Skip to main content
Log in

H\(^2\)-Korn’s Inequality and the Nonconforming Elements for The Strain Gradient Elastic Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We establish a new H\(^2\)-Korn’s inequality and its discrete analog, which greatly simplify the construction of nonconforming elements for a linear strain gradient elastic model. The Specht triangle (Specht in Int J Numer Methods Eng 28:705–715, 1988) and the NZT tetrahedron (Wang et al. in Numer Math 106:335–347, 2007) are analyzed as two typical representatives for robust nonconforming elements in the sense that the rate of convergence is independent of the small material parameter. We construct the regularized interpolation operators and the enriching operators for both elements, and prove the error estimates under minimal smoothness assumption on the solution. Numerical results for the smooth solution, and the solution with boundary layer are consistent with the corresponding theoretical prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The inequality below (3.15), which is exactly (7) for a vector filed satisfying periodic boundary condition over a thin domain.

  2. http://lsec.cc.ac.cn/phg.

References

  1. Abel, H., Giovanna Mora, M., Müller, S.: Large time existence for thin vibrating plates. Commun. PDEs 36, 2062–2102 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, R., Fournier, J.: Sobolev Spaces, 2nd edn. Academic Press, Boston (2003)

    MATH  Google Scholar 

  3. Agmon, S., Douglis, L., Nirenberg, A.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Altan, S., Aifantis, E.: On the structure of the mode III crack-tip in gradient elasticity. Scr. Met. Mater. 26, 319–324 (1992)

    Article  Google Scholar 

  5. Argyris, J., Fried, I., Scharpf, D.: The Tuba family of plate elements for the matrix displacement method. Aeronaut J. 72, 701–709 (1968)

    Article  Google Scholar 

  6. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001/02)

  7. Askes, H., Aifantis, E.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)

    Article  Google Scholar 

  8. Berger, A., Scott, L., Strang, G.: Approximate boundary conditions in the finite element method. Symposia Mathematica X 295–313 (1972)

  9. Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2, 556–581 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Braess, D., Ming, P.: A finite element method for nearly incompressible elasticity problem. Math. Comput. 74, 25–52 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brenner, S.: Two level additive Schwartz preconditioners for nonconforming finite elements. In: Domain Decomposition Methods in Scientific and Engineering Computing, Edited by D.E. Keys and J. Xu., American Mathematical Society, Providence, Comtemporary Mathematics, Vol. 180, pp. 9–14 (1994)

  12. Brenner, S.: Two level additive Schwartz preconditioners for nonconforming finite elements. Math. Comput. 65, 897–921 (1996)

    Article  MATH  Google Scholar 

  13. Brenner, S.: Korn’s inequalities for piecewise H\(^1\) vector fields. Math. Comput. 73, 1067–1087 (2004)

  14. Brenner, S.: C\(^0\) interior penalty method. In: In Frontiers in Numerical Analysis-Durham 2010, edited by L. Blowey, and M. Jensen, Lecture Notes in Computational Science and Engineering 85, Springer-Verlag Berlin Heidelberg, pp. 79–147 (2012)

  15. Brenner, S.: Virtual enriching operators. Calcolo 56, 44 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brenner, S., Neilan, M.: A C\(^{\,0}\) interior penalty method for a fourth order elliptic singular perturbation problem. SIAM J. Numer. Anal. 49, 869–892 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer (2008)

  18. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  19. Ciarlet, P.: Linear and Nonlinear Functional Analysis with Applications. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  20. Engel, G., Garikipati, K., Hughes, T., Larsson, M., Mazzei, L., Taylor, R.: Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191, 3669–3750 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Eringen, A.: Nonlinear Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  22. Exadaktylos, G., Aifantis, E.: Two and three dimensional crack problems in gradient elasticity. J. Mech. Behav. Mater. 7, 93–118 (1996)

    Article  Google Scholar 

  23. Fisher, P., Mergheim, J., Steinmann, P.: On the C\(^1\) continuous discretization of non-linear gradient elasticity: a comparison of NEM and FEM based on Bernstein–Bézier patches. Int. J. Numer. Methods Eng. 82, 1282–1307 (2010)

    MATH  Google Scholar 

  24. Fleck, N., Hutchinson, J.: Strain gradient plasticity. In: Advances in Applied Mechanics, Vol. 33, Academic Press, pp. 295–361 (1997)

  25. Gallistl, D.: Morley finite element method for the eigenvalue of the biharmonic operator. IMA J. Numer. Anal. 35, 1779–1811 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Georgoulis, E., Houston, P., Virtanen, J.: An a posteriori error indicator for discontinuous Galerkin approximation of fourth-order elliptic problems. IMA J. Numer. Anal. 31, 281–298 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  28. Guzmán, J., Leykekhman, D., Neilan, M.: A family of non-conforming elements and the analysis of Nitsche’s method for a singularly perturbed fourth order problem. Calcolo 49, 95–125 (2012)

  29. Hu, J., Ma, R., Shi, Z.C.: A new a priori error estimate of nonconforming elements. Sci. China Math. 57, 887–902 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Korn, A.: Solution générale du problème d’équilibre dans la théorie de l’élasticité dans le cas où les efforts sont donnés à la surface. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (2) 10, 165–269 (1908)

  31. Korn, A.: Über einige ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Bull. Intern. Cracov. Akad. Umiejetnosci (Classe Sci. Math. Nat.), pp. 706–724 (1909)

  32. Li, H., Ming, P., Shi, Z.C.: Two robust nonconforming H\(^2-\)elements for linear strain gradient elasticity. Numer. Math. 137, 691–711 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, H., Ming, P., Shi, Z.C.: New nonconforming elements for linear strain gradient elastic model (2018). arXiv:1809.00819

  34. Li, H., Ming, P., Shi, Z.C.: The quadratic Specht triangle. J. Comput. Math. 38, 103–124 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liao, Y., Ming, P.: A family of nonconforming rectangular elements for strain gradient elasticity. Adv. Appl. Math. Mech. 11, 1263–1286 (2019)

    Article  MathSciNet  Google Scholar 

  36. Mao, S.P., Shi, Z.C.: On the error bounds of nonconforming finite elements. Sci. China Math. 53, 2917–2926 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mardal, K., Winther, R.: An observation on Korn’s inequality for nonconforming finite element methods. Math. Comput. 75, 1–6 (2006)

  38. Maźya, V., Rossmann, J.: Elliptic Equations in Polyhedral Domains. American Mathematical Society, Providence (2010)

    Book  MATH  Google Scholar 

  39. Mindlin, R.: Microstructure in linear elasticity. Arch. Ration. Mech. Anal. 10, 51–78 (1964)

    Article  MATH  Google Scholar 

  40. Ming, P., Shi, Z.C.: Analysis of some low order quadrilateral Reissner–Mindlin plate elements. Math. Comput. 75, 1043–1065 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Neilan, M., Wu, M.: Discrete Miranda–Talenti estimates and applications to linear and nonlinear PDEs. J. Comput. Appl. Math. 356, 358–376 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nilssen, T., Tai, X., Winther, R.: A robust nonconforming H\(^2\)-element. Math. Comput. 70, 489–505 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Papanastasiou, S.A., Zervos, A., Vardoulakis, I.: A three-dimensional C\(^{\,1}\) finite element for gradient elasticity. Int. J. Numer. Methods Eng. 135, 1396–1415 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Ru, C., Aifantis, E.: A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech. 101, 59–68 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  45. Scott, L., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  46. Semper, B.: Conforming finite element approximations for a fourth-order singular perturbation problem. SIAM J. Numer. Anal. 29, 1043–1058 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Semper, B.: Locking in finite-element approximations to long thin extensible beams. IMA J. Numer. Anal. 14, 97–109 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  48. Smears, I.: Nonoverlapping domain decomposition preconditioners for discontinuous Galerkin approximations of Hamilton–Jacobi–Bellman equations. J. Sci. Comput. 74, 145–174 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Specht, B.: Modified shape functions for the three node plate bending element passing the patch test. Int. J. Numer. Methods Eng. 28, 705–715 (1988)

    Article  MATH  Google Scholar 

  50. Tai, X., Winther, R.: A discrete de Rham complex with enhanced smoothness. Calcolo 43, 287–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Veeser, A., Zanotti, P.: Quasi-optimal nonconforming methods for symmetric elliptic problems. II-overconsistency and classical nonconforming elements. SIAM J. Numer. Anal. 57, 266–292 (2019)

  52. Wang, H.: Nonconforming tetrahedron elements for strain gradient elasticity model. Ph. D. thesis, Chinese Academy of Sciences (2020)

  53. Wang, M., Shi, Z.C., Xu, J.: A new class of Zienkiewicz-type non-conforming element in any dimensions. Numer. Math. 106, 335–347 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, M., Xu, J., Hu, Y.: Modified Morley element method for fourth order elliptic singular perturbation problem. J. Comput. Math. 24(2), 113–120 (2006)

    MathSciNet  MATH  Google Scholar 

  55. Zhang, L.: A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection. Numer. Math. Theor. Methods Appl. 2, 65–89 (2009)

    MathSciNet  MATH  Google Scholar 

  56. Zhang, S.: A family of 3d continuously differentiable finite elements on tetrahedral grids. Appl. Numer. Math. 59, 219–233 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zienkiewicz, O., Taylor, R.: The Finite Element Method for Solid and Structural Mechanics, 6th edn. Elsevier, Singapore (2009)

    MATH  Google Scholar 

Download references

Acknowledgements

The work of Ming was supported by the National Natural Science Foundation of China through Grant No. 11971467 and Beijing Academy of Artificial Intelligence (BAAI). We are grateful to the anonymous referees for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingbing Ming.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ming, P. & Wang, H. H\(^2\)-Korn’s Inequality and the Nonconforming Elements for The Strain Gradient Elastic Model. J Sci Comput 88, 78 (2021). https://doi.org/10.1007/s10915-021-01597-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01597-7

Keywords

Navigation