvec{m}}_{xx}^{(n)}-{\varvec{m}}_{xx}|^2_{L^{\infty }(0,T;{\mathbb {L}}^{2})}. \end{aligned}$$

As \({\varvec{m}}_{xx},{\varvec{m}}_{xx}^{(n)}\in L^{\infty }(0,T;{\mathbb {L}}^{2})\), we obtain \({\varvec{m}}_x^{(n)}\rightarrow {\varvec{m}}_x\) in \(L^{\infty }(0,T;{\mathbb {L}}^{\infty })\). Moreover, we also have \({\varvec{X}}^{(n)} \rightarrow {\varvec{X}}\text { in }{\mathscr {C}}_g^{\alpha }([0,T],{{\mathbb {R}}}).\) This implies that \(z \rightarrow 0\) in \(L^{\infty }(0,T;{\mathbb {L}}^2)\). Hence

$$\begin{aligned} {\varvec{m}}_{xx}^{(n)}\rightarrow & {} {\varvec{m}}_{xx}\text { in }L^{\infty }(0,T;{\mathbb {L}}^2), \text { as } n\rightarrow \infty . \end{aligned}$$

This completes the proof of Lemma 4. \(\square \)

Corollary 2

Let \({\varvec{M}}\) and \({\varvec{M}}^{(n)}\) be the solutions to the systems (5) and (7), respectively. Then we have the following convergence

$$\begin{aligned} {\varvec{M}}_{xx}^{(n)}\rightarrow & {} {\varvec{M}}_{xx}\text { in }L^{\infty }(0,T;{\mathbb {L}}^2), \text { as } n\rightarrow \infty . \end{aligned}$$

Proof

Using the identity (91), we obtain

$$\begin{aligned} {\varvec{M}}_{xx}(t)= & {} {\varvec{m}}_{xx}(t)+ \sin \big (X(t)\big ) ({\varvec{m}}\times {\varvec{g}})_{xx}+ \Big (1-\cos \big (X(t)\big )\Big ) \big (({\varvec{m}}\times {\varvec{g}})\times {\varvec{g}}\big )_{xx},\\ {\varvec{M}}_{xx}^{(n)}(t)= & {} {\varvec{m}}_{xx}^{(n)}(t)+ \sin \big (X^{(n)}(t)\big ) ({\varvec{m}}^{(n)}\times {\varvec{g}})_{xx}\\&+ \Big (1-\cos \big (X(t)\big )\Big ) \big (({\varvec{m}}^{(n)}\times {\varvec{g}})\times {\varvec{g}}\big )_{xx}. \end{aligned}$$

Thus, we have

$$\begin{aligned} \Big ({\varvec{M}}^{(n)}(t)-{\varvec{M}}(t)\Big )_{xx}= & {} ({\varvec{m}}^{(n)}(t)-{\varvec{m}}(t))_{xx} \\&+\Big (\sin (X^{(n)}(t))-\sin (X(t)) \Big )({\varvec{m}}^{(n)}(t)\times {\varvec{g}})_{xx}\\&+\sin \big (X(t)\big )\Big (({\varvec{m}}^{n}(t)-{\varvec{m}}(t))\times {\varvec{g}}\Big )_{xx}\\&{}-\Big (\cos (X^{(n)}(t))-\cos (X(t)) \Big )\Big (({\varvec{m}}^{(n)}(t)\times {\varvec{g}})\times {\varvec{g}}\Big )_{xx}\\&+\Big (1-\cos \big (X(t)\big )\Big )\Big (\big (({\varvec{m}}^{n}(t) -{\varvec{m}}(t))\times {\varvec{g}}\big )\times {\varvec{g}}\Big )_{xx}. \end{aligned}$$

Using \(|\cos (x_1)-\cos (x_2)|,|\sin (x_1)-\sin (x_2)|\le c|x_1-x_2|\), and the boundedness of \(\sin \) and \(\cos \), we get

$$\begin{aligned} \Big | ({\varvec{M}}^{(n)}-{\varvec{M}})_{xx}\Big |_{L^{\infty }(0,T;{\mathbb {L}}^2)}\le & {} \Big |({\varvec{m}}^{(n)}-{\varvec{m}})_{xx}\Big |_{L^{\infty }(0,T;{\mathbb {L}}^2)} \\&+\Big |X^{(n)}-X \Big |_{L^{\infty }(0,T;{\mathbb {R}})}\Big |({\varvec{m}}^{(n)}(t)\times {\varvec{g}})_{xx}\Big |_{L^{\infty }(0,T;{\mathbb {L}}^2)}\\&+\Big |\Big (({\varvec{m}}^{n}(t)-{\varvec{m}}(t))\times {\varvec{g}}\Big )_{xx}\Big |_{L^{\infty }(0,T;{\mathbb {L}}^2)}\\&+\Big |X^{(n)}-X\Big |_{L^{\infty }(0,T;{\mathbb {R}})}\\&\quad \times \Big |\Big (({\varvec{m}}^{(n)}(t)\times {\varvec{g}})\times {\varvec{g}}\Big )_{xx}\Big |_{L^{\infty }(0,T;{\mathbb {L}}^2)}\\&+\Big |\Big (\big (({\varvec{m}}^{n}(t)-{\varvec{m}}(t))\times {\varvec{g}}\big )\times {\varvec{g}}\Big )_{xx}\Big |_{L^{\infty }(0,T;{\mathbb {L}}^2)}. \end{aligned}$$

Using Lemma 4, Lemma 3 and that \({\varvec{X}}^{(n)} \rightarrow {\varvec{X}}\) in \({\mathscr {C}}_g^{\alpha }([0,T],{{\mathbb {R}}})\), we obtain

$$\begin{aligned} {\varvec{M}}_{xx}^{(n)}\rightarrow & {} {\varvec{M}}_{xx} \quad \text { in }L^{\infty }(0,T;{\mathbb {L}}^2), \text { as } n\rightarrow \infty . \end{aligned}$$

\(\square \)

Corollary 3

Let \({\varvec{M}}\) and \({\varvec{M}}^{(n)}\) be the solutions to the systems (5) and (7), respectively. Then, we have

$$\begin{aligned} {\varvec{M}}^{(n)}\rightarrow & {} {\varvec{M}},\\ {\varvec{M}}^{(n)}\times {\varvec{M}}_{xx}^{(n)}\rightarrow & {} {\varvec{M}}\times {\varvec{M}}_{xx},\\ {\varvec{M}}^{(n)}\times ({\varvec{M}}^{(n)}\times {\varvec{M}}_{xx}^{(n)})\rightarrow & {} {\varvec{M}}\times ({\varvec{M}}\times {\varvec{M}}_{xx})\\ \end{aligned}$$

in \(L^{\infty }(0,T;{\mathbb {L}}^2)\) as \(n\rightarrow \infty \).

Proof

This is a direct consequence of Corollaries 1 and 2. \(\square \)

Now we are ready to prove Theorem 4.

Proof of Theorem 4

Since \(({\varvec{M}},{\varvec{M}}\times {\varvec{g}})\in {\mathcal {D}}_{X}^ {2\alpha }([0,T],{\mathbb {L}}^2)\) and \(({\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}})\in {\mathcal {D}}_{X^{(n)}}^ {2\alpha }([0,T],{\mathbb {L}}^2)\), there exists a number \(N\in {{\mathbb {R}}}^{+}\) such that

$$\begin{aligned} \sup \limits _{s\in [0,T]}|M_s|_{{\mathbb {L}}^2}+\sup \limits _{s\in [0,T]}|M_s\times {\varvec{g}}|_{{\mathbb {L}}^2} +|{\varvec{M}},{\varvec{M}}\times {\varvec{g}}|_{X,2\alpha ,[0,T],{\mathbb {L}}^2}\le & {} N,\qquad \qquad \end{aligned}$$
(54)
$$\begin{aligned} \sup \limits _{s\in [0,T]}|M_s^{(n)}|_{{\mathbb {L}}^2}+\sup \limits _{s\in [0,T]}|M_s^{(n)}\times {\varvec{g}}|_{{\mathbb {L}}^2}+|{\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}}|_{X,2\alpha ,[0,T],{\mathbb {L}}^2}\le & {} N, \end{aligned}$$
(55)
$$\begin{aligned} |X|_{\alpha ,[0,T],{{\mathbb {R}}}}+|{\mathbb {X}}|_{2\alpha ,[0,T],{{\mathbb {R}}}}\le & {} N, \end{aligned}$$
(56)
$$\begin{aligned} |X^{(n)}|_{\alpha ,[0,T],{{\mathbb {R}}}}+|{\mathbb {X}}^{(n)}|_{2\alpha ,[0,T],{{\mathbb {R}}}}\le & {} N. \end{aligned}$$
(57)

Let \(0<T_1\le \min \{1,T\}\). In particular, we assume that \(C_{\alpha ,N,g}T_1^{\alpha }\le \frac{1}{2}\), where \(C_{\alpha ,N,g}>0\) is a generic constant depending only on \(\alpha \), N, and g and popping up in estimate (59). In the next lines we proof the following estimate

$$\begin{aligned}&d_{X,X^{(n)},2\alpha ,[0,T_1],{\mathbb {L}}^2}({\varvec{M}},{\varvec{M}}\times {\varvec{g}};{\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}})\\&\quad = |{\varvec{M}}\times {\varvec{g}}-{\varvec{M}}^{(n)}\times {\varvec{g}}|_{\alpha ,[0,T_1],{\mathbb {L}}^2}+|{\mathscr {R}}^M-{\mathscr {R}}^{M^{(n)}}|_{2\alpha ,[0,T_1],{\mathbb {L}}^2}. \end{aligned}$$

Let us compute \(|{\varvec{M}}\times {\varvec{g}}-{\varvec{M}}^{(n)}\times {\varvec{g}}|_{\alpha ,[0,T_1],{\mathbb {L}}^2}\). Due to the fact that \({\varvec{g}}\in {\mathbb {W}}^{2,\infty }\), we can write for \(0\le s<t\le T_1\)

$$\begin{aligned} |{\varvec{M}}_{s,t}\times {\varvec{g}}-{\varvec{M}}_{s,t}^{(n)}\times {\varvec{g}}|_{{\mathbb {L}}^2}\le |{\varvec{M}}_{s,t}-{\varvec{M}}_{s,t}^{(n)}|_{{\mathbb {L}}^2}|{\varvec{g}}|_{{\mathbb {L}}^{\infty }}. \end{aligned}$$

Next, using the identities \({\varvec{M}}_{s,t}={\varvec{M}}'_sX_{s,t}+{\mathscr {R}}_{s,t}^{{\varvec{M}}}\) and \({\varvec{M}}^{(n)}_{s,t}=({\varvec{M}}^{(n)})_s'X^{(n)}_{s,t}+{\mathscr {R}}_{s,t}^{{\varvec{M}}^{(n)}}\), where \({\varvec{M}}'={\varvec{M}}\times {\varvec{g}}\) and \(({\varvec{M}}^{(n)})'={\varvec{M}}^{(n)}\times {\varvec{g}}\), we obtain

$$\begin{aligned}&|{\varvec{M}}_{s,t}\times {\varvec{g}}-{\varvec{M}}_{s,t}^{(n)}\times {\varvec{g}}|_{{\mathbb {L}}^2}\\&\quad \le \left| {\varvec{M}}'_sX_{s,t}+{\mathscr {R}}_{s,t}^{{\varvec{M}}}-\left( ({\varvec{M}}^{(n)})_s'X^{(n)}_{s,t}+{\mathscr {R}}_{s,t}^{{\varvec{M}}^{(n)}}\right) \right| _{{\mathbb {L}}^2}|{\varvec{g}}|_{{\mathbb {L}}^{\infty }}\\&\quad \le \Bigg [\Big (\left| {\varvec{M}}'\right| _{\alpha ,[0,T],{\mathbb {L}}^2}\left| X-X^{(n)}\right| _{\alpha ,[0,T],{{\mathbb {R}}}}\\&\qquad +\left| {\varvec{M}}'-({\varvec{M}}^{(n)})'\right| _{\alpha ,[0,T_1],{\mathbb {L}}^2}\left| X^{(n)}\right| _{\alpha ,[0,T],{{\mathbb {R}}}}\Big )T_1^{\alpha }\\&\qquad +\Big (\left| {\varvec{M}}'_{0}\right| _{{\mathbb {L}}^2}\left| X-X^{(n)}\right| _{\alpha ,[0,T],{{\mathbb {R}}}}+\left| {\varvec{M}}'_{0}-({\varvec{M}}^{(n)})_{0}'\right| _{{\mathbb {L}}^2}\left| X^{(n)}\right| _{\alpha ,[0,T]{{\mathbb {R}}}}\Big )\\&\qquad + \left| {\mathscr {R}}^{{\varvec{M}}}-{\mathscr {R}}^{{\varvec{M}}^{(n)}}\right| _{2\alpha ,[0,T_1],{\mathbb {L}}^2}T_1^{\alpha }\Bigg ]|{\varvec{g}}|_{{\mathbb {L}}^{\infty }}|t-s|^{\alpha }. \end{aligned}$$

Using (54)–(57), we have

$$\begin{aligned}&|{\varvec{M}}_{s,t}\times {\varvec{g}}-{\varvec{M}}_{s,t}^{(n)}\times {\varvec{g}}|_{{\mathbb {L}}^2}\\&\quad \le C_{N,g}\Bigg [(1+T_1^{\alpha })\left| X-X^{(n)}\right| _{\alpha ,[0,T],{{\mathbb {R}}}}+\left| {\varvec{M}}'-({\varvec{M}}^{(n)})'\right| _{\alpha ,[0,T_1],{\mathbb {L}}^2}T_1^{\alpha }\\&\qquad +\left| {\varvec{M}}-{\varvec{M}}^{(n)}\right| _{L^{\infty }([0,T],{\mathbb {L}}^2)}+ \left| {\mathscr {R}}^{{\varvec{M}}}-{\mathscr {R}}^{{\varvec{M}}^{(n)}}\right| _{2\alpha ,[0,T_1],{\mathbb {L}}^2}T_1^{\alpha }\Bigg ]|t-s|^{\alpha }\\&\quad = C_{N,g}\Bigg [(1+T_1^{\alpha }) \varrho _{\alpha ,[0,T],{{\mathbb {R}}}} ({\varvec{X}}, {\varvec{X}}^{(n)}) \\&\quad \quad +T_1^{\alpha }d_{X,X^{(n)},2\alpha ,[0,T_1],{\mathbb {L}}^2}({\varvec{M}},{\varvec{M}}\times {\varvec{g}};{\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}})\\&\quad \quad +\left| {\varvec{M}}-{\varvec{M}}^{(n)}\right| _{L^{\infty }([0,T],{\mathbb {L}}^2)}\Bigg ]|t-s|^{\alpha }. \end{aligned}$$

This implies

$$\begin{aligned}&|{\varvec{M}}\times {\varvec{g}}-{\varvec{M}}^{(n)}\times {\varvec{g}}|_{\alpha ,[0,T_1],{\mathbb {L}}^2}\nonumber \\&\quad \le C_{N,g}\Big [T_1^{\alpha } \varrho _{\alpha ,[0,T],{{\mathbb {R}}}} ({\varvec{X}}, {\varvec{X}}^{(n)}) \nonumber \\&\quad \quad +T_1^{\alpha }d_{X,X^{(n)},2\alpha ,[0,T_1],{\mathbb {L}}^2}({\varvec{M}},{\varvec{M}}\times {\varvec{g}};{\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}})\nonumber \\&\quad \quad +\left| {\varvec{M}}-{\varvec{M}}^{(n)}\right| _{L^{\infty }([0,T],{\mathbb {L}}^2)}\Big ]. \end{aligned}$$
(58)

We now start to estimate \(|{\mathscr {R}}^M-{\mathscr {R}}^{M^{(n)}}|_{2\alpha ,[0,T_1],{\mathbb {L}}^2}\). Using system (5), we obtain

$$\begin{aligned} {\mathscr {R}}_{s,t}^M=&\int _s^t\lambda _1 {\varvec{M}}(r)\times {\varvec{M}}_{xx}(r)~dr-\int _s^t\lambda _2 {\varvec{M}}(r) \times ({\varvec{M}}(r)\times {\varvec{M}}_{xx}(r))~ dr\\&+ ({\mathcal {I}}\varXi )_{s,t}-\varXi _{s,t} +({\varvec{M}}_s'\times {\varvec{g}}) {\mathbb {X}}_{s,t}, \end{aligned}$$

where \(\varXi _{s,t}:=({\varvec{M}}_s\times {\varvec{g}})X_{s,t}+({\varvec{M}}_s'\times {\varvec{g}}) {\mathbb {X}}_{s,t}\) and

$$\begin{aligned} ({\mathcal {I}}\varXi )_{s,t}:=\lim \limits _{|{\mathcal {P}}|\rightarrow 0}\sum _{[u,v]\in {\mathcal {P}}}\varXi _{u,v}. \end{aligned}$$

In similar way, we also obtain the same identity as above for \({\mathscr {R}}_{s,t}^{M^{(n)}}\), i.e.

$$\begin{aligned} {\mathscr {R}}_{s,t}^{M^{(n)}}&=\int _s^t\lambda _1 {\varvec{M}}^{(n)}(r)\times {\varvec{M}}^{(n)}_{xx}(r)~dr-\int _s^t\lambda _2 {\varvec{M}}^{(n)}(r) \times ({\varvec{M}}^{(n)}(r)\times {\varvec{M}}^{(n)}_{xx}(r))~ dr\\&\quad + ({\mathcal {I}}\varXi ^{(n)})_{s,t}-\varXi ^{(n)}_{s,t} +(({\varvec{M}}_s^{(n)})'\times {\varvec{g}}) {\mathbb {X}}^{(n)}_{s,t}, \end{aligned}$$

where \(\varXi ^{(n)}_{s,t}:=({\varvec{M}}^{(n)}_s\times {\varvec{g}})X^{(n)}_{s,t}+(({\varvec{M}}^{(n)}_s)'\times {\varvec{g}}) {\mathbb {X}}^{(n)}_{s,t}\) and

$$\begin{aligned} ({\mathcal {I}}\varXi )_{s,t}:=\lim \limits _{|{\mathcal {P}}|\rightarrow 0}\sum _{[u,v]\in {\mathcal {P}}}\varXi ^{(n)}_{u,v}. \end{aligned}$$

Setting \(\varPsi =\varXi -\varXi ^{(n)}\), we use equation (4.11) of [14] with \(\beta =3\alpha \) and replaced \(\varXi \) by \(\varPsi \), so that we can write for \(0\le s<t\le T_1\)

$$\begin{aligned}&|{\mathscr {R}}_{s,t}^M-{\mathscr {R}}_{s,t}^{M^{(n)}}|_{{\mathbb {L}}^2}\\&\quad \le |({\mathcal {I}}\varPsi )_{s,t}-\varPsi _{s,t}|_{{\mathbb {L}}^2}+|({\varvec{M}}_s'\times {\varvec{g}}) {\mathbb {X}}_{s,t}-(({\varvec{M}}^{(n)})_s'\times {\varvec{g}}) {\mathbb {X}}^{(n)}_{s,t}|\\&\qquad +|\lambda _1|\int _s^t |{\varvec{M}}(r)\times {\varvec{M}}_{xx}(r)-{\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r)|_{{\mathbb {L}}^2}~dr\\&\qquad +|\lambda _2|\int _s^t|{\varvec{M}}(r) \times ({\varvec{M}}(r)\times {\varvec{M}}_{xx}(r)) \\&\quad \quad -{\varvec{M}}^{(n)}(r) \times ({\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r))|_{{\mathbb {L}}^2}~ dr\\&\quad \le C_{\alpha }|\delta \varPsi |_{3\alpha ,[0,T_1],{\mathbb {L}}^2}|t-s|^{3\alpha }\\&\qquad +|{\varvec{M}}_s'\times {\varvec{g}}|_{{\mathbb {L}}^2}|{\mathbb {X}}_{s,t}-{\mathbb {X}}_{s,t}^{(n)}|_{{{\mathbb {R}}}} +|{\varvec{M}}_s'\times {\varvec{g}}-({\varvec{M}}^{(n)})_s'\times {\varvec{g}}|_{{\mathbb {L}}^2}|{\mathbb {X}}_{s,t}^{(n)}|_{{{\mathbb {R}}}}\\&\qquad +|\lambda _1| |{\varvec{M}}(r)\times {\varvec{M}}_{xx}(r)-{\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r)|_{L^{\infty }(0,T;{\mathbb {L}}^2)}|t-s|\\&\qquad +|\lambda _2||{\varvec{M}}(r) \times ({\varvec{M}}(r)\times {\varvec{M}}_{xx}(r)) \\&\quad \quad -{\varvec{M}}^{(n)}(r) \times ({\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r))|_{L^{\infty }(0,T;{\mathbb {L}}^2)} |t-s|, \end{aligned}$$

where

$$\begin{aligned} \delta \varPsi _{s,u,t}:= & {} \varPsi _{s,t}-\varPsi _{s,u}-\varPsi _{u,t}\\= & {} {\mathscr {R}}_{s,u}^{{\varvec{M}}^{(n)}\times {\varvec{g}}} X_{u,t}^{(n)}-{\mathscr {R}}_{s,u}^{{\varvec{M}}\times {\varvec{g}}}X_{u,t} \\&+(({\varvec{M}}^{(n)})_{s,u}'\times {\varvec{g}}) {\mathbb {X}}^{(n)}_{u,t}-({\varvec{M}}_{s,u}'\times {\varvec{g}}) {\mathbb {X}}_{u,t}. \end{aligned}$$

For \(0\le s<u<t\le T_1\), we get now

$$\begin{aligned}&|\delta \varPsi _{s,u,t}|\\&\quad \le |{\varvec{g}}|_{{\mathbb {L}}^{\infty }}N |X^{(n)}-X|_{\alpha ,[0,T],{{\mathbb {R}}}}|t-s|^{3\alpha }\\&\qquad +|{\varvec{g}}|_{{\mathbb {L}}^{\infty }}|{\mathscr {R}}^{{\varvec{M}}^{(n)}} -{\mathscr {R}}^{{\varvec{M}}}|_{2\alpha ,[0,T_1]{\mathbb {L}}^2}N|t-s|^{3\alpha } \\&\qquad +|{\varvec{g}}|_{{\mathbb {L}}^{\infty }}N| {\mathbb {X}}^{(n)}- {\mathbb {X}}|_{2\alpha ,[0,T],{{\mathbb {R}}}}|t-s|^{3\alpha }\\&\qquad +|{\varvec{g}}|_{{\mathbb {L}}^{\infty }}|({\varvec{M}}^{(n)})' -{\varvec{M}}' |_{\alpha ,[0,T_1],{\mathbb {L}}^2} N|t-s|^{3\alpha }\\&\quad \le C_{N,g}|t-s|^{3\alpha }\Big [\varrho _{\alpha ,[0,T],{{\mathbb {R}}}} ({\varvec{X}}, {\varvec{X}}^{(n)}) \\&\qquad +d_{X,X^{(n)},2\alpha ,[0,T_1],{\mathbb {L}}^2}({\varvec{M}},{\varvec{M}}\times {\varvec{g}};{\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}})\Big ]. \end{aligned}$$

Continuing, we obtain

$$\begin{aligned}&|{\mathscr {R}}_{s,t}^M-{\mathscr {R}}_{s,t}^{M^{(n)}}|_{{\mathbb {L}}^2}\\&\quad \le C_{\alpha ,N,g}|t-s|^{2\alpha }|{\mathbb {X}}-{\mathbb {X}}^{(n)}|_{2\alpha ,[0,T_1],{{\mathbb {R}}}} +C_{\alpha ,N,g}|t-s|^{2\alpha }|{\varvec{M}}-{\varvec{M}}^{(n)}|_{L^{\infty }(0,T;{\mathbb {L}}^2)}\\&\qquad +C_{\alpha ,N,g}|t-s|^{3\alpha }\Big [\varrho _{\alpha ,[0,T],{{\mathbb {R}}}} ({\varvec{X}}, {\varvec{X}}^{(n)}) \\&\qquad +d_{X,X^{(n)},2\alpha ,[0,T_1],{\mathbb {L}}^2}({\varvec{M}},{\varvec{M}}\times {\varvec{g}};{\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}})\Big ]\\&\qquad +|\lambda _1| |{\varvec{M}}(r)\times {\varvec{M}}_{xx}(r)-{\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r)|_{L^{\infty }(0,T;{\mathbb {L}}^2)}|t-s|\\&\qquad +|\lambda _2||{\varvec{M}}(r) \times ({\varvec{M}}(r)\times {\varvec{M}}_{xx}(r))\\&\quad \quad -{\varvec{M}}^{(n)}(r) \times ({\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r))|_{L^{\infty }(0,T;{\mathbb {L}}^2)} |t-s|\\&\quad \le C_{\alpha ,N,g}|t-s|^{2\alpha }\Big [(1+T_1^{\alpha })\varrho _{\alpha ,[0,T],{{\mathbb {R}}}} ({\varvec{X}}, {\varvec{X}}^{(n)})+|{\varvec{M}}-{\varvec{M}}^{(n)}|_{L^{\infty }(0,T;{\mathbb {L}}^2)} \\&\qquad +T_1^{\alpha }d_{X,X^{(n)},2\alpha ,[0,T_1],{\mathbb {L}}^2}({\varvec{M}},{\varvec{M}}\times {\varvec{g}};{\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}})\Big ]\\&\qquad +|\lambda _1| |{\varvec{M}}(r)\times {\varvec{M}}_{xx}(r)-{\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r)|_{L^{\infty }(0,T;{\mathbb {L}}^2)}|t-s|^{2\alpha }T^{1-2\alpha }\\&\qquad +|\lambda _2||{\varvec{M}}(r) \times ({\varvec{M}}(r)\times {\varvec{M}}_{xx}(r)) \\&\quad \quad -{\varvec{M}}^{(n)}(r) \times ({\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r))|_{L^{\infty }(0,T;{\mathbb {L}}^2)}|t-s|^{2\alpha }T^{1-2\alpha }. \end{aligned}$$

This implies

$$\begin{aligned}&|{\mathscr {R}}^M-{\mathscr {R}}^{M^{(n)}}|_{2\alpha ,[0,T_1],{\mathbb {L}}^2}\nonumber \\&\quad \le C_{\alpha ,N,g}\Big [(1+T_1^{\alpha })\varrho _{\alpha ,[0,T],{{\mathbb {R}}}} ({\varvec{X}}, {\varvec{X}}^{(n)})+|{\varvec{M}}-{\varvec{M}}^{(n)}|_{L^{\infty }(0,T;{\mathbb {L}}^2)} \nonumber \\&\qquad +T_1^{\alpha }d_{X,X^{(n)},2\alpha ,[0,T_1],{\mathbb {L}}^2}({\varvec{M}},{\varvec{M}}\times {\varvec{g}};{\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}})\Big ]\nonumber \\&\qquad +|\lambda _1| |{\varvec{M}}(r)\times {\varvec{M}}_{xx}(r) -{\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r)|_{L^{\infty }(0,T;{\mathbb {L}}^2)}T^{1-2\alpha }\nonumber \\&\qquad +|\lambda _2||{\varvec{M}}(r) \times ({\varvec{M}}(r)\times {\varvec{M}}_{xx}(r)) \nonumber \\&\quad \quad -{\varvec{M}}^{(n)}(r) \times ({\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r))|_{L^{\infty }(0,T;{\mathbb {L}}^2)} T^{1-2\alpha }. \end{aligned}$$
(59)

Finally, using (58) and (59), we obtain the estimate

$$\begin{aligned}&d_{X,X^{(n)},2\alpha ,[0,T_1],{\mathbb {L}}^2}({\varvec{M}},{\varvec{M}}\times {\varvec{g}};{\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}}) \nonumber \\&\quad \le C_{\alpha ,N,g}\Big [(1+T_1^{\alpha })\varrho _{\alpha ,[0,T],{{\mathbb {R}}}} ({\varvec{X}}, {\varvec{X}}^{(n)})+|{\varvec{M}}-{\varvec{M}}^{(n)}|_{L^{\infty }(0,T;{\mathbb {L}}^2)} \nonumber \\&\quad \quad +T_1^{\alpha }d_{X,X^{(n)},2\alpha ,[0,T_1],{\mathbb {L}}^2}({\varvec{M}},{\varvec{M}}\times {\varvec{g}};{\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}})\Big ]\nonumber \\&\quad \quad +|\lambda _1| |{\varvec{M}}(r)\times {\varvec{M}}_{xx}(r)-{\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r)|_{L^{\infty }(0,T;{\mathbb {L}}^2)}T^{1-2\alpha }\nonumber \\&\quad \quad +|\lambda _2||{\varvec{M}}(r) \times ({\varvec{M}}(r)\times {\varvec{M}}_{xx}(r))\nonumber \\&\quad \quad -{\varvec{M}}^{(n)}(r) \times ({\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r))|_{L^{\infty }(0,T;{\mathbb {L}}^2)} T^{1-2\alpha }. \end{aligned}$$
(60)

Observe, we have taken \(C_{\alpha ,N,g}T_1^{\alpha }\le \frac{1}{2} \), from which it follows that

$$\begin{aligned}&d_{X,X^{(n)},2\alpha ,[0,T_1],{\mathbb {L}}^2}({\varvec{M}},{\varvec{M}}\times {\varvec{g}};{\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}})\\&\quad \le 2C_{\alpha ,N,g}\Big [(1+T_1^{\alpha })\varrho _{\alpha ,[0,T],{{\mathbb {R}}}} ({\varvec{X}}, {\varvec{X}}^{(n)})+|{\varvec{M}}-{\varvec{M}}^{(n)}|_{L^{\infty }(0,T;{\mathbb {L}}^2)}\Big ]\\&\quad \quad +2|\lambda _1| |{\varvec{M}}(r)\times {\varvec{M}}_{xx}(r)-{\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r)|_{L^{\infty }(0,T;{\mathbb {L}}^2)}T^{1-2\alpha }\\&\quad \quad +2|\lambda _2||{\varvec{M}}(r) \times ({\varvec{M}}(r)\times {\varvec{M}}_{xx}(r))\\&\quad \quad -{\varvec{M}}^{(n)}(r) \times ({\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r))|_{L^{\infty }(0,T;{\mathbb {L}}^2)} T^{1-2\alpha }. \end{aligned}$$

Noting that the choice \(T_1\) does not depend on the initial condition, we can extend the estimate by gluing techniques to the whole time interval [0, T] and get

$$\begin{aligned}&d_{X,X^{(n)},2\alpha ,[(j-1)T1,jT_1],{\mathbb {L}}^2}({\varvec{M}},{\varvec{M}}\times {\varvec{g}};{\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}})\nonumber \\&\quad \le 2C_{\alpha ,N,g}\Big [(1+T_1^{\alpha })\varrho _{\alpha ,[0,T],{{\mathbb {R}}}} ({\varvec{X}}, {\varvec{X}}^{(n)})+|{\varvec{M}}-{\varvec{M}}^{(n)}|_{L^{\infty }(0,T;{\mathbb {L}}^2)}\Big ]\nonumber \\&\quad \quad +2|\lambda _1| |{\varvec{M}}(r)\times {\varvec{M}}_{xx}(r)-{\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r)|_{L^{\infty }(0,T;{\mathbb {L}}^2)}T^{1-2\alpha }\nonumber \\&\quad \quad +2|\lambda _2||{\varvec{M}}(r) \times ({\varvec{M}}(r)\times {\varvec{M}}_{xx}(r))\nonumber \\&\quad \quad -{\varvec{M}}^{(n)}(r) \times ({\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r))|_{L^{\infty }(0,T;{\mathbb {L}}^2)} T^{1-2\alpha }, \end{aligned}$$
(61)

for \(j=1,\cdots ,K\) where \(K\in {\mathbb {N}}\) and \(K<\infty \) such that \(KT_1< T\) and \((K+1)T_1\ge T\). Also, we obtain

$$\begin{aligned}&d_{X,X^{(n)},2\alpha ,[KT1,T],{\mathbb {L}}^2}({\varvec{M}},{\varvec{M}}\times {\varvec{g}};{\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}})\nonumber \\&\quad \le 2C_{\alpha ,N,g}\Big [(1+T_1^{\alpha })\varrho _{\alpha ,[0,T],{{\mathbb {R}}}} ({\varvec{X}}, {\varvec{X}}^{(n)})+|{\varvec{M}}-{\varvec{M}}^{(n)}|_{L^{\infty }(0,T;{\mathbb {L}}^2)}\Big ]\nonumber \\&\qquad +2|\lambda _1| |{\varvec{M}}(r)\times {\varvec{M}}_{xx}(r)-{\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r)|_{L^{\infty }(0,T;{\mathbb {L}}^2)}T^{1-2\alpha }\nonumber \\&\qquad +2|\lambda _2||{\varvec{M}}(r) \times ({\varvec{M}}(r)\times {\varvec{M}}_{xx}(r)) \nonumber \\&\quad \quad -{\varvec{M}}^{(n)}(r) \times ({\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r))|_{L^{\infty }(0,T;{\mathbb {L}}^2)} T^{1-2\alpha }. \end{aligned}$$
(62)

Therefore, combining (61) and (62), we achieve

$$\begin{aligned}&d_{X,X^{(n)},2\alpha ,[0,T],{\mathbb {L}}^2}({\varvec{M}},{\varvec{M}}\times {\varvec{g}};{\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}})\\&\quad \le \sum _{j=1}^K {d_{X,X^{(n)},2\alpha ,[(j-1)T1,jT_1],{\mathbb {L}}^2}({\varvec{M}},{\varvec{M}}\times {\varvec{g}};{\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}})}\\&\qquad + {d_{X,X^{(n)},2\alpha ,[KT1,T],{\mathbb {L}}^2}({\varvec{M}},{\varvec{M}}\times {\varvec{g}};{\varvec{M}}^{(n)},{\varvec{M}}^{(n)}\times {\varvec{g}})}\\&\quad \le 2(K+1)C_{\alpha ,N,g}\Big [(1+T_1^{\alpha })\varrho _{\alpha ,[0,T],{{\mathbb {R}}}} ({\varvec{X}}, {\varvec{X}}^{(n)})+|{\varvec{M}}-{\varvec{M}}^{(n)}|_{L^{\infty }(0,T;{\mathbb {L}}^2)}\Big ]\\&\qquad +2(K+1)|\lambda _1| |{\varvec{M}}(r)\times {\varvec{M}}_{xx}(r)-{\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r)|_{L^{\infty }(0,T;{\mathbb {L}}^2)}T^{1-2\alpha }\\&\qquad +2(K+1)|\lambda _2||{\varvec{M}}(r) \times ({\varvec{M}}(r)\times {\varvec{M}}_{xx}(r)) \\&\quad \quad -{\varvec{M}}^{(n)}(r) \times ({\varvec{M}}^{(n)}(r)\times {\varvec{M}}_{xx}^{(n)}(r))|_{L^{\infty }(0,T;{\mathbb {L}}^2)} T^{1-2\alpha }. \end{aligned}$$

Using Corollary 3 and (6), we obtain

$$\begin{aligned} {\varvec{M}}^{(n)}\rightarrow & {} {\varvec{M}}\quad \hbox {in} \quad {\mathcal {D}}_{X}^ {2\alpha }([0,T],{\mathbb {L}}^2), \quad \hbox {as} \quad n\rightarrow \infty . \end{aligned}$$

\(\square \)

4.1 Application to Stochastic Landau–Lifshitz–Gilbert Equations (SLLGEs)

In [8, 28], the authors used the Wong–Zakai approximation to obtain a solution and the convergence of (63). In this section, we show the same results using the results from the previous section and by taking as geometric rough path the rough path generated by the Brownian motion where the stochastic integral is interpreted in the Stratonovich sense. To be more precise, given a real-valued Brownian motion \(B=\{B_t, t\in [0,T]\}\) defined on a complete probability space \((\varOmega ,{\mathcal {F}},({\mathcal {F}}_t)_{t\ge 0},{\mathbb {P}})\), where \({\mathcal {F}}_t=\sigma \{B_s:s\in [0,t]\}\), the corresponding geometric rough path is defined by \({\varvec{B}}^{\text {strat}}=(B,{\mathbb {B}})\), where \({\mathbb {B}}_{s,t}:=\int _s^t B_{s,u}\otimes \circ dB_u\), \(B_{s,u}:=B_u-B_s\), \(0\le s\le t\le T\) (compare [14, p. 69]). In this way, we arrive at the SLLGEs of the following form:

$$\begin{aligned} \left\{ \begin{array}{ll} &{} d{\varvec{M}}= \Big (\lambda _1 {\varvec{M}}\times {\varvec{M}}_{xx}-\lambda _2 {\varvec{M}}\times ({\varvec{M}}\times {\varvec{M}}_{xx})\Big )~ dt\\ &{}\quad \quad \quad \quad + ({\varvec{M}}\times {\varvec{g}})\circ ~dB,\text { in } (0,T)\times D,\\ &{}{\varvec{M}}_x (t, 0) =0={\varvec{M}}_x (t, 1) ,\forall t\in (0,T),\\ &{}{\varvec{M}}(0,\cdot )= {\varvec{M}}_0 \text { in }D, \end{array}\right. \end{aligned}$$
(63)

Since we know that for any \(\alpha \in (1/3,1/2)\), we have with probability one \({\varvec{B}}^{\text {strat}}=(B,{\mathbb {B}})\in {\mathscr {C}}_g^{\alpha }([0,T],{{\mathbb {R}}})\) (compare [14, Proposition 3.4]), the rough path version of (63) becomes

$$\begin{aligned} \left\{ \begin{array}{ll} &{} d{\varvec{M}}= \Big (\lambda _1 {\varvec{M}}\times {\varvec{M}}_{xx}-\lambda _2 {\varvec{M}}\times ({\varvec{M}}\times {\varvec{M}}_{xx})\Big )~ dt\\ &{}\quad \quad \quad \quad + ({\varvec{M}}\times {\varvec{g}})~d{\varvec{B}}^{\text {strat}},\text { in } (0,T)\times D,\\ &{}{\varvec{M}}_x (t, 0) =0={\varvec{M}}_x (t, 1) ,\forall t\in (0,T),\\ &{}{\varvec{M}}(0,\cdot )= {\varvec{M}}_0 \text { in }D. \end{array}\right. \end{aligned}$$
(64)

Let \(B^{(n)}\) be the dyadic piecewise-linear approximations of B, let

$$\begin{aligned} {\mathbb {B}}^{(n)}_{s,t}:=\int _{s}^{t} B^{(n)}_{s,r} dB_{r}^{(n)}, \end{aligned}$$

and \({\varvec{B}}^{(n)}=\big (B^{(n)},{\mathbb {B}}^{(n)}\big )\) be the corresponding geometric rough path. Here, the integral \(\int _{0}^{t} B^{(n)} dB^{(n)}\) is understood as classical Riemann-Stieltjes. Since \(B^{(n)}\) is a piecewise linear function and continuous function, the Riemann-Stieltjes is well defined. From Proposition 3.6 of [14], we know that \({\varvec{B}}^{(n)}\) is a sequence in \({\mathscr {C}}_g^{\alpha }([0,T],{{\mathbb {R}}})\) and we have with probability one

$$\begin{aligned} {\varvec{B}}^{(n)} \rightarrow {\varvec{B}}^{\text {strat}}\text { in }{\mathscr {C}}_g^{\alpha }([0,T],{{\mathbb {R}}}). \end{aligned}$$
(65)

Let us now consider the following approximation of system (64)

$$\begin{aligned} \left\{ \begin{array}{ll} &{}d{\varvec{M}}^{(n)} = \Big (\lambda _1 {\varvec{M}}^{(n)}\times {\varvec{M}}_{xx}^{(n)}-\lambda _2 {\varvec{M}}^{(n)} \times ({\varvec{M}}^{(n)}\times {\varvec{M}}_{xx}^{(n)})\Big )~ dt \\ &{}\quad \quad \quad \quad + ({\varvec{M}}^{(n)}\times {\varvec{g}})~d{\varvec{B}}^{(n)},\\ &{}{\varvec{M}}^{(n)}_x (t, 0) =0={\varvec{M}}^{(n)}_x (t, 1) ,\quad \forall t\in (0,T),\\ &{}{\varvec{M}}^{(n)}(0,\cdot )= {\varvec{M}}_0 \text { in }D. \end{array}\right. \end{aligned}$$
(66)

From Theorem 1, one can conclude that there exist unique solutions \({\varvec{M}}\) and \({\varvec{M}}^{(n)}\) to the systems (64) and (66), respectively. Furthermore, we have

$$\begin{aligned} ({\varvec{M}}(\cdot ,\omega ),{\varvec{M}}(\cdot ,\omega )\times {\varvec{g}})\in {\mathcal {D}}_{B(\omega )}^ {2\alpha }([0,T],{\mathbb {L}}^2) \end{aligned}$$

and

$$\begin{aligned} ({\varvec{M}}^{(n)}(\cdot ,\omega ),{\varvec{M}}^{(n)}(\cdot ,\omega )\times {\varvec{g}})\in {\mathcal {D}}_{B^{(n)}(\omega )}^ {2\alpha }([0,T],{\mathbb {L}}^2) \end{aligned}$$

for \({\mathbb {P}}\)-a.s. \(\omega \in \varOmega \). Moreover, from Theorem  4, we know

$$\begin{aligned} {\varvec{M}}^{(n)}\rightarrow & {} {\varvec{M}}\text { in }L^{\infty }(0,T;{\mathbb {L}}^2) \text { as } n\rightarrow \infty . \end{aligned}$$