Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular Diagnostics

Tumour-infiltrating CD4-, CD8- and FOXP3-positive immune cells as predictive markers of mortality in BRCA1- and BRCA2-associated breast cancer

Abstract

Background

The prognostic value of tumour-infiltrating lymphocytes (TILs) in breast cancer is well-established. However, the investigation of specific T-cell subsets exclusively in BRCA-associated breast cancer is sparse.

Methods

Tumour tissues from 414 BRCA-mutated breast cancer patients were analysed by immunohistochemistry and digital image analysis for expression of CD4, CD8 and FOXP3 immune markers. Distribution of CD4-, CD8- and FOXP3-positive cells and clinicopathological characteristics were assessed according to groups of low or high expression. The prognostic value was evaluated as continuous variables in univariate and multivariate analyses of overall survival and disease-free survival.

Results

Both CD4 and CD8 expression are associated with histological diagnosis, tumour grade and oestrogen and progesterone receptor expression status. CD4 expression is associated with BRCA gene status. A high percentage of tumour-infiltrating CD4-, CD8- or FOXP3-positive cells is significantly associated with lower mortality in BRCA1- and BRCA2-associated breast cancer and CD8-positive cells are associated with disease-free survival. No heterogeneity according to BRCA gene status was found for the prognostic value of the immune markers.

Conclusions

The results support a prognostic role of specific T-cell subsets in BRCA-associated breast cancer and the promising potential of targeting the immune system in the treatment of these patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative examples of CD4, CD8 and FOXP3 staining patterns.
Fig. 2: Distribution of immune marker expression.
Fig. 3: Survival analysis.

Similar content being viewed by others

Data availability

The datasets used and/or analysed in the current study are available from the corresponding author on reasonable request.

References

  1. Gerdes AM, Cruger DG, Thomassen M, Kruse TA. Evaluation of two different models to predict BRCA1 and BRCA2 mutations in a cohort of Danish hereditary breast and/or ovarian cancer families. Clin Genet. 2006;69:171–8.

    Article  PubMed  Google Scholar 

  2. Melchor L, Benítez J. The complex genetic landscape of familial breast cancer. Hum Genet. 2013;132:845–63.

    Article  CAS  PubMed  Google Scholar 

  3. Armstrong N, Ryder S, Forbes C, Ross J, Quek RGW. A systematic review of the international prevalence of BRCA mutation in breast cancer. Clin Epidemiol. 2019;11:543–61.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Graeser MK, Engel C, Rhiem K, Gadzicki D, Bick U, Kast K, et al. Contralateral breast cancer risk in BRCA1 and BRCA2 mutation carriers. J Clin Oncol. 2009;27:5887–92.

    Article  PubMed  Google Scholar 

  5. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378:789–92.

    Article  CAS  PubMed  Google Scholar 

  6. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266:66–71.

    Article  CAS  PubMed  Google Scholar 

  7. Venkitaraman AR. Cancer suppression by the chromosome custodians, BRCA1 and BRCA2. Science. 2014;343:1470–5.

    Article  CAS  PubMed  Google Scholar 

  8. Eiermann W, Bergh J, Cardoso F, Conte P, Crown J, Curtin NJ, et al. Triple negative breast cancer: proposals for a pragmatic definition and implications for patient management and trial design. Breast. 2012;21:20–26.

    Article  CAS  PubMed  Google Scholar 

  9. Mavaddat N, Barrowdale D, Andrulis IL, Domchek SM, Eccles D, Nevanlinna H, et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the consortium of investigators of modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomark Prev. 2012;21:134–47.

    Article  CAS  Google Scholar 

  10. Sønderstrup IMH, Jensen MBR, Ejlertsen B, Eriksen JO, Gerdes AM, Kruse TA, et al. Subtypes in BRCA-mutated breast cancer. Hum Pathol. 2019;84:192–201.

    Article  PubMed  CAS  Google Scholar 

  11. Sønderstrup IMH, Lænkholm AV, Jensen MB, Eriksen JO, Gerdes AM, Hansen TVO, et al. Clinical and molecular characterization of BRCA-associated breast cancer: results from the DBCG. Acta Oncol. 2018;57:95–101.

    Article  Google Scholar 

  12. Larsen MJ, Thomassen M, Gerdes A-M, Kruse TA. Hereditary breast cancer: clinical, pathological and molecular characteristics. Breast Cancer. 2014;8:145–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lakhani SR, Jacquemier J, Sloane JP, Gusterson BA, Anderson TJ, van de Vijver MJ, et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst. 1998;90:1138–45.

  14. Nolan E, Savas P, Policheni AN, Darcy PK, Vaillant F, Mintoff CP, et al. Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer. Sci Transl Med. 2017;9. https://doi.org/10.1126/scitranslmed.aal4922.

  15. Seo AN, Lee HJ, Kim EJ, Kim HJ, Jang MH, Lee HE, et al. Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer. 2013;109:2705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ruffell B, Au A, Rugo HS, Esserman LJ, Hwang ES, Coussens LM. Leukocyte composition of human breast cancer. Proc Natl Acad Sci USA. 2012;109:2796–801.

    Article  CAS  PubMed  Google Scholar 

  17. Sakaguchi S. Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6:345–52.

    Article  CAS  PubMed  Google Scholar 

  18. Sønderstrup IMH, Jensen MB, Ejlertsen B, Eriksen JO, Gerdes AM, Kruse TA, et al. Evaluation of tumor-infiltrating lymphocytes and association with prognosis in BRCA-mutated breast cancer. Acta Oncol. 2019;58:363–70.

    Article  PubMed  Google Scholar 

  19. Liu S, Lachapelle J, Leung S, Gao D, Foulkes WD, Nielsen TO. CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res. 2012;14:R48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miyashita M, Sasano H, Tamaki K, Chan M, Hirakawa H, Suzuki A, et al. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes in triple-negative breast cancer: its correlation with pathological complete response to neoadjuvant chemotherapy. Breast Cancer Res Treat. 2014;148:525–34.

    Article  CAS  PubMed  Google Scholar 

  21. Mahmoud SMA, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AHS, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29:1949–55.

    Article  PubMed  Google Scholar 

  22. Meng S, Li LI, Zhou M, Jiang W, Heng NIU, Yang K. Distribution and prognostic value of tumor‑infiltrating T cells in breast cancer. Mol Med Rep. 2018;18:4247–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang K, Shen T, Siegal GP, Wei S. The CD4/CD8 ratio of tumor-infiltrating lymphocytes at the tumor-host interface has prognostic value in triple-negative breast cancer. Hum Pathol. 2017;69:110–7.

    Article  CAS  PubMed  Google Scholar 

  24. Semeraro M, Adam J, Stoll G, Louvet E, Chaba K, Poirier-Colame V, et al. The ratio of CD8+/FOXP3 T lymphocytes infiltrating breast tissues predicts the relapse of ductal carcinoma in situ. Oncoimmunology. 2016;5. https://doi.org/10.1080/2162402X.2016.1218106.

  25. Matkowski R, Gisterek I, Halon A, Lacko A, Szewczyk K, Staszek U, et al. The prognostic role of tumor-infiltrating CD4 and CD8 T lymphocytes in breast cancer. Anticancer Res. 2009;29:2445–51.

    CAS  PubMed  Google Scholar 

  26. Merlo A, Casalini P, Carcangiu ML, Malventano C, Triulzi T, Mènard S, et al. FOXP3 expression and overall survival in breast cancer. J Clin Oncol. 2009;27:1746–52.

    Article  CAS  PubMed  Google Scholar 

  27. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol. 2006;24:5373–80.

    Article  PubMed  Google Scholar 

  28. Gobert M, Treilleux I, Bendriss-Vermare N, Bachelot T, Goddard-Leon S, Arfl V, et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical utcome. Cancer Res. 2009;69:2000–9.

    Article  CAS  PubMed  Google Scholar 

  29. Ladoire S, Arnould L, Mignot G, Coudert B, Rébé C, Chalmin F, et al. Presence of Foxp3 expression in tumor cells predicts better survival in HER2-overexpressing breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 2011;125:65–72.

    Article  CAS  PubMed  Google Scholar 

  30. Liu Z, Li M, Jiang Z, Wang X. A comprehensive immunologic portrait of triple-negative breast cancer. Transl Oncol. 2018;11:311–29.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Christiansen P, Ejlertsen B, Jensen M, Mouridsen H. Danish breast cancer cooperative group. Clin Epidemiol. 2016;8:445–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. DBCG Guidelines. 2016. https://dbcg.dk/vaerktoejer/retningslinjer-vejledninger (accessed 2 Nov 2020).

  33. WHO Classification of Tumours Editorial Board. Breast tumours. WHO classification of tumours. 5th ed, Vol. 2. Lyon: IARC Press; 2019.

  34. Hammond MEH, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American society of clinical oncology/college of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28:2784–95.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wolff AC, Hammond MEH, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast. J Clin Oncol. 2013;31:3997–4013.

    Article  PubMed  Google Scholar 

  36. Grandal B, Evrevin C, Laas E, Jardin I, Rozette S, Laot L, et al. Impact of BRCA mutation status on tumor infiltrating lymphocytes (TILs), response to treatment, and prognosis in breast cancer patients treated with neoadjuvant chemotherapy. Cancers. 2020;12:1–26.

    Article  CAS  Google Scholar 

  37. de Boo L, Cimino-Mathews A, Lubeck Y, Daletzakis A, Opdam M, Sanders J, et al. Tumour-infiltrating lymphocytes (TILs) and BRCA-like status in stage III breast cancer patients randomised to adjuvant intensified platinum-based chemotherapy versus conventional chemotherapy. Eur J Cancer. 2020;127:240–50.

    Article  PubMed  CAS  Google Scholar 

  38. Oshi M, Asaoka M, Tokumaru Y, Yan L, Matsuyama R, Ishikawa T, et al. CD8 T cell score as a prognostic biomarker for triple negative breast cancer. Int J Mol Sci. 2020;21:1–16.

    Google Scholar 

  39. Ali HR, Provenzano E, Dawson SJ, Blows FM, Liu B, Shah M, et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12 439 patients. Ann Oncol. 2014;25:1536–43.

    Article  CAS  PubMed  Google Scholar 

  40. Bottai G, Raschioni C, Losurdo A, Di Tommaso L, Tinterri C, Torrisi R, et al. An immune stratification reveals a subset of PD-1/LAG-3 double-positive triple-negative breast cancers. Breast Cancer Res. 2016;18:1–10.

    Article  CAS  Google Scholar 

  41. Jin YW, Hu P Tumor-infiltrating CD8 T cells predict clinical breast cancer outcomes in young women. Cancers. 2020;12. https://doi.org/10.3390/cancers12051076.

  42. Baba T, Ishizu A, Iwasaki S, Suzuki A, Tomaru U, Ikeda H, et al. CD4+/CD8+ macrophages infiltrating at inflammatory sites: a population of monocytes/macrophages with a cytotoxic phenotype. Blood. 2006;107:2004–12.

    Article  CAS  PubMed  Google Scholar 

  43. Zhen A, Krutzik SR, Levin BR, Kasparian S, Zack JA, Kitchen SG. CD4 ligation on human blood monocytes triggers macrophage differentiation and enhances HIV infection. J Virol. 2014;88:9934–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Filion LG, Izaguirre CA, Garber GE, Huebsh L, Aye MT. Detection of surface and cytoplasmic CD4 on blood monocytes from normal and HIV-1 infected individuals. J Immunol Methods. 1990;135:59–69.

    Article  CAS  PubMed  Google Scholar 

  45. Taylor NA, Vick SC, Iglesia MD, Brickey WJ, Midkiff BR, McKinnon KP, et al. Treg depletion potentiates checkpoint inhibition in claudin-low breast cancer. J Clin Investig. 2017;127:3472–83.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shou J, Zhang Z, Lai Y, Chen Z, Huang J. Worse outcome in breast cancer with higher tumor-infiltrating FOXP3+ Tregs: a systematic review and meta-analysis. BMC Cancer. 2016;16:4–11.

    Article  CAS  Google Scholar 

  47. Jørgensen N, Persson G, Hviid TVF. The tolerogenic function of regulatory T cells in pregnancy and cancer. Front Immunol. 2019;10. https://doi.org/10.3389/fimmu.2019.00911.

  48. Núñez NG, Tosello Boari J, Ramos RN, Richer W, Cagnard N, Anderfuhren CD, et al. Tumor invasion in draining lymph nodes is associated with Treg accumulation in breast cancer patients. Nat Commun. 2020;11:1–15.

    Article  CAS  Google Scholar 

  49. Yeong J, Thike AA, Lim JCT, Lee B, Li H, Wong SC, et al. Higher densities of Foxp3+ regulatory T cells are associated with better prognosis in triple-negative breast cancer. Breast Cancer Res Treat. 2017;163:21–35.

    Article  CAS  PubMed  Google Scholar 

  50. West NR, Kost SE, Martin SD, Milne K, Deleeuw RJ, Nelson BH, et al. Tumour-infiltrating FOXP3+ lymphocytes are associated with cytotoxic immune responses and good clinical outcome in oestrogen receptor-negative breast cancer. Br J Cancer. 2013;108:155–62.

    Article  CAS  PubMed  Google Scholar 

  51. Mahmoud SMA, Paish EC, Powe DG, MacMillan RD, Lee AHS, Ellis IO, et al. An evaluation of the clinical significance of FOXP3+ infiltrating cells in human breast cancer. Breast Cancer Res Treat. 2011;127:99–108.

    Article  CAS  PubMed  Google Scholar 

  52. Liu S, Foulkes WD, Leung S, Gao D, Lau S, Kos Z, et al. Prognostic significance of FOXP3+ tumor-infiltrating lymphocytes in breast cancer depends on estrogen receptor and human epidermal growth factor receptor-2 expression status and concurrent cytotoxic T-cell infiltration. Breast Cancer Res. 2014;16:432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wen WX, Leong CO. Association of BRCA1- and BRCA2-deficiency with mutation burden, expression of PD-L1/ PD-1, immune infiltrates, and T cell-inflamed signature in breast cancer. PLoS ONE. 2019;14:1–16.

    Article  Google Scholar 

  54. Dieci MV, Tsvetkova V, Griguolo G, Miglietta F, Tasca G, Giorgi CA, et al. Integration of tumour infiltrating lymphocytes, programmed cell-death ligand-1, CD8 and FOXP3 in prognostic models for triple-negative breast cancer: Analysis of 244 stage I–III patients treated with standard therapy. Eur J Cancer. 2020;136:7–15.

    Article  CAS  PubMed  Google Scholar 

  55. García-Martínez E, Gil GL, Benito AC, González-Billalabeitia E, Angeles M, Conesa V, et al. Tumor-infiltrating immune cell profiles and their change after neoadjuvant chemotherapy predict response and prognosis of breast cancer. Breast Cancer Res. 2014;16:1–17.

    Article  CAS  Google Scholar 

  56. Denkert C, Loibl S, Noske A, Roller M, Müller BM, Komor M, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28:105–13.

    Article  CAS  PubMed  Google Scholar 

  57. Denkert C, Von Minckwitz G, Brase JC, Sinn BV, Gade S, Kronenwett R, et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol. 2015;33:983–91.

    Article  CAS  PubMed  Google Scholar 

  58. Hartman DJ, Ahmad F, Ferris RL, Rimm DL, Pantanowitz L. Utility of CD8 score by automated quantitative image analysis in head and neck squamous cell carcinoma. Oral Oncol. 2018;86:278–87.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Steele KE, Tan TH, Korn R, Dacosta K, Brown C, Kuziora M, et al. Measuring multiple parameters of CD8+ tumor-infiltrating lymphocytes in human cancers by image analysis. J Immunother Cancer. 2018;6:1–14.

    Article  Google Scholar 

  60. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILS) in breast cancer: recommendations by an International TILS Working Group 2014. Ann Oncol. 2015;26:259–71.

    Article  CAS  PubMed  Google Scholar 

  61. Khoury T, Nagrale V, Opyrchal M, Peng X, Wang D, Yao S. Prognostic significance of stromal versus intratumoral infiltrating lymphocytes in different subtypes of breast cancer treated with cytotoxic neoadjuvant chemotherapy. Appl Immunohistochem Mol Morphol. 2018;26:523–32.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Koletsa T, Kotoula V, Koliou GA, Manousou K, Chrisafi S, Zagouri F, et al. Prognostic impact of stromal and intratumoral CD3, CD8 and FOXP3 in adjuvantly treated breast cancer: do they add information over stromal tumor-infiltrating lymphocyte density? Cancer Immunol Immunother. 2020;69:1549–64.

    Article  CAS  PubMed  Google Scholar 

  63. Kos Z, Roblin E, Kim RS, Michiels S, Gallas BD, Chen W, et al. Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer. NPJ Breast Cancer. 2020;6. https://doi.org/10.1038/s41523-020-0156-0.

  64. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–32.

    Article  CAS  PubMed  Google Scholar 

  66. Efremova M, Finotello F, Rieder D, Trajanoski Z. Neoantigens generated by individual mutations and their role in cancer immunity and immunotherapy. Front Immunol. 2017;8:1–8.

    Article  CAS  Google Scholar 

  67. Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, Liu JF, et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget. 2016;7:13587–98.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lu L, Huang H, Zhou J, Ma W, MacKay S, Wang Z. BRCA1 mRNA expression modifies the effect of T cell activation score on patient survival in breast cancer. BMC Cancer. 2019;19:1–11.

    Article  Google Scholar 

  69. Aguadé-Gorgorió G, Solé R. Genetic instability as a driver for immune surveillance. J Immunother Cancer. 2019;7:1–13.

    Article  Google Scholar 

Download references

Funding

This study was supported financially by Region Zealand, Region of Southern Denmark, and ‘Den Forskningsfremmende Pulje i Region Sjælland’ at the Department of Clinical Medicine, University of Copenhagen.

Author information

Authors and Affiliations

Authors

Contributions

Study concepts and data acquisition: NJ, TVFH, IMHS, JOE, BE, AMG, TAK, MT and AVL. Study design: NJ, TVFH, JOE, BE, MBJ and AVL. Quality control of data and algorithms: NJ, JOE and AVL. Data analysis and interpretation: NJ, MBJ and AVL. Statistical analysis: LBN and MBJ. Manuscript preparation: NJ. All authors contributed to manuscript editing. All authors reviewed and approved the final version of the paper and provided their consent for publication.

Corresponding author

Correspondence to Thomas Vauvert F. Hviid.

Ethics declarations

Ethics approval and consent to participate

The Danish National Committee on Health Research Ethics (33483) and the Danish Data Protection Agency (2009-41-3611) approved the study. The study was performed in accordance with the Declaration of Helsinki.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jørgensen, N., Hviid, T.V.F., Nielsen, L.B. et al. Tumour-infiltrating CD4-, CD8- and FOXP3-positive immune cells as predictive markers of mortality in BRCA1- and BRCA2-associated breast cancer. Br J Cancer 125, 1388–1398 (2021). https://doi.org/10.1038/s41416-021-01514-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01514-7

This article is cited by

Search

Quick links