Skip to main content

Advertisement

Log in

Immune-microbiome interplay and its implications in neurodegenerative disorders

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The neurodegeneration and its related CNS pathologies need an urgent toolbox to minimize the global mental health burden. The neuroimmune system critically regulates the brain maturation and survival of neurons across the nervous system. The chronic manipulated immunological drive can accelerate the neuronal pathology hence promoting the burden of neurodegenerative disorders. The gut is home for trillions of microorganisms having a mutual relationship with the host system. The gut-brain axis is a unique biochemical pathway through which the gut residing microbes connects with the brain cells and regulates various physiological and pathological cascades. The gut microbiota and CNS communicate using a common language that synchronizes the tuning of immune cells. The intestinal gut microbial community has a profound role in the maturation of the immune system as well as the development of the nervous system. We have critically summarised the clinical and preclinical reports from the past a decade emphasising that the significant changes in gut microbiota can enhance the host susceptibility towards neurodegenerative disorders. In this review, we have discussed how the gut microbiota-mediated immune response inclines the host physiology towards neurodegeneration and indicated the gut microbiota as a potential future candidate for the management of neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akkasheh G, Kashani-Poor Z, Tajabadi-Ebrahimi M et al (2016) Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition 32:315–320

    CAS  PubMed  Google Scholar 

  • Amaral FA, Sachs D, Costa VV et al (2008) Commensal microbiota is fundamental for the development of inflammatory pain. Proc Natl Acad Sci 105:2193–2197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Appel SH, Zhao W, Beers DR, Henkel JS (2011) The microglial-motoneuron dialogue in ALS. Acta Myol 30:4

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atarashi K, Tanoue T, Ando M et al (2015) Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163:367–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bakshi R, Xu Y, Mueller KA et al (2018) Urate mitigates oxidative stress and motor neuron toxicity of astrocytes derived from ALS-linked SOD1G93A mutant mice. Mol Cell Neurosci 92:12–16

    CAS  PubMed  Google Scholar 

  • Bannister K, Smith RV, Wilkins P, Cummins TM (2021) Towards optimising experimental quantification of persistent pain in Parkinson’s disease using psychophysical testing. npj Park Dis

  • Bano D, Zanetti F, Mende Y, Nicotera P (2011) Neurodegenerative processes in Huntington’s disease. Cell Death Dis 2:e228–e228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berer K, Gerdes LA, Cekanaviciute E et al (2017) Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci 114:10719–10724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berer K, Mues M, Koutrolos M et al (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479:538–541

    CAS  PubMed  Google Scholar 

  • Bhela S, Kempsell C, Manohar M et al (2015) Nonapoptotic and extracellular activity of granzyme B mediates resistance to regulatory T cell (Treg) suppression by HLA-DR−CD25hiCD127lo Tregs in multiple sclerosis and in response to IL-6. J Immunol 194:2180–2189

    CAS  PubMed  Google Scholar 

  • Bhuiyan P, Chen Y, Karim M et al (2021) Bidirectional communication between mast cells and the gut-brain axis in neurodegenerative disease: avenues for therapeutic intervention. Brain Res Bull

  • Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22:123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolte AC, Lukens JR (2018) Th17 cells in Parkinson’s disease: the bane of the midbrain. Cell Stem Cell 23:5–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonfili L, Cecarini V, Berardi S et al (2017) Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 7:1–21

    CAS  Google Scholar 

  • Braniste V, Al-Asmakh M, Kowal C et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6:263ra158–263ra158

  • Brenner D, Hiergeist A, Adis C et al (2018) The fecal microbiome of ALS patients. Neurobiol Aging 61:132–137

    PubMed  Google Scholar 

  • Breyner NM, Michon C, de Sousa CS et al (2017) Microbial anti-inflammatory molecule (MAM) from Faecalibacterium prausnitzii shows a protective effect on DNBS and DSS-induced colitis model in mice through inhibition of NF-κB pathway. Front Microbiol 8:114

    PubMed  PubMed Central  Google Scholar 

  • Browne TC, McQuillan K, McManus RM et al (2013) IFN-γ production by amyloid β–specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. J Immunol 190:2241–2251

    CAS  PubMed  Google Scholar 

  • Campos-Acuña J, Elgueta D, Pacheco R (2019) T-cell-driven inflammation as a mediator of the gut-brain axis involved in Parkinson’s disease. Front Immunol 10:239

    PubMed  PubMed Central  Google Scholar 

  • Cao Y, Goods BA, Raddassi K et al (2015) Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Sci Transl Med 7:287ra74–287ra74

  • Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol Q Publ Hell Soc Gastroenterol 28:203

    Google Scholar 

  • Cekanaviciute E, Yoo BB, Runia TF et al (2017) Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci 114:10713–10718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang K-H, Wu Y-R, Chen Y-C, Chen C-M (2015) Plasma inflammatory biomarkers for Huntington’s disease patients and mouse model. Brain Behav Immun 44:121–127

    CAS  PubMed  Google Scholar 

  • Cheng LH, Liu YW, Wu CC et al (2019) Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders. J. Food Drug Anal

  • Cheung SG, Goldenthal AR, Uhlemann AC et al (2019) Systematic review of gut microbiota and major depression. Front Psychiatry. https://doi.org/10.3389/fpsyt.2019.00034

    Article  PubMed  PubMed Central  Google Scholar 

  • Choileáin SN, Kleinewietfeld M, Raddassi K et al (2020) CXCR3+ T cells in multiple sclerosis correlate with reduced diversity of the gut microbiome. J Transl Autoimmun. https://doi.org/10.1016/j.jtauto.2019.100032

    Article  PubMed  Google Scholar 

  • Chunchai T, Thunapong W, Yasom S et al (2018) Decreased microglial activation through gut-brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese-insulin resistant rats. J Neuroinflammation 15:1–15

    Google Scholar 

  • Clarke G, O’Mahony SM, Dinan TG, Cryan JF (2014) Priming for health: gut microbiota acquired in early life regulates physiology, brain and behaviour. Acta Paediatr 103:812–819

    CAS  PubMed  Google Scholar 

  • Costa MC, Santos JRA, Ribeiro MJA et al (2016) The absence of microbiota delays the inflammatory response to Cryptococcus gattii. Int J Med Microbiol 306:187–195

    CAS  PubMed  Google Scholar 

  • Cryan JF, Dinan TG (2015) Gut microbiota: microbiota and neuroimmune signalling—Metchnikoff to microglia. Nat Rev Gastroenterol Hepatol 12:494–496

    PubMed  Google Scholar 

  • Dahlin M, Prast-Nielsen S (2019) The gut microbiome and epilepsy. EBioMedicine 44:741–746. https://doi.org/10.1016/j.ebiom.2019.05.024

    Article  PubMed  PubMed Central  Google Scholar 

  • Danikowski KM, Jayaraman S, Prabhakar B (2017) Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation 14:117

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Paola M, Sestito SE, Mariani A et al (2016) Synthetic and natural small molecule TLR4 antagonists inhibit motoneuron death in cultures from ALS mouse model. Pharmacol Res 103:180–187

    PubMed  Google Scholar 

  • Dinan TG, Cryan JF (2017) Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 595:489–503

    CAS  PubMed  Google Scholar 

  • Donaldson DS, Bradford BM, Artis D, Mabbott NA (2015) Reciprocal regulation of lymphoid tissue development in the large intestine by IL-25 and IL-23. Mucosal Immunol 8:582–595

    CAS  PubMed  Google Scholar 

  • Du G, Dong W, Yang Q et al (2021) Altered gut microbiota related to inflammatory responses in patients with Huntington’s disease. Front Immunol. https://doi.org/10.3389/fimmu.2020.603594

    Article  PubMed  PubMed Central  Google Scholar 

  • Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK et al (2018) Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron. https://doi.org/10.1016/j.neuron.2018.06.030

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellrichmann G, Reick C, Saft C, Linker RA (2013) The role of the immune system in Huntington’s disease. Clin Dev Immunol 2013

  • Engen PA, Zaferiou A, Rasmussen H et al (2020) Single-arm, non-randomized, time series, single-subject study of fecal microbiota transplantation in multiple sclerosis. Front Neurol. https://doi.org/10.3389/fneur.2020.00978

    Article  PubMed  PubMed Central  Google Scholar 

  • Erny D, de Angelis ALH, Jaitin D et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18:965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Wang H, Liu X et al (2019) Crosstalk between the ketogenic diet and epilepsy: from the perspective of gut microbiota. Mediators Inflamm. https://doi.org/10.1155/2019/8373060

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang X (2016) Potential role of gut microbiota and tissue barriers in Parkinson’s disease and amyotrophic lateral sclerosis. Int J Neurosci 126:771–776

    CAS  PubMed  Google Scholar 

  • Farooqui AA (2021) Contribution of gut microbiota in the pathogenesis of amyotrophic lateral sclerosis and Huntington’s disease. In: Gut microbiota in neurologic and visceral diseases

  • Ferretti P, Pasolli E, Tett A et al (2018) Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24:133–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foster JA, Neufeld K-AM (2013) Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312

    CAS  PubMed  Google Scholar 

  • Francino MP (2018) Birth mode-related differences in gut microbiota colonization and immune system development. Ann Nutr Metab 73:12–16

    CAS  PubMed  Google Scholar 

  • Fülling C, Lach G, Bastiaanssen TFS et al (2020) Adolescent dietary manipulations differentially affect gut microbiota composition and amygdala neuroimmune gene expression in male mice in adulthood. Brain Behav Immun 87:666–678

    PubMed  Google Scholar 

  • Fung TC (2020) The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiol Dis 136:104714

    CAS  PubMed  Google Scholar 

  • Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20:145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gabriel FC, Fantuzzi G (2019) The association of short-chain fatty acids and leptin metabolism: a systematic review. Nutr Res

  • Gorecki AM, Preskey L, Bakeberg MC et al (2019) Altered gut microbiome in Parkinson’s disease and the influence of lipopolysaccharide in a human α-synuclein over-expressing mouse model. Front Neurosci. https://doi.org/10.3389/fnins.2019.00839

    Article  PubMed  PubMed Central  Google Scholar 

  • Gross R (2017) Is cesarean section associated with risk for autism spectrum disorder? Eur Neuropsychopharmacol 27:S749

    Google Scholar 

  • Gualtieri P, Marchetti M, Cioccoloni G et al (2020) Psychobiotics regulate the anxiety symptoms in carriers of allele A of IL-1 β gene: a randomized, placebo-controlled clinical trial. Mediators Inflamm. https://doi.org/10.1155/2020/2346126

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutzeit C, Magri G, Cerutti A (2014) Intestinal IgA production and its role in host-microbe interaction. Immunol Rev 260:76–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hang Mak CC, Hong Meng HY, Yan Mak JW, et al (2020) IDDF2020-ABS-0203 Investigating the evidence of prebiotic supplementation in the attenuation of age-related neurodegeneration in in vivo studies: a systematic review and meta-analysis with bayesian inference

  • Hazan S (2020) Rapid improvement in Alzheimer’s disease symptoms following fecal microbiota transplantation: a case report. J Int Med Res 48:0300060520925930. https://doi.org/10.1177/0300060520925930

    Article  PubMed Central  Google Scholar 

  • Heijtz RD, Wang S, Anuar F et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci 108:3047–3052

    CAS  PubMed Central  Google Scholar 

  • Henry RJ, Ritzel RM, Barrett JP et al (2020) Microglial depletion with CSF1R inhibitor during chronic phase of experimental traumatic brain injury reduces neurodegeneration and neurological deficits. J Neurosci 40:2960–2974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hertzberg VS, Singh H, Fournier CN et al (2021) Gut microbiome differences between amyotrophic lateral sclerosis patients and spouse controls. Amyotroph Lateral Scler Front Degener. https://doi.org/10.1080/21678421.2021.1904994

    Article  Google Scholar 

  • Hrncir T, Stepankova R, Kozakova H et al (2008) Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice. BMC Immunol 9:65

    PubMed  PubMed Central  Google Scholar 

  • Hsieh-Li HM, Lee GC, Lee YS et al (2021) Prebiotic lactulose ameliorates the cognitive deficit in Alzheimer’s disease mouse model through macroautophagy and chaperone-mediated autophagy pathways. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.0c07327

    Article  PubMed  Google Scholar 

  • Iannone LF, Gómez-Eguílaz M, Citaro R, Russo E (2020) The potential role of interventions impacting on gut-microbiota in epilepsy. Exp Rev Clin Pharmacol 13:423–435. https://doi.org/10.1080/17512433.2020.1759414

    Article  CAS  Google Scholar 

  • Ikawa M, Okazawa H, Tsujikawa T et al (2015) Increased oxidative stress is related to disease severity in the ALS motor cortex: a PET study. Neurology 84:2033–2039

    CAS  PubMed  Google Scholar 

  • Jameson KG, Hsiao EY (2018) Linking the gut microbiota to a brain neurotransmitter. Trends Neurosci 41:413–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janik R, Thomason LAM, Stanisz AM et al (2016) Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. Neuroimage 125:988–995

    CAS  PubMed  Google Scholar 

  • Kabouridis PS, Lasrado R, McCallum S et al (2015) The gut microbiota keeps enteric glial cells on the move; prospective roles of the gut epithelium and immune system. Gut Microbes. https://doi.org/10.1080/19490976.2015.1109767

    Article  PubMed  PubMed Central  Google Scholar 

  • Kadowaki A, Saga R, Lin Y et al (2019) Gut microbiota-dependent CCR9+ CD4+ T cells are altered in secondary progressive multiple sclerosis. Brain. https://doi.org/10.1093/brain/awz012

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang D-W, Park JG, Ilhan ZE, et al (2013) Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE 8

  • Keshavarzian A, Green SJ, Engen PA et al (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30:1351–1360

    CAS  PubMed  Google Scholar 

  • Kim CH, Park J, Kim M (2014) Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Netw 14:277–288

    PubMed  PubMed Central  Google Scholar 

  • Kong G, Lê Cao K-A, Judd LM et al (2018a) Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 104268

  • Kong H, Dong C, Tian Z et al (2018b) Altered immunity in crowded Mythimna separata is mediated by octopamine and dopamine. Sci Rep 8:1–10

    Google Scholar 

  • Krajmalnik-Brown R, Kang D-W, Park JG et al (2017) Microbiome markers and therapies for autism spectrum disorders

  • Kuai X, Yao X, Xu L et al (2021) Evaluation of fecal microbiota transplantation in Parkinson’s disease patients with constipation. Microb Cell Fact 20:98. https://doi.org/10.1186/s12934-021-01589-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurokawa S, Kishimoto T, Mizuno S et al (2018) The effect of fecal microbiota transplantation on psychiatric symptoms among patients with irritable bowel syndrome, functional diarrhea and functional constipation: an open-label observational study. J Affect Disord 235:506–512

    PubMed  Google Scholar 

  • Kustrimovic N, Comi C, Magistrelli L et al (2018) Parkinson’s disease patients have a complex phenotypic and functional Th1 bias: Cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naïve and drug-treated patients. J Neuroinflammation. https://doi.org/10.1186/s12974-018-1248-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Langen UH, Ayloo S, Gu C (2019) Development and cell biology of the blood-brain barrier. Annu Rev Cell Dev Biol 35:591–613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lass-Flörl C, Dierich MP, Fuchs D et al (2001) Antifungal activity against Candida species of the selective serotonin-reuptake inhibitor, sertraline. Clin Infect Dis 33:e135–e136

    PubMed  Google Scholar 

  • Lee KE, Kim JK, Kim DH (2020) Orally administered antibiotics vancomycin and ampicillin cause cognitive impairment with gut dysbiosis in mice with transient global forebrain ischemia. Front Microbiol. https://doi.org/10.3389/fmicb.2020.564271

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee SJ, Sim G-Y, Lee Y et al (2017) Engineering of Escherichia coli for the synthesis of N-hydroxycinnamoyl tryptamine and serotonin. J Ind Microbiol Biotechnol 44:1551–1560

    CAS  PubMed  Google Scholar 

  • Lew L-C, Hor Y-Y, Yusoff NA et al (2019) Probiotic Lactobacillus plantarum P8 alleviated stress and anxiety while enhancing memory and cognition in stressed adults: a randomised, double-blind, placebo-controlled study. Clin Nutr 38:2053–2064

    CAS  PubMed  Google Scholar 

  • Li Z, Zhu H, Guo Y et al (2020) Gut microbiota regulate cognitive deficits and amyloid deposition in a model of Alzheimer’s disease. J Neurochem. https://doi.org/10.1111/jnc.15031

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang S, Wu X, Hu X et al (2018) Recognizing depression from the microbiota–gut–brain axis. Int J Mol Sci. https://doi.org/10.3390/ijms19061592

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao JF, Cheng YF, You ST et al (2020) Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson’s disease. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2020.07.036

    Article  PubMed  Google Scholar 

  • Lin C-H, Chen C-C, Chiang H-L et al (2019) Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J Neuroinflammation 16:1–9

    Google Scholar 

  • Lin S, Mukherjee S, Li J et al (2021) Mucosal immunity–mediated modulation of the gut microbiome by oral delivery of probiotics into Peyer’s patches. Sci Adv 7:eabf0677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Zhao Y (2007) Toll-like receptors and immune regulation: their direct and indirect modulation on regulatory CD4+ CD25+ T cells. Immunology 122:149–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Gao J, Zhu M et al (2020) Gut microbiota and dysbiosis in alzheimer’s disease: implications for pathogenesis and treatment. Mol. Neurobiol

  • Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672

    CAS  PubMed  Google Scholar 

  • Ma Q, Xing C, Long W et al (2019a) Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation 16:1–14

    Google Scholar 

  • Ma Q, Xing C, Long W et al (2019b) Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J. Neuroinflammation

  • Macrì S, Spinello C, Widomska J et al (2018) Neonatal corticosterone mitigates autoimmune neuropsychiatric disorders associated with streptococcus in mice. Sci Rep 8:1–12

    Google Scholar 

  • Magistrelli L, Storelli E, Rasini E et al (2020) Relationship between circulating CD4+ T lymphocytes and cognitive impairment in patients with Parkinson’s disease. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2020.07.005

    Article  PubMed  Google Scholar 

  • Magna M, Pisetsky DS (2014) The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol Med 20:138–146

    PubMed  PubMed Central  Google Scholar 

  • Maher SE, O’Brien EC, Moore RL, et al (2020) The association between the maternal diet and the maternal and infant gut microbiome: a systematic review. Br J Nutr 1–29

  • Makkawi S, Camara-Lemarroy C, Metz L (2018) Fecal microbiota transplantation associated with 10 years of stability in a patient with SPMS. Neurol Neuroimmunol NeuroInflamm. https://doi.org/10.1212/NXI.0000000000000459

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandrioli J, Amedei A, Cammarota G et al (2019) FETR-ALS study protocol: a randomized clinical trial of fecal microbiota transplantation in amyotrophic lateral sclerosis. Front Neurol. https://doi.org/10.3389/fneur.2019.01021

    Article  PubMed  PubMed Central  Google Scholar 

  • Maslowski KM, Mackay CR (2011) Diet, gut microbiota and immune responses. Nat Immunol 12:5–9

    CAS  PubMed  Google Scholar 

  • Mayer EA, Tillisch K, Gupta A (2015) Gut/brain axis and the microbiota. J Clin Invest 125:926–938

    PubMed  PubMed Central  Google Scholar 

  • Mazzini L, Mogna L, De Marchi F et al (2018) Potential role of gut microbiota in ALS pathogenesis and possible novel therapeutic strategies. J Clin Gastroenterol 52:S68–S70

    CAS  PubMed  Google Scholar 

  • Mertsalmi TH, Aho VTE, Pereira PAB et al (2017) More than constipation–bowel symptoms in Parkinson’s disease and their connection to gut microbiota. Eur J Neurol 24:1375–1383

    CAS  PubMed  Google Scholar 

  • Messaoudi M, Violle N, Bisson J-F et al (2011) Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2:256–261

    PubMed  Google Scholar 

  • Mezö C, Dokalis N, Mossad O et al (2020) Different effects of constitutive and induced microbiota modulation on microglia in a mouse model of Alzheimer’s disease. Acta Neuropathol Commun. https://doi.org/10.1186/s40478-020-00988-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittal K, Eremenko E, Berner O et al (2019) CD4 T cells induce a subset of MHCII-expressing microglia that attenuates Alzheimer pathology. Iscience 16:298–311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake S, Kim S, Suda W, et al (2015) Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS ONE 10

  • Moore RE, Townsend SD (2019) Temporal development of the infant gut microbiome. Open Biol 9:190128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morais LH, Hara DB, Bicca MA et al (2018) Early signs of colonic inflammation, intestinal dysfunction, and olfactory impairments in the rotenone-induced mouse model of Parkinson’s disease. Behav Pharmacol 29:199–210

    CAS  PubMed  Google Scholar 

  • Morikawa M, Tsujibe S, Kiyoshima-Shibata J et al (2016) Microbiota of the small intestine is selectively engulfed by phagocytes of the lamina propria and Peyer’s patches. PLoS ONE 11

  • Mörkl S, Butler MI, Holl A et al (2020) Probiotics and the microbiota-gut-brain axis: focus on psychiatry. Curr Nutr Rep 9:171–182. https://doi.org/10.1007/s13668-020-00313-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Moschopoulos C, Kratimenos P, Koutroulis I et al (2018) The neurodevelopmental perspective of surgical necrotizing enterocolitis: the role of the gut-brain axis. Mediators Inflamm 2018

  • Mosher KI, Wyss-Coray T (2015) Go with your gut: microbiota meet microglia. Nat Neurosci 18:930–931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagai M, Re DB, Nagata T et al (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson JK, Holmes E, Kinross J et al (2012) Host-gut microbiota metabolic interactions. Science (80-) 336:1262–1267

    CAS  Google Scholar 

  • Nuzum ND, Loughman A, Szymlek-Gay EA et al (2020) Gut microbiota differences between healthy older adults and individuals with Parkinson’s disease: a systematic review. Neurosci Biobehav Rev

  • Nzakizwanayo J, Dedi C, Standen G et al (2015) Escherichia coli Nissle 1917 enhances bioavailability of serotonin in gut tissues through modulation of synthesis and clearance. Sci Rep 5:17324

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donovan SM, Crowley EK, Brown JRM et al (2020) Nigral overexpression of α-synuclein in a rat Parkinson’s disease model indicates alterations in the enteric nervous system and the gut microbiome. Neurogastroenterol Motil. https://doi.org/10.1111/nmo.13726

    Article  PubMed  Google Scholar 

  • Olson CA, Vuong HE, Yano JM et al (2018) The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173:1728–1741. https://doi.org/10.1016/j.cell.2018.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan J-X, Deng F-L, Zeng B-H et al (2019) Absence of gut microbiota during early life affects anxiolytic Behaviors and monoamine neurotransmitters system in the hippocampal of mice. J Neurol Sci 400:160–168

    PubMed  Google Scholar 

  • Paulsen JS, Nopoulos PC, Aylward E et al (2010) Striatal and white matter predictors of estimated diagnosis for Huntington disease. Brain Res Bull 82:201–207

    PubMed  PubMed Central  Google Scholar 

  • Pearson-Leary J, Zhao C, Bittinger K et al (2019) The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in the ventral hippocampus of stress vulnerable rats. Mol Psychiatry 1–12

  • Pellegrini C, Antonioli L, Calderone V et al (2020) Microbiota-gut-brain axis in health and disease: Is NLRP3 inflammasome at the crossroads of microbiota-gut-brain communications? Prog Neurobiol 191:101806

    CAS  PubMed  Google Scholar 

  • Pellegrini C, Antonioli L, Colucci R et al (2018) Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases? Acta Neuropathol 136:345–361

    CAS  PubMed  Google Scholar 

  • Philips T, Robberecht W (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 10:253–263

    CAS  PubMed  Google Scholar 

  • Pokusaeva K, Johnson C, Luk B et al (2017) GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol Motil 29:e12904

    Google Scholar 

  • Powell N, Walker MM, Talley NJ (2017) The mucosal immune system: master regulator of bidirectional gut–brain communications. Nat Rev Gastroenterol Hepatol 14:143

    CAS  PubMed  Google Scholar 

  • Pröbstel AK, Zhou X, Baumann R et al (2020) Gut microbiota–specific iga+ B cells traffic to the CNS in active multiple sclerosis. Sci Immunol. https://doi.org/10.1126/SCIIMMUNOL.ABC7191

    Article  PubMed  PubMed Central  Google Scholar 

  • Puentes F, Malaspina A, Van Noort JM, Amor S (2016) Non-neuronal cells in ALS: role of glial, immune cells and blood-CNS barriers. Brain Pathol 26:248–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian K, Huang H, Peterson A et al (2017) Sporadic ALS astrocytes induce neuronal degeneration in vivo. Stem Cell Reports 8:843–855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quévrain E, Maubert MA, Michon C et al (2016) Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65:415–425

    PubMed  Google Scholar 

  • Radulescu CI, Garcia-Miralles M, Sidik H, et al (2018) Manipulation of microbiota reveals altered myelination and white matter plasticity in a model of Huntington disease. bioRxiv

  • Radulescu CI, Garcia-Miralles M, Sidik H et al (2020) Reprint of: Manipulation of microbiota reveals altered callosal myelination and white matter plasticity in a model of Huntington disease. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2020.104744

    Article  PubMed  Google Scholar 

  • Reiff C, Kelly D (2010) Inflammatory bowel disease, gut bacteria and probiotic therapy. Int J Med Microbiol 300:25–33

    CAS  PubMed  Google Scholar 

  • Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain–gut–enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6:306

    CAS  PubMed  Google Scholar 

  • Ribeiro SC, Domingos-Lopes MFP, Stanton C et al (2018) Production of-aminobutyric acid (GABA) by Lactobacillus otakiensis and other Lactobacillus sp. isolated from traditional Pico cheese. Int J Dairy Technol 71:1012–1017

    CAS  Google Scholar 

  • Rosenblum LT, Shamamandri-Markandaiah S, Ghosh B et al (2017) Mutation of the caspase-3 cleavage site in the astroglial glutamate transporter EAAT2 delays disease progression and extends lifespan in the SOD1-G93A mouse model of ALS. Exp Neurol 292:145–153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saksida T, Koprivica I, Vujičić M et al (2017) Impaired IL-17 production in gut-residing immune cells of 5xFAD mice with alzheimer’s disease pathology. J Alzheimer’s Dis. https://doi.org/10.3233/JAD-170538

    Article  Google Scholar 

  • Sampson TR, Debelius JW, Thron T et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167:1469–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saraf MK, Piccolo BD, Bowlin AK et al (2017) Formula diet driven microbiota shifts tryptophan metabolism from serotonin to tryptamine in neonatal porcine colon. Microbiome 5:77

    PubMed  PubMed Central  Google Scholar 

  • Saresella M, Marventano I, Barone M et al (2020) Alterations in circulating fatty acid are associated with gut microbiota dysbiosis and inflammation in multiple sclerosis. Front Immunol. https://doi.org/10.3389/fimmu.2020.01390

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. In: Parkinson’s disease and related disorders. Springer, pp 373–381

  • Schwiertz A, Spiegel J, Dillmann U et al (2018) Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson’s disease. Parkinsonism Relat Disord 50:104–107

    PubMed  Google Scholar 

  • Scott GA, Terstege DJ, Vu AP et al (2020) Disrupted neurogenesis in germ-free mice: effects of age and sex. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2020.00407

    Article  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Guan Q, Zhang X et al (2020) New mechanism of neuroinflammation in Alzheimer’s disease: the activation of NLRP3 inflammasome mediated by gut microbiota. Prog Neuro-Psychopharmacol Biol Psychiatry. https://doi.org/10.1016/j.pnpbp.2020.109884

    Article  Google Scholar 

  • Sherman MP, Zaghouani H, Niklas V (2015) Gut microbiota, the immune system, and diet influence the neonatal gut–brain axis. Pediatr Res 77:127–135

    PubMed  Google Scholar 

  • Shi H, Wang Q, Zheng M et al (2020) Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J Neuroinflammation. https://doi.org/10.1186/s12974-020-01760-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Shmuel-Galia L, Klug Y, Porat Z et al (2017) Intramembrane attenuation of the TLR4-TLR6 dimer impairs receptor assembly and reduces microglia-mediated neurodegeneration. J Biol Chem 292:13415–13427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva RAC, da Silva CR, de Andrade Neto JB et al (2017) In vitro anti-Candida activity of selective serotonin reuptake inhibitors against fluconazole-resistant strains and their activity against biofilm-forming isolates. Microb Pathog 107:341–348

    CAS  PubMed  Google Scholar 

  • Simpson DSA, Oliver PL (2020) ROS generation in microglia: understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants 9:743

    CAS  PubMed Central  Google Scholar 

  • Smith PM, Howitt MR, Panikov N et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science (80-) 341:569–573

    CAS  Google Scholar 

  • Sokoloff B, Saelhof CC, Yoshino A (1967) Candida albicans as a producer of serotonin. Growth 31:297–300

    CAS  PubMed  Google Scholar 

  • Sommer A, Marxreiter F, Krach F et al (2018) Th17 lymphocytes induce neuronal cell death in a human iPSC-based model of Parkinson’s disease. Cell Stem Cell 23:123–131

    CAS  PubMed  Google Scholar 

  • Sorce S, Stocker R, Seredenina T et al (2017) NADPH oxidases as drug targets and biomarkers in neurodegenerative diseases: what is the evidence? Free Radic Biol Med 112:387–396

    CAS  PubMed  Google Scholar 

  • Spiljar M, Merkler D, Trajkovski M (2017) The immune system bridges the gut microbiota with systemic energy homeostasis: focus on TLRs, mucosal barrier, and SCFAs. Front Immunol 8:1353

    PubMed  PubMed Central  Google Scholar 

  • Srivastav S, Neupane S, Bhurtel S et al (2019) Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. J Nutr Biochem. https://doi.org/10.1016/j.jnutbio.2019.03.021

    Article  PubMed  Google Scholar 

  • Stanisavljević S, Čepić A, Bojić S et al (2019) Oral neonatal antibiotic treatment perturbs gut microbiota and aggravates central nervous system autoimmunity in Dark Agouti rats. Sci Rep 9:1–13

    Google Scholar 

  • Sun J, Xu J, Ling Y et al (2019) Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry. https://doi.org/10.1038/s41398-019-0525-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun J, Xu J, Yang B et al (2020) Effect of clostridium butyricum against microglia-mediated neuroinflammation in Alzheimer’s disease via regulating gut microbiota and metabolites butyrate. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201900636

    Article  PubMed  Google Scholar 

  • Sun L, Shen R, Agnihotri SK et al (2018a) Lack of PINK1 alters glia innate immune responses and enhances inflammation-induced, nitric oxide-mediated neuron death. Sci Rep 8:1–16

    Google Scholar 

  • Sun M-F, Shen Y-Q (2018) Dysbiosis of gut microbiota and microbial metabolites in Parkinson’s disease. Ageing Res Rev 45:53–61

    CAS  PubMed  Google Scholar 

  • Sun MF, Zhu YL, Zhou ZL et al (2018b) Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2018.02.005

    Article  PubMed  Google Scholar 

  • Thompson AM, Bizzarro MJ (2008) Necrotizing enterocolitis in newborns. Drugs 68:1227–1238

    CAS  PubMed  Google Scholar 

  • Tian T, Xu B, Qin Y et al (2019) Clostridium butyricum miyairi 588 has preventive effects on chronic social defeat stress-induced depressive-like behaviour and modulates microglial activation in mice. Biochem Biophys Res Commun 516:430–436

    CAS  PubMed  Google Scholar 

  • Tlaskalová-Hogenová H, Štěpánková R, Kozáková H et al (2011) The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol 8:110

    PubMed  PubMed Central  Google Scholar 

  • Tsunoda I (2017) Lymphatic system and gut microbiota affect immunopathology of neuroinflammatory diseases, including multiple sclerosis, neuromyelitis optica and Alzheimer’s disease. Clin Exp Neuroimmunol

  • Vaghef-Mehrabany E, Alipour B, Homayouni-Rad A et al (2014) Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition 30:430–435

    CAS  PubMed  Google Scholar 

  • Valles-Colomer M, Falony G, Darzi Y et al (2019) The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 4:623–632. https://doi.org/10.1038/s41564-018-0337-x

    Article  CAS  PubMed  Google Scholar 

  • van Pamelen J, van Olst L, Budding AE et al (2020) Alterations of gut microbiota and the brain-immune-intestine axis in patients with relapsing-remitting multiple sclerosis after treatment with oral cladribine: protocol for a prospective observational study. JMIR Res Protoc. https://doi.org/10.2196/16162

    Article  PubMed  PubMed Central  Google Scholar 

  • van Thiel IAM, De Jonge WJ, Chiu IM, van den Wijngaard RM (2020) Microbiota-neuroimmune cross talk in stress-induced visceral hypersensitivity of the bowel. Am J Physiol Liver Physiol 318:G1034–G1041

    Google Scholar 

  • Vascellari S, Melis M, Palmas V et al (2021) Clinical phenotypes of Parkinson’s disease associate with distinct gut microbiota and metabolome enterotypes. Biomolecules. https://doi.org/10.3390/biom11020144

    Article  PubMed  PubMed Central  Google Scholar 

  • Vrieze A, Holleman F, Zoetendal EG et al (2010) The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia 53:606–613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vulevic J, Juric A, Walton GE et al (2015) Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br J Nutr 114:586–595

    CAS  PubMed  Google Scholar 

  • Wang L, Fleming SM, Chesselet M-F, Taché Y (2008) Abnormal colonic motility in mice overexpressing human wild-type α-synuclein. NeuroReport 19:873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wassenaar TM, Panigrahi P (2014) Is a foetus developing in a sterile environment? Lett Appl Microbiol 59:572–579

    CAS  PubMed  Google Scholar 

  • Whitehead WE, Crowell MD, Robinson JC et al (1992) Effects of stressful life events on bowel symptoms: subjects with irritable bowel syndrome compared with subjects without bowel dysfunction. Gut 33:825–830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wingo AP, Liu Y, Gerasimov ES et al (2021) Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat Genet. https://doi.org/10.1038/s41588-020-00773-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Wrzosek L, Miquel S, Noordine M-L et al (2013) Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol 11:61

    PubMed  PubMed Central  Google Scholar 

  • Wu S, Yi J, Zhang YG et al (2015) Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep. https://doi.org/10.14814/phy2.12356

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Liu W, Li Q et al (2018) Dietary chlorogenic acid regulates gut microbiota, serum-free amino acids and colonic serotonin levels in growing pigs. Int J Food Sci Nutr 69:566–573

    CAS  PubMed  Google Scholar 

  • Xiang P, Chew WS, Seow WL et al (2021) The S1P2 receptor regulates blood-brain barrier integrity and leukocyte extravasation with implications for neurodegenerative disease. Neurochem Int 146:105018

    CAS  PubMed  Google Scholar 

  • Ximenez C, Torres J (2017) Development of microbiota in infants and its role in maturation of gut mucosa and immune system. Arch Med Res 48:666–680

    PubMed  Google Scholar 

  • Xu N, Fan W, Zhou X et al (2018) Probiotics decrease depressive behaviors induced by constipation via activating the AKT signaling pathway. Metab Brain Dis 33:1625–1633

    CAS  PubMed  Google Scholar 

  • Xu R, Wu B, Liang J et al (2020) Altered gut microbiota and mucosal immunity in patients with schizophrenia. Brain Behav Immun 85:120–127. https://doi.org/10.1016/j.bbi.2019.06.039

    Article  CAS  PubMed  Google Scholar 

  • Xue LJ, Yang XZ, Tong Q et al (2020) Fecal microbiota transplantation therapy for Parkinson’s disease: a preliminary study. Medicine (baltimore). https://doi.org/10.1097/MD.0000000000022035

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan FF, Wang WC, Cheng HW (2018) Bacillus subtilis based probiotic improved bone mass and altered brain serotoninergic and dopaminergic systems in broiler chickens. J Funct Foods 49:501–509

    CAS  Google Scholar 

  • Yang J, Zhao Y, Zhang L et al (2018) RIPK3/MLKL-mediated neuronal necroptosis modulates the M1/M2 polarization of microglia/macrophages in the ischemic cortex. Cereb Cortex 28:2622–2635

    PubMed  PubMed Central  Google Scholar 

  • Yu W-C, Cong J-P, Mi L-Y (2018) Expressions of TOLL-like receptor 4 (TLR-4) and matrix metalloproteinase 9 (MMP-9)/Tissue inhibitor of metalloproteinase 1 (TIMP-1) in pulmonary blood vessels with chronic obstructive pulmonary diseases and their relationships with pulmonary vascular remo. Rev Assoc Med Bras 64:361–367

    PubMed  Google Scholar 

  • Yuan X, Kang Y, Zhuo C, Huang X (2019) Biochemical and biophysical research communications the gut microbiota promotes the pathogenesis of schizophrenia via multiple pathways. Biochem Biophys Res Commun 512:373–380. https://doi.org/10.1016/j.bbrc.2019.02.152

    Article  CAS  PubMed  Google Scholar 

  • Yunes RA, Poluektova EU, Dyachkova MS et al (2016) GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 42:197–204

    CAS  PubMed  Google Scholar 

  • Zhang C, Wang H, Chen T (2019) Interactions between intestinal microflora/probiotics and the immune system. Biomed Res Int 2019

  • Zhang YG, Wu S, Yi J et al (2017) Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin Ther. https://doi.org/10.1016/j.clinthera.2016.12.014

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Li J, Zheng W et al (2016) Peripheral lymphoid volume expansion and maintenance are controlled by gut microbiota via RALDH+ dendritic cells. Immunity 44:330–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao D, Feng F, Zhao C et al (2018) Role of perforin secretion from CD8+ T-cells in neuronal cytotoxicity in multiple sclerosis. Neurol Res 40:62–67

    CAS  PubMed  Google Scholar 

  • Zhou J, He F, Yang F et al (2018) Increased stool immunoglobulin A level in children with autism spectrum disorders. Res Dev Disabil 82:90–94. https://doi.org/10.1016/j.ridd.2017.10.009

    Article  PubMed  Google Scholar 

  • Zhuang ZQ, Shen LL, Li WW et al (2018) Gut microbiota is altered in patients with alzheimer’s disease. J Alzheimer’s Dis. https://doi.org/10.3233/JAD-180176

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India for providing the necessary facilities and infrastructure.

Funding

This work is supported by the SPARC grant (SPARC/2018-2019/P435/SL) and Core Research Grant (CRG/2020/002621/BHS) awarded to Dr. Vinod Tiwari by Ministry of Human Resource & Development, Government of India and Science and Engineering Research Board respectively. This work is also supported by Senior Research Fellowship awarded to Mr. Ankit Uniyal under the supervision of Dr. Vinod Tiwari by Indian Council of Medical Research (5/3/8/44/ITR-F/2019-ITR).

Author information

Authors and Affiliations

Authors

Contributions

AU and VT conceived the idea and performed the literature review. AU, VT and MR has written the first draft of the manuscript. Further, AU and VT performed critical editing and revised the manuscript.

Corresponding author

Correspondence to Vinod Tiwari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uniyal, A., Tiwari, V., Rani, M. et al. Immune-microbiome interplay and its implications in neurodegenerative disorders. Metab Brain Dis 37, 17–37 (2022). https://doi.org/10.1007/s11011-021-00807-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-021-00807-3

Keywords

Navigation