Skip to main content
Log in

A photoelectrochemical aptasensor of ciprofloxacin based on Bi24O31Cl10/BiOCl heterojunction

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A photoelectrochemical (PEC) aptasensor was designed and constructed by Bi24O31Cl10/BiOCl heterojunction as a photoelectric active material for realizing the determination of trace ciprofloxacin (CIP) in water. Compared with Bi24O31Cl10, Bi24O31Cl10/BiOCl heterojunction possessed the improvement of light harvesting and the enhancement of photocurrent signal. The formation of heterojunction between Bi24O31Cl10 and BiOCl can accelerate the transportation efficiency and inhibit the recombination rate of photoinduced carriers. Based on the excellent PEC performance, CIP aptamer was introduced on the modified Bi24O31Cl10/BiOCl/indium tin oxide (ITO) electrode for fabricating a PEC aptasensor. Owing to the combination between aptamer and CIP, CIP-aptamer complex can block the transfer of charge, leading to the reduction of photocurrent response. The PEC aptasensor possessed high sensitivity with a wide detection range (5.0~1.0 × 104 ng L−1) and a low detection limit (1.67 ng L−1, S/N = 3). The PEC aptasensor with good selectivity and reproducibility has been applied to the determination of CIP in water.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim TK, Kim T, Park H, Lee I, Jo A, Choi K, Zoh KD (2020) Degradation of ciprofloxacin and inactivation of ciprofloxacin resistant E. faecium during UV-LED (275 nm)/chlorine process. Chem Eng J 394:124803. https://doi.org/10.1016/j.cej.2020.124803

    Article  CAS  Google Scholar 

  2. Hao N, Zhang Y, Zhong H, Zhou Z, Hua R, Qian J, Liu Q, Li HN, Wang K (2017) Design of a dual channel self-reference photoelectrochemical biosensor. Anal Chem 89(19):10133–10136. https://doi.org/10.1021/acs.analchem.7b03132

    Article  CAS  PubMed  Google Scholar 

  3. Luo JM, Bo SF, Qin YN, An QD, Xiao ZY, Zhai SR (2020) Transforming goat manure into surface-loaded cobalt/biochar as PMS activator for highly efficient ciprofloxacin degradation. Chem Eng J 395:125063. https://doi.org/10.1016/j.cej.2020.125063

    Article  CAS  Google Scholar 

  4. Bojer C, Schöbel J, Martin T, Ertl M, Schmalz H, Breu J (2017) Clinical wastewater treatment: photochemical removal of an anionic antibiotic (ciprofloxacin) by mesostructured high aspect ratio ZnO nanotubes. Appl Catal B 204:561–565. https://doi.org/10.1016/j.apcatb.2016.12.003

    Article  CAS  Google Scholar 

  5. Li Z, Cui Z, Tang Y, Liu X, Zhang X, Liu B, Wang X, Draz MS, Gao X (2019) Fluorometric determination of ciprofloxacin using molecularly imprinted polymer and polystyrene microparticles doped with europium (III)(DBM)3phen. Microchim Acta 186(6):334. https://doi.org/10.1007/s00604-019-3448-z

    Article  CAS  Google Scholar 

  6. Cardoso AR, Carneiro LPT, Cabral-Miranda G, Bachmann MF, Sales MGF (2021) Employing bacteria machinery for antibiotic detection: using DNA gyrase for ciprofloxacin detection. Chem Eng J 409:128135. https://doi.org/10.1016/j.cej.2020.128135

    Article  CAS  Google Scholar 

  7. Vakh C, Pochivalov A, Koronkiewicz S, Kalinowski S, Postnov V, Bulatov A (2019) A chemiluminescence method for screening of fluoroquinolones in milk samples based on a multi-pumping flow system. Food Chem 270:10–16. https://doi.org/10.1016/j.foodchem.2018.07.073

    Article  CAS  PubMed  Google Scholar 

  8. Jian NG, Liang SH, Cao JK, Di QN, Kang K, Xu Q (2019) A nanofiber mat prepared from sulfonated polyaniline for solid-phase extraction of fluoroquinolones from water and biological fluids prior to their quantitation by UPLC-MS/MS. Microchim Acta 186(12):857. https://doi.org/10.1007/s00604-019-4033-1

    Article  CAS  Google Scholar 

  9. Kalambate P, Rao ZX, Dhanjai WJY, Shen Y, Boddula R, Huang YH (2020) Electrochemical (bio) sensors go green. Biosens Bioelectron 163:112270. https://doi.org/10.1016/j.bios.2020.112270

    Article  CAS  PubMed  Google Scholar 

  10. Mao LB, Ji KL, Yao LL, Xue XJ, Wen W, Zhang XH, Wang SF (2019) Molecularly imprinted photoelectrochemical sensor for fumonisin B1 based on GO-CdS heterojunction. Biosens Bioelectron 127:57–63. https://doi.org/10.1016/j.bios.2018.11.040

    Article  CAS  PubMed  Google Scholar 

  11. Zu M, Zheng MT, Zhang SS, Xing C, Zhou M, Liu H, Zhou XS, Zhang SQ (2020) Designing robust anatase-branch@hydrogenated-rutile-nanorod TiO2 as accurate and sensitive photoelectrochemical sensors. Sensors Actuators B Chem 321:128504. https://doi.org/10.1016/j.snb.2020.128504

    Article  CAS  Google Scholar 

  12. Wang RN, Zu M, Yang SY, Zhang SQ, Zhou WY, Mai ZY, Ge CY, Xu YH, Fang YP, Zhang SQ (2018) Visible-light-driven photoelectrochemical determination of Cu2+ based on CdS sensitized hydrogenated TiO2 nanorod arrays. Sensors Actuators B Chem 270:270–276. https://doi.org/10.1016/j.snb.2018.05.056

    Article  CAS  Google Scholar 

  13. Okoth O, Yan K, Liu Y, Zhang JD (2016) Graphene-doped Bi2S3 nanorods as visible-light photoelectrochemical aptasensing platform for sulfadimethoxine detection. Biosens Bioelectron 86:636–642. https://doi.org/10.1016/j.bios.2016.07.037

    Article  CAS  PubMed  Google Scholar 

  14. Chen Y, Wang YM, Yan PC, Ouyang QQ, Dong JT, Qian JC, Chen JP, Xu L, Li HN (2020) Co3O4 nanoparticles/graphitic carbon nitride heterojunction for photoelectrochemical aptasensor of oxytetracycline. Anal Chim Acta 1125:299–307. https://doi.org/10.1016/j.aca.2020.05.038

    Article  CAS  PubMed  Google Scholar 

  15. Zhao LF, Ji JJ, Shen YF, Wu KQ, Zhao TT, Yang H, Lv YQ, Liu SQ, Zhang YJ (2019) Exfoliation and sensitization of 2D carbon nitride for photoelectrochemical biosensing under red light. Chem Eur J 25:15680–15686. https://doi.org/10.1002/chem.201904076

    Article  CAS  PubMed  Google Scholar 

  16. Zhou Q, Li GH, Chen KY, Yang H, Yang MR, Zhang YY, Wan YK, Shen YF, Zhang YJ (2020) Simultaneous unlocking optoelectronic and interfacial properties of C60 for ultrasensitive immunosensing by coupling to metal-organic framework. Anal Chem 92:983–990. https://doi.org/10.1021/acs.analchem.9b03915

    Article  CAS  PubMed  Google Scholar 

  17. Liu LS, Wang F, Ge Y, Lo PK (2021) Recent developments in aptasensors for diagnostic applications. ACS Appl Mater Interfaces 13(8):9329–9358. https://doi.org/10.1021/acsami.0c14788

    Article  CAS  PubMed  Google Scholar 

  18. Zhao WW, Xu JJ, Chen HY (2015) Photoelectrochemical bioanalysis: the state of the art. Chem Soc Rev 44:729–741. https://doi.org/10.1039/C4CS00228H

    Article  CAS  PubMed  Google Scholar 

  19. Zhao WW, Xu JJ, Chen HY (2018) Photoelectrochemical immunoassays. Anal Chem 90(1):615–627. https://doi.org/10.1021/acs.analchem.7b04672

    Article  CAS  PubMed  Google Scholar 

  20. Zhang BX, Zhang JL, Duan R, Wan Q, Tan XN, Su ZZ, Han BX, Zheng LR, Mo G (2020) BiOCl nanosheets with periodic nanochannels for high-efficiency photooxidation. Nano Energy 78:105340. https://doi.org/10.1016/j.nanoen.2020.105340

    Article  CAS  Google Scholar 

  21. Xu L, He XY, Dong JT, Yan PC, Chen F, Zhang JM, Li HN (2020) A photoelectrochemical aptasensor for sensitively monitoring chloramphenicol using plasmon-driven AgNP/BiOCl composites. Analyst 145:7695–7700. https://doi.org/10.1039/D0AN01355B

    Article  CAS  PubMed  Google Scholar 

  22. Cao JY, Li JJ, W. Chu, Cen WL (2020) Facile synthesis of Mn-doped BiOCl for metronidazole photodegradation: Optimization, degradation pathway, and mechanism. Chem Eng J 400:125813. https://doi.org/10.1016/j.cej.2020.125813

  23. Li FT, Wang Q, Wang XJ, Li B, Hao YJ, Liu RH, Zhao DS (2014) In-situ one-step synthesis of novel BiOCl/Bi24O31Cl10 heterojunctions via self-combustion of ionic liquid with enhanced visible-light photocatalytic activities. Appl Catal B 150-151:574–584. https://doi.org/10.1016/j.apcatb.2014.01.009

    Article  CAS  Google Scholar 

  24. Zhou CY, Lai C, Xu P, Zeng GM, Huang DL, Zhang C, Cheng M, Hu L, Wan J, Liu Y, Xiong WP, Deng YC, Wen M (2018) In situ grown AgI/Bi12O17Cl2 heterojunction photocatalysts for visible light degradation of sulfamethazine: efficiency, pathway, and mechanism. ACS Sustain Chem Eng 6(3):4174–4184. https://doi.org/10.1021/acssuschemeng.7b04584

    Article  CAS  Google Scholar 

  25. Zhao C, Wang ZH, Li X, Yi XH, Chu HY, Chen X, Wang CC (2020) Facile fabrication of BUC-21/Bi24O31Br10 composites for enhanced photocatalytic Cr (VI) reduction under white light. Chem Eng J 389:123431. https://doi.org/10.1016/j.cej.2019.123431

    Article  CAS  Google Scholar 

  26. Ning SB, Ding LY, Lin ZG, Lin QY, Zhang HL, Lin HX, Long JL, Wang XX (2016) One-pot fabrication of Bi3O4Cl/BiOCl plate-on-plate heterojunction with enhanced visible-light photocatalytic activity. Appl Catal B 185:203–212. https://doi.org/10.1016/j.apcatb.2015.12.021

    Article  CAS  Google Scholar 

  27. Long ZQ, Xian G, Zhang GM, Zhang T, Li XM (2020) BiOCl-Bi12O17Cl2 nanocomposite with high visible-light photocatalytic activity prepared by an ultrasonic hydrothermal method for removing dye and pharmaceutical. Chin J Catal 41(3):464–473. https://doi.org/10.1016/s1872-2067(19)63474-1

    Article  CAS  Google Scholar 

  28. Jin XL, Lv CD, Zhou X, Zhang CM, Zhang B, Su H, Chen G (2018) Realizing the regulated carrier separation and exciton generation of Bi24O31Cl10 via a carbon doping strategy. J Mater Chem A 6:24350–24357. https://doi.org/10.1039/c8ta08598f

    Article  CAS  Google Scholar 

  29. Xiong J, Song P, Di J, Li HM (2020) Bismuth-rich bismuth oxyhalides: a new opportunity to trigger high-efficiency photocatalysis. J Mater Chem A 8:21434–21454. https://doi.org/10.1039/d0ta06044e

    Article  CAS  Google Scholar 

  30. Liu X, Song YG, Zhao QH, Du CF, Liu ZL (2016) Constructing Bi24O31Cl10/BiOCl heterojunction via a simple thermal annealing route for achieving enhanced photocatalytic activity and selectivity. Sci Rep 6:28689. https://doi.org/10.1038/srep28689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li H, Zhu M, Chen W, Wang K (2017) Ternary heterojunctions composed of BiOCl, BiVO4 and nitrogen-doped carbon quantum dots for use in photoelectrochemical sensing: effective charge separation and application to ultrasensitive sensing of dopamine. Microchim Acta 184(12):4827–4833. https://doi.org/10.1007/s00604-017-2529-0

    Article  CAS  Google Scholar 

  32. Che HN, Che GB, Dong HJ, Hu W, Hu H, Liu CB, Li CM (2018) Fabrication of Z-scheme Bi3O4Cl/g-C3N4 2D/2D heterojunctions with enhanced interfacial charge separation and photocatalytic degradation various organic pollutants activity. Appl Surf Sci 455:705–716. https://doi.org/10.1016/j.apsusc.2018.06.038

    Article  CAS  Google Scholar 

  33. Jiang EH, Song N, Zhang XX, Yang LL, Liu CB, Dong HJ (2020) In-situ fabrication of Z-scheme Bi3O4Cl/Bi12O17Cl2 heterostructure by facile pH control strategy to boost removal of various pollutants in water. Chem Eng J 388:123483. https://doi.org/10.1016/j.cej.2019.123483

    Article  CAS  Google Scholar 

  34. Duan W, Yan PC, Dong JT, Chen Y, He XY, Chen JP, Qian JC, Xu L, Li HN (2019) A self-powered photoelectrochemical aptamer probe for oxytetracycline based on the use of a NiO nanocrystal/g-C3N4 heterojunction. Microchim Acta 186:737. https://doi.org/10.1007/s00604-019-3856-0

    Article  CAS  Google Scholar 

Download references

Funding

This work has been financially supported by the High-tech Research Key laboratory of Zhenjiang (Grant No. SS2018002), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment (XTCXSZ2019-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henan Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 4864 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Chen, Y., Yan, P. et al. A photoelectrochemical aptasensor of ciprofloxacin based on Bi24O31Cl10/BiOCl heterojunction. Microchim Acta 188, 289 (2021). https://doi.org/10.1007/s00604-021-04952-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04952-5

Keywords

Navigation