Skip to main content

Advertisement

Log in

Multifaceted Alzheimer’s Disease: Building a Roadmap for Advancement of Novel Therapies

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) is one of the most prevailing neurodegenerative disorders of elderly humans associated with cognitive damage. Biochemical, epigenetic, and pathophysiological factors all consider a critical role of extracellular amyloid-beta (Aß) plaques and intracellular neurofibrillary tangles (NFTs) as pathological hallmarks of AD. In an endeavor to describe the intricacy and multifaceted nature of AD, several hypotheses based on the roles of Aß accumulation, tau hyperphosphorylation, impaired cholinergic signaling, neuroinflammation, and autophagy during the initiation and advancement of the disease have been suggested. However, in no way do these theories have the potential of autonomously describing the pathophysiological alterations located in AD. The complex pathological nature of AD has hindered the recognition and authentication of successful biomarkers for the progression of its diagnosis and therapeutic strategies. There has been a significant research effort to design multi-target-directed ligands for the treatment of AD, an approach which is developed by the knowledge that AD is a composite and multifaceted disease linked with several separate but integrated molecular pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nelson PT, Braak H, Markesbery WR (2009) Neuropathology and cognitive impairment in Alzheimer’s disease: a complex but coherent relationship. J Neuropathol Exp Neurol 68(1):1–14

    Article  PubMed  CAS  Google Scholar 

  2. Brookmeyer R, Gray S, Kawas C (1998) Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health 88(9):1337–1342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Australia D, Baker S, Banerjee S (2019) Alzheimer’s Disease International. World Alzheimer Report 2019: Attitudes to dementia. Alzheimer’s Disease International; Alzheimer’s Disease International: London

  4. Porsteinsson AP, Isaacson RS, Knox S, Sabbagh MN, Rubino I (2021) Diagnosis of early Alzheimer’s disease: clinical practice in 2021. J Prev Alzheimer’s Dis 8:1–16

    Google Scholar 

  5. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  PubMed  CAS  Google Scholar 

  6. Iacono D, O’Brien R, Resnick SM, Zonderman AB, Pletnikova O, Rudow G, Troncoso JC et al (2008) Neuronal hypertrophy in asymptomatic Alzheimer disease. J Neuropathol Exp Neurol 67(6):578–589

    Article  PubMed  Google Scholar 

  7. Driscoll I, Troncoso J (2011) Asymptomatic Alzheimer’s disease: a prodrome or a state of resilience? Curr Alzheimer Res 8(4):330–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Smith AV (2012) Genetic analysis: moving between linkage and association. Cold Spring Harb Protoc 2012(2):pdb-top067819

    Article  PubMed  Google Scholar 

  9. Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2(8000):1403

    Article  PubMed  CAS  Google Scholar 

  10. Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388

    Article  PubMed  CAS  Google Scholar 

  11. Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284(19):12845–12852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Swerdlow RH, Khan SM (2004) A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypotheses 63(1):8–20

    Article  PubMed  CAS  Google Scholar 

  13. Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE (1992) beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 12(2):376–389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. McGeer PL, Rogers J (1992) Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology 42(2):447–449

    Article  PubMed  CAS  Google Scholar 

  15. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5(5):347–360

    Article  PubMed  CAS  Google Scholar 

  16. Bush AI, Pettingell WH, Multhaup G, Paradis M, Vonsattel JP, Gusella JF, Tanzi RE et al (1994) Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 265(5177):1464–1467

    Article  PubMed  CAS  Google Scholar 

  17. Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K, Zlokovic BV et al (2004) LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron 43(3):333–344

    Article  PubMed  CAS  Google Scholar 

  18. Silverman JM, Raiford K, Edland S, Fillenbaum G, Morris JC, Clark CM, Heyman A et al (1994) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): Part VI. Family history assessment: a multicenter study of first-degree relatives of Alzheimer’s disease probands and nondemented spouse controls. Neurology 44(7):1253–1253

    Article  PubMed  CAS  Google Scholar 

  19. Launer LJ, Ross GW, Petrovitch H, Masaki K, Foley D, White LR, Havlik RJ (2000) Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neurobiol Aging 21(1):49–55

    Article  PubMed  CAS  Google Scholar 

  20. Osorio RS, Pirraglia E, Agüera-Ortiz LF, During EH, Sacks H, Ayappa I, de Leon MJ et al (2011) Greater risk of Alzheimer’s disease in older adults with insomnia. J Am Geriatr Soc 59(3):559

    Article  PubMed  PubMed Central  Google Scholar 

  21. Whitmer RA, Gunderson EP, Barrett-Connor E, Quesenberry CP, Yaffe K (2005) Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ 330(7504):1360

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martins RN, Villemagne V, Sohrabi HR, Chatterjee P, Shah TM, Verdile G, Masters CL et al (2018) Alzheimer’s disease: a journey from amyloid peptides and oxidative stress, to biomarker technologies and disease prevention strategies—gains from AIBL and DIAN cohort studies. J Alzheimer’s Dis 62(3):965–992

    Article  CAS  Google Scholar 

  23. Sandhya A, Kannayiram G (2018) Alzheimer’s disease therapeutic approaches. Asian J Pharm Clin Res 11(7):17–24

    Article  CAS  Google Scholar 

  24. Revi M (2020) Alzheimer’s disease therapeutic approaches. In: GeNeDis 2018. Springer, Cham, pp 105–116

  25. Cacace R, Sleegers K, Van Broeckhoven C (2016) Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimer’s Dement 12(6):733–748

    Article  Google Scholar 

  26. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Pedersen NL et al (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63(2):168–174

    Article  PubMed  Google Scholar 

  27. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Van Duijn CM et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis. JAMA 278(16):1349–1356

    Article  PubMed  CAS  Google Scholar 

  28. Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63(3):287–303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Bertram L, Tanzi RE (2012) The genetics of Alzheimer’s disease. Prog Mol Biol Transl Sci 107:79–100

    Article  PubMed  CAS  Google Scholar 

  30. Stepanichev M (2020) Gene editing and Alzheimer’s disease: is there light at the end of the tunnel? Front Genome Edit 2:4

    Article  Google Scholar 

  31. Sims R, Hill M, Williams J (2020) The multiplex model of the genetics of Alzheimer’s disease. Nat Neurosci 23(3):311–322

    Article  PubMed  CAS  Google Scholar 

  32. Rossor MN, Fox NC, Freeborough PA, Harvey RJ (1996) Clinical features of sporadic and familial Alzheimer’s disease. Neurodegeneration 5(4):393–397

    Article  PubMed  CAS  Google Scholar 

  33. Talwar P, Sinha J, Grover S, Rawat C, Kushwaha S, Agarwal R, Kukreti R et al (2016) Dissecting complex and multifactorial nature of Alzheimer’s disease pathogenesis: a clinical, genomic, and systems biology perspective. Mol Neurobiol 53(7):4833–4864

    Article  PubMed  CAS  Google Scholar 

  34. Ryman DC, Acosta-Baena N, Aisen PS, Bird T, Danek A, Fox NC, Network DIA (2014) Symptom onset in autosomal dominant Alzheimer disease: a systematic review and meta-analysis. Neurology 83(3):253–260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Piaceri I, Nacmias B, Sorbi S (2013) Genetics of familial and sporadic Alzheimer’s disease. Front Biosci (Elite Ed) 5(1):167–177

    Article  Google Scholar 

  36. Hooli B, Tanzi RE (2016) The genetic basis of Alzheimer’s disease. In: Wolfe MS (ed) Developing therapeutics for alzheimer’s disease. Academic Press, Cambridge, pp 23–37

    Chapter  Google Scholar 

  37. Barber RC (2012) The genetics of Alzheimer’s disease. Scientifica 2012:246210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gong CX, Liu F, Iqbal K (2018) Multifactorial hypothesis and multi-targets for Alzheimer’s disease. J Alzheimer’s Dis 64(s1):S107–S117

    Article  Google Scholar 

  39. Iqbal K, Wang X, Blanchard J, Liu F, Gong CX, Grundke-Iqbal I (2010) Alzheimer’s disease neurofibrillary degeneration: pivotal and multifactorial. Biochem Soc Trans 38:962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nixon RA (2017) Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer’s disease: inseparable partners in a multifactorial disease. FASEB J 31(7):2729–2743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Calzà L, Antonio Baldassarro V, Giuliani A, Lorenzini L, Fernandez M, Mangano C, Giardino L et al (2013) From the multifactorial nature of Alzheimer’s disease to multitarget therapy: the contribution of the translational approach. Curr Top Med Chem 13(15):1843–1852

    Article  PubMed  CAS  Google Scholar 

  42. Storandt M, Head D, Fagan AM, Holtzman DM, Morris JC (2012) Toward a multifactorial model of Alzheimer disease. Neurobiol Aging 33(10):2262–2271

    Article  PubMed  PubMed Central  Google Scholar 

  43. Iqbal K, Grundke-Iqbal I (2010) Alzheimer’s disease, a multifactorial disorder seeking multitherapies. Alzheimer Dement 6:420

    Article  CAS  Google Scholar 

  44. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Prolla TA et al (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309(5733):481–484

    Article  PubMed  CAS  Google Scholar 

  45. Wilcock GK, Esiri MM, Bowen DM, Smith CCT (1982) Alzheimer’s disease: correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities. J Neurol Sci 57(2–3):407–417

    Article  PubMed  CAS  Google Scholar 

  46. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Kummer MP et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bachurin SO, Bovina EV, Ustyugov AA (2017) Drugs in clinical trials for Alzheimer’s disease: the major trends. Med Res Rev 37(5):1186–1225

    Article  PubMed  CAS  Google Scholar 

  48. Zha X, Lamba D, Zhang L, Lou Y, Xu C, Kang D, Bartolini M et al (2016) Novel tacrine–benzofuran hybrids as potent multitarget-directed ligands for the treatment of Alzheimer’s disease: design, synthesis, biological evaluation, and X-ray crystallography. J Med Chem 59(1):114–131

    Article  PubMed  CAS  Google Scholar 

  49. Wang Z, Wang Y, Wang B, Li W, Huang L, Li X (2015) Design, synthesis, and evaluation of orally available clioquinol-moracin M hybrids as multitarget-directed ligands for cognitive improvement in a rat model of neurodegeneration in Alzheimer’s disease. J Med Chem 58(21):8616–8637

    Article  PubMed  CAS  Google Scholar 

  50. Rosini M, Simoni E, Caporaso R, Minarini A (2016) Multitarget strategies in Alzheimer’s disease: benefits and challenges on the road to therapeutics. Future Med Chem 8(6):697–711

    Article  PubMed  CAS  Google Scholar 

  51. Ansari N, Khodagholi F (2013) Natural products as promising drug candidates for the treatment of Alzheimer’s disease: molecular mechanism aspect. Curr Neuropharmacol 11(4):414–429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Gao J, Inagaki Y, Li X, Kokudo N, Tang W (2013) Research progress on natural products from traditional Chinese medicine in treatment of Alzheimer’s disease. Drug Discov Ther 7(2):46–57

    PubMed  CAS  Google Scholar 

  53. Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE (1977) Neurotransmitter enzyme abnormalities in senile dementia: Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J Neurol Sci 34(2):247–265

    Article  PubMed  CAS  Google Scholar 

  54. Rylett RJ, Ball MJ, Colhoun EH (1983) Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer’s disease. Brain Res 289(1–2):169–175

    Article  PubMed  CAS  Google Scholar 

  55. Nilsson L, Nordberg A, Hardy J, Wester P, Winblad B (1986) Physostigmine restores 3 H-acetylcholine efflux from Alzheimer brain slices to normal level. J Neural Transm 67(3–4):275–285

    Article  PubMed  CAS  Google Scholar 

  56. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215(4537):1237–1239

    Article  PubMed  CAS  Google Scholar 

  57. Drachman DA, Leavitt J (1974) Human memory and the cholinergic system: a relationship to aging? Arch Neurol 30(2):113–121

    Article  PubMed  CAS  Google Scholar 

  58. Bartus RT, Dean R, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558):408–414

    Article  PubMed  CAS  Google Scholar 

  59. Deutsch JA (1971) The cholinergic synapse and the site of memory. Science 174(4011):788–794

    Article  PubMed  CAS  Google Scholar 

  60. Mann DM (1996) Pyramidal nerve cell loss in Alzheimer’s disease. Neurodegeneration 5(4):423–427

    Article  PubMed  CAS  Google Scholar 

  61. Francis PT, Sims NR, Procter AW, Bowen DM (1993) Cortical pyramidal neurone loss may cause glutamatergic hypoactivity and cognitive impairment in Alzheimer’s disease: investigative and therapeutic perspectives. J Neurochem 60(5):1589–1604

    Article  PubMed  CAS  Google Scholar 

  62. Lowe SL, Bowen DM, Francis PT, Neary D (1990) Ante mortem cerebral amino acid concentrations indicate selective degeneration of glutamate-enriched neurons in Alzheimer’s disease. Neuroscience 38(3):571–577

    Article  PubMed  CAS  Google Scholar 

  63. Francis PT, Bowen DM, Lowe SL, Neary D, Mann DMA, Snowden JS (1987) Somatostatin content and release measured in cerebral biopsies from demented patients. J Neurol Sci 78(1):1–16

    Article  PubMed  CAS  Google Scholar 

  64. Esiri MM (1996) The basis for behavioural disturbances in dementia. J Neurol Neurosurg Psychiatry 61(2):127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Bowen DM, Benton JS, Spillane JA, Smith CCT, Allen SJ (1982) Choline acetyltransferase activity and histopathology of frontal neocortex from biopsies of demented patients. J Neurol Sci 57(2–3):191–202

    Article  PubMed  CAS  Google Scholar 

  66. Neary D, Snowden JS, Mann DM, Bowen DM, Sims NR, Northen B, Davison AN et al (1986) Alzheimer’s disease: a correlative study. J Neurol Neurosurg Psychiatry 49(3):229–237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Palmer AM, Procter AW, Stratmann GC, Bowen DM (1986) Excitatory amino acid-releasing and cholinergic neurones in Alzheimer’s disease. Neurosci Lett 66(2):199–204

    Article  PubMed  CAS  Google Scholar 

  68. Kish SJ, Robitaille Y, El-Awar M, Deck HN, Simmons J, Schut L, Freedman M et al (1989) Non-Alzheimer-type pattern of brain cholineacetyltransferase reduction in dominantly inherited olivopontocerebellar atrophy. Ann Neurol 26(3):362–367

    Article  PubMed  CAS  Google Scholar 

  69. Whitehouse PJ, Martino AM, Marcus KA, Zweig RM, Singer HS, Price DL, Kellar KJ (1988) Reductions in acetylcholine and nicotine binding in several degenerative diseases. Arch Neurol 45(7):722–724

    Article  PubMed  CAS  Google Scholar 

  70. Nordberg A, Alafuzoff I, Winblad B (1992) Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res 31(1):103–111

    Article  PubMed  CAS  Google Scholar 

  71. Warpman U, Alafuzoff I, Nordberg A (1993) Coupling of muscarinic receptors to GTP proteins in postmortem human brain—alterations in Alzheimer’s disease. Neurosci Lett 150(1):39–43

    Article  PubMed  CAS  Google Scholar 

  72. Halliwell JV (1986) M-current in human neocortical neurones. Neurosci Lett 67(1):1–6

    Article  PubMed  CAS  Google Scholar 

  73. Hyman BT, Van Hoesen GW, Damasio AR (1987) Alzheimer’s disease: glutamate depletion in the hippocampal perforant pathway zone. Ann Neurol 22(1):37–40

    Article  PubMed  CAS  Google Scholar 

  74. Chessell IP, Francis PT, Bowen DM (1995) Changes in cortical nicotinic acetylcholine receptor numbers following unilateral destruction of pyramidal neurones by intrastriatal volkensin injection. Neurodegeneration 4(4):415–424

    Article  PubMed  CAS  Google Scholar 

  75. Dijk SN, Francis PT, Stratmann GC, Bowen DM (1995) Cholinomimetics increase glutamate outflow via an action on the corticostriatal pathway: implications for Alzheimer’s disease. J Neurochem 65(5):2165–2169

    Article  PubMed  CAS  Google Scholar 

  76. Lovestone S, Reynolds CH, Latimer D, Davis DR, Anderton BH, Gallo JM, Miller CC et al (1994) Alzheimer’s disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr Biol 4(12):1077–1086

    Article  PubMed  CAS  Google Scholar 

  77. Sadot E, Gurwitz D, Barg J, Behar L, Ginzburg I, Fisher A (1996) Activation of m1 muscarinic acetylcholine receptor regulates τ phosphorylation in transfected PC12 cells. J Neurochem 66(2):877–880

    Article  PubMed  CAS  Google Scholar 

  78. Palmer AM, Gershon S (1990) Is the neuronal basis of Alzheimer’s disease cholinergic or glutamatergic? FASEB J 4(10):2745–2752

    Article  PubMed  CAS  Google Scholar 

  79. Craig LA, Hong NS, McDonald RJ (2011) Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci Biobehav Rev 35(6):1397–1409

    Article  PubMed  CAS  Google Scholar 

  80. Minger SL, Esiri MM, McDonald B, Keene J, Carter J, Hope T, Francis PT (2000) Cholinergic deficits contribute to behavioral disturbance in patients with dementia. Neurology 55(10):1460–1467

    Article  PubMed  CAS  Google Scholar 

  81. Eustace A, Coen R, Walsh C, Cunningham CJ, Walsh JB, Coakley D, Lawlor BA (2002) A longitudinal evaluation of behavioural and psychological symptoms of probable Alzheimer’s disease. Int J Geriatr Psychiatry 17(10):968–973

    Article  PubMed  CAS  Google Scholar 

  82. Cummings JL (2004) Use of cholinesterase inhibitors in clinical practice: evidence-based recommendations. Focus 11(2):131–252

    Google Scholar 

  83. Furey ML, Pietrini P, Haxby JV (2000) Cholinergic enhancement and increased selectivity of perceptual processing during working memory. Science 290(5500):2315–2319

    Article  PubMed  CAS  Google Scholar 

  84. Ruske AC, White KG (1999) Facilitation of memory performance by a novel muscarinic agonist in young and old rats. Pharmacol Biochem Behav 63(4):663–667

    Article  PubMed  CAS  Google Scholar 

  85. Terry AV, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306(3):821–827

    Article  PubMed  CAS  Google Scholar 

  86. Huang LK, Chao SP, Hu CJ (2020) Clinical trials of new drugs for Alzheimer disease. J Biomed Sci 27(1):1–13

    Article  CAS  Google Scholar 

  87. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K (2020) Alzheimer’s disease drug development pipeline: 2020. Alzheimer’s Dement 6(1):e12050

    Google Scholar 

  88. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K (2019) Alzheimer’s disease drug development pipeline: 2019. Alzheimer’s Dement 5:272–293

    Article  Google Scholar 

  89. Oxford AE, Stewart ES, Rohn TT (2020) Clinical trials in Alzheimer’s disease: a hurdle in the path of remedy. Int J Alzheimer’s Dis 2020:5380346

    Google Scholar 

  90. Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9(7):702–716

    Article  PubMed  CAS  Google Scholar 

  91. Evin G, Weidemann A (2002) Biogenesis and metabolism of Alzheimer’s disease Aβ amyloid peptides. Peptides 23(7):1285–1297

    Article  PubMed  CAS  Google Scholar 

  92. Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399(6738):A23–A31

    Article  PubMed  CAS  Google Scholar 

  93. Chen G, Chen KS, Knox J, Inglis J, Bernard A, Martin SJ, Morris RG et al (2000) A learning deficit related to age and β-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 408(6815):975–979

    Article  PubMed  CAS  Google Scholar 

  94. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618):486–489

    Article  PubMed  CAS  Google Scholar 

  95. Coulson EJ, Paliga K, Beyreuther K, Masters CL (2000) What the evolution of the amyloid protein precursor supergene family tells us about its function. Neurochem Int 36(3):175–184

    Article  PubMed  CAS  Google Scholar 

  96. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56(3):303–308

    Article  PubMed  CAS  Google Scholar 

  97. Glenner GG, Wong CW, Quaranta V, Eanes ED (1984) The amyloid deposits in Alzheimer’s disease: their nature and pathogenesis. Appl Pathol 2(6):357

    PubMed  CAS  Google Scholar 

  98. McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Rev 21(2):195–218

    Article  PubMed  CAS  Google Scholar 

  99. Braak H, Braak E (1994) Morphological criteria for the recognition of Alzheimer’s disease and the distribution pattern of cortical changes related to this disorder. Neurobiol imaging 15:355

    Article  CAS  Google Scholar 

  100. Ling Y, Morgan K, Kalsheker N (2003) Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer’s disease. Int J Biochem Cell Biol 35(11):1505–1535

    Article  PubMed  CAS  Google Scholar 

  101. Bertram L, Lill CM, Tanzi RE (2010) The genetics of Alzheimer disease: back to the future. Neuron 68(2):270–281

    Article  PubMed  CAS  Google Scholar 

  102. Saunders AM (2000) Apolipoprotein E and Alzheimer disease: an update on genetic and functional analyses. J Neuropathol Exp Neurol 59(9):751–758

    Article  PubMed  CAS  Google Scholar 

  103. Castano EM, Prelli F, Wisniewski T, Golabek A, Kumar RA, Soto C, Frangione B (1995) Fibrillogenesis in Alzheimer’s disease of amyloid β peptides and apolipoprotein E. Biochem J 306(2):599–604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Nunan J, Small DH (2000) Regulation of APP cleavage by α-, β-and γ-secretases. FEBS Lett 483(1):6–10

    Article  PubMed  CAS  Google Scholar 

  105. Kojro E, Gimpl G, Lammich S, März W, Fahrenholz F (2001) Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase ADAM 10. Proc Natl Acad Sci 98(10):5815–5820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Mullan M, Houlden H, Windelspecht M, Fidani L, Lombardi C, Diaz P, Crawford F et al (1992) A locus for familial early–onset Alzhelmer’s disease on the long arm of chromosome 14, proximal to the α1–antichymotrypsin gene. Nat Genet 2(4):340–342

    Article  PubMed  CAS  Google Scholar 

  107. Shen J, Kelleher RJ (2007) The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci 104(2):403–409

    Article  PubMed  CAS  Google Scholar 

  108. Herreman A, Hartmann D, Annaert W, Saftig P, Craessaerts K, Serneels L, De Strooper B et al (1999) Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc Natl Acad Sci 96(21):11872–11877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Wisniewski T, Castano EM, Golabek A, Vogel T, Frangione B (1994) Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Am J Pathol 145(5):1030

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240(4852):622–630

    Article  PubMed  CAS  Google Scholar 

  111. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small G, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923

    Article  PubMed  CAS  Google Scholar 

  112. Benzing WC, Mufson EJ (1995) Apolipoprotein E immunoreactivity within neurofibrillary tangles: relationship to tau and PHF in Alzheimer’s disease. Exp Neurol 132(2):162–171

    Article  PubMed  CAS  Google Scholar 

  113. Huang Y (2010) Aβ-independent roles of apolipoprotein E4 in the pathogenesis of Alzheimer’s disease. Trends Mol Med 16(6):287–294

    Article  PubMed  CAS  Google Scholar 

  114. Dam DV, Dijck AV, Janssen L, Deyn PPD (2013) Neuropeptides in Alzheimer’s disease: from pathophysiological mechanisms to therapeutic opportunities. Curr Alzheimer Res 10(5):449–468

    Article  PubMed  CAS  Google Scholar 

  115. Stone JG, Casadesus G, Gustaw-Rothenberg K, Siedlak SL, Wang X, Zhu X, Smith MA et al (2011) Frontiers in Alzheimer’s disease therapeutics. Ther Adv Chron Dis 2(1):9–23

    Article  Google Scholar 

  116. Bertram L, Tanzi RE (2008) Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9(10):768–778

    Article  PubMed  CAS  Google Scholar 

  117. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Citron M et al (1999) β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735–741

    Article  PubMed  CAS  Google Scholar 

  118. Ghosh AK, Gemma S, Tang J (2008) β-Secretase as a therapeutic target for Alzheimer’s disease. Neurotherapeutics 5(3):399–408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. De Strooper B, Iwatsubo T, Wolfe MS (2012) Presenilins and γ-secretase: structure, function, and role in Alzheimer disease. Cold Spring Harb Perspect Med 2(1):a006304

    Article  PubMed  PubMed Central  Google Scholar 

  120. Fahrenholz F (2007) Alpha-secretase as a therapeutic target. Curr Alzheimer Res 4(4):412–417

    Article  PubMed  CAS  Google Scholar 

  121. Xu Y, Shen J, Luo X, Zhu W, Chen K, Ma J, Jiang H (2005) Conformational transition of amyloid β-peptide. Proc Natl Acad Sci 102(15):5403–5407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. De Felice FG, Ferreira ST (2002) Beta-amyloid production, aggregation, and clearance as targets for therapy in Alzheimer’s disease. Cell Mol Neurobiol 22:545–563

    Article  PubMed  Google Scholar 

  123. Barrera-Ocampo A, Lopera F (2016) Amyloid-beta immunotherapy: the hope for Alzheimer disease? Colomb Med 47(4):203–212

    Article  Google Scholar 

  124. Vieira MN, Lima-Filho RA, De Felice FG (2018) Connecting Alzheimer’s disease to diabetes: underlying mechanisms and potential therapeutic targets. Neuropharmacology 136:160–171

    Article  PubMed  CAS  Google Scholar 

  125. Suzanne M (2012) Contributions of brain insulin resistance and deficiency in amyloid-related neurodegeneration in Alzheimer’s disease. Drugs 72(1):49–66

    Article  Google Scholar 

  126. Neth BJ, Craft S (2017) Insulin resistance and Alzheimer’s disease: bioenergetic linkages. Front Aging Neurosci 9:345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Rad SK, Arya A, Karimian H, Madhavan P, Rizwan F, Koshy S, Prabhu G (2018) Mechanism involved in insulin resistance via accumulation of β-amyloid and neurofibrillary tangles: link between type 2 diabetes and Alzheimer’s disease. Drug Des Dev Ther 12:3999

    Article  CAS  Google Scholar 

  128. Matsuzaki T, Sasaki K, Tanizaki Y, Hata J, Fujimi K, Matsui Y, Iwaki T et al (2010) Insulin resistance is associated with the pathology of Alzheimer disease: the Hisayama study. Neurology 75(9):764–770

    Article  PubMed  CAS  Google Scholar 

  129. Ruiz HH, Chi T, Shin AC, Lindtner C, Hsieh W, Ehrlich M, Buettner C et al (2016) Increased susceptibility to metabolic dysregulation in a mouse model of Alzheimer’s disease is associated with impaired hypothalamic insulin signaling and elevated BCAA levels. Alzheimer’s & Dement 12(8):851–861

    Article  Google Scholar 

  130. Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Arnold SE et al (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Investig 122(4):1316–1338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Chen Z, Zhong C (2013) Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Progr Neurobiol 108:21–43

    Article  CAS  Google Scholar 

  132. Yang Y, Song W (2013) Molecular links between Alzheimer’s disease and diabetes mellitus. Neuroscience 250:140–150

    Article  PubMed  CAS  Google Scholar 

  133. Jarosz-Griffiths HH, Noble E, Rushworth JV, Hooper NM (2016) Amyloid-β receptors: the good, the bad, and the prion protein. J Biol Chem 291(7):3174–3183

    Article  PubMed  CAS  Google Scholar 

  134. Farina N, Jernerén F, Turner C, Hart K, Tabet N (2017) Homocysteine concentrations in the cognitive progression of Alzheimer’s disease. Exp Gerontol 99:146–150

    Article  PubMed  CAS  Google Scholar 

  135. Kamat PK, Vacek JC, Kalani A, Tyagi N (2015) Homocysteine induced cerebrovascular dysfunction: a link to Alzheimer’s disease etiology. Open Neurol J 9:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Lott IT, Dierssen M (2010) Cognitive deficits and associated neurological complications in individuals with Down’s syndrome. Lancet Neurol 9(6):623–633

    Article  PubMed  Google Scholar 

  137. Coutadeur S, Benyamine H, Delalonde L, de Oliveira C, Leblond B, Foucourt A, Désiré L et al (2015) A novel DYRK1A (dual specificity tyrosine phosphorylation-regulated kinase 1A) inhibitor for the treatment of Alzheimer’s disease: effect on Tau and amyloid pathologies in vitro. J Neurochem 133(3):440–451

    Article  PubMed  CAS  Google Scholar 

  138. Wegiel J, Gong CX, Hwang YW (2011) The role of DYRK1A in neurodegenerative diseases. FEBS J 278(2):236–245

    Article  PubMed  CAS  Google Scholar 

  139. Gokhale V, Shaw AY, Foley C, Smith B, Hulme C, Meechoovet B (2017) Dyrk1 inhibition improves Alzheimer’s disease-like pathology. Aging Cell 16:1146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Janel N, Sarazin M, Corlier F, Corne H, De Souza LC, Hamelin L, Delabar JM et al (2014) Plasma DYRK1A as a novel risk factor for Alzheimer’s disease. Transl Psychiatry 4(8):e425–e425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Shen W, Taylor B, Jin Q, Nguyen-Tran V, Meeusen S, Zhang YQ, Laffitte B et al (2015) Inhibition of DYRK1A and GSK3B induces human β-cell proliferation. Nat Commun 6(1):1–11

    Article  Google Scholar 

  142. Butterfield DA, Di Domenico F, Barone E (2014) Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochim et Biophys Acta (BBA) 1842(9):1693–1706

    Article  CAS  Google Scholar 

  143. Craft S, Asthana S, Newcomer JW, Wilkinson CW, Matos IT, Baker LD, Veith RC et al (1999) Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch Gen Psychiatry 56(12):1135–1140

    Article  PubMed  CAS  Google Scholar 

  144. Verdile G, Fuller SJ, Martins RN (2015) The role of type 2 diabetes in neurodegeneration. Neurobiol Dis 84:22–38

    Article  PubMed  CAS  Google Scholar 

  145. Łabuzek K, Suchy D, Gabryel B, Bielecka A, Liber S, Okopień B (2010) Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol Rep 62(5):956–965

    Article  PubMed  Google Scholar 

  146. Gupta A, Bisht B, Dey CS (2011) Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer’s-like changes. Neuropharmacology 60(6):910–920

    Article  PubMed  CAS  Google Scholar 

  147. Landreth G (2007) Therapeutic use of agonists of the nuclear receptor PPARγ in Alzheimer’s disease. Curr Alzheimer Res 4(2):159–164

    Article  PubMed  CAS  Google Scholar 

  148. Kitamura Y, Shimohama S, Koike H, Kakimura JI, Matsuoka Y, Nomura Y, Taniguchi T et al (1999) Increased expression of cyclooxygenases and peroxisome proliferator-activated receptor-γ in Alzheimer’s disease brains. Biochem Biophys Res Commun 254(3):582–586

    Article  PubMed  CAS  Google Scholar 

  149. Jiang Q, Heneka M, Landreth GE (2008) The role of peroxisome proliferator-activated receptor-γ PPARγ) in Alzheimer’s disease. CNS Drugs 22(1):1–14

    Article  PubMed  CAS  Google Scholar 

  150. Pancani T, Phelps JT, Searcy JL, Kilgore MW, Chen KC, Porter NM, Thibault O (2009) Distinct modulation of voltage-gated and ligand-gated Ca2+ currents by PPAR-γ agonists in cultured hippocampal neurons. J Neurochem 109(6):1800–1811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Hölscher C (2014) Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. J Endocrinol 221(1):T31–T41

    Article  PubMed  CAS  Google Scholar 

  152. Qiu WQ, Zhu H (2014) Amylin and its analogs: a friend or foe for the treatment of Alzheimer’s disease? Front Aging Neurosci 6:186

    Article  PubMed  PubMed Central  Google Scholar 

  153. Adler BL, Yarchoan M, Hwang HM, Louneva N, Blair JA, Palm R, Casadesus G et al (2014) Neuroprotective effects of the amylin analogue pramlintide on Alzheimer’s disease pathogenesis and cognition. Neurobiol Aging 35(4):793–801

    Article  PubMed  CAS  Google Scholar 

  154. Cummings JL, Morstorf T, Zhong K (2014) Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimer’s Res Ther 6(4):1–7

    Article  Google Scholar 

  155. Verkhratsky A, Nedergaard M, Hertz L (2015) Why are astrocytes important? Neurochem Res 40(2):389–401

    Article  PubMed  CAS  Google Scholar 

  156. Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10(11):1369–1376

    Article  PubMed  CAS  Google Scholar 

  157. Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201

    Article  PubMed  CAS  Google Scholar 

  158. Sofroniew MV (2015) Astrogliosis. Cold Spring Harb Perspect Biol 7(2):a020420

    Article  PubMed Central  Google Scholar 

  159. Thal DR (2012) The role of astrocytes in amyloid β-protein toxicity and clearance. Exp Neurol 236(1):1–5

    Article  PubMed  CAS  Google Scholar 

  160. Mathur R, Ince PG, Minett T, Garwood CJ, Shaw PJ, Matthews FE, MRC Cognitive Function and Ageing Neuropathology Study Group (2015) A reduced astrocyte response to β-amyloid plaques in the ageing brain associates with cognitive impairment. PLoS ONE 10(2):e0118463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Tuppo EE, Arias HR (2005) The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 37(2):289–305

    Article  PubMed  CAS  Google Scholar 

  162. Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K, Cole GM (1998) Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 152(1):307

    PubMed  PubMed Central  CAS  Google Scholar 

  163. Liu BIN, Hong JS (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 304(1):1–7

    Article  PubMed  CAS  Google Scholar 

  164. Melchior B, Garcia AE, Hsiung BK, Lo KM, Doose JM, Thrash JC (2010) Dual Induction of TREM2 and Tolerance-Related Transcript, Tmem176b. Amyloid Transgenic Mice 2(3):AN20100010

    Google Scholar 

  165. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Stefansson K et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368(2):107–116

    Article  PubMed  CAS  Google Scholar 

  166. Otero K, Shinohara M, Zhao H, Cella M, Gilfillan S, Colucci A, Colonna M et al (2012) TREM2 and β-catenin regulate bone homeostasis by controlling the rate of osteoclastogenesis. J Immunol 188(6):2612–2621

    Article  PubMed  CAS  Google Scholar 

  167. Town T, Nikolic V, Tan J (2005) The microglial" activation" continuum: from innate to adaptive responses. J Neuroinflam 2(1):24

    Article  CAS  Google Scholar 

  168. Sudduth TL, Schmitt FA, Nelson PT, Wilcock DM (2013) Neuroinflammatory phenotype in early Alzheimer’s disease. Neurobiol Aging 34(4):1051–1059

    Article  PubMed  CAS  Google Scholar 

  169. Scuderi C, Stecca C, Valenza M, Ratano P, Bronzuoli MR, Bartoli S, Campolongo P et al (2014) Palmitoylethanolamide controls reactive gliosis and exerts neuroprotective functions in a rat model of Alzheimer’s disease. Cell Death Dis 5(9):e1419–e1419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Christov A, Ottman JT, Grammas P (2004) Vascular inflammatory, oxidative and protease-based processes: implications for neuronal cell death in Alzheimer’s disease. Neurol Res 26(5):540–546

    Article  PubMed  CAS  Google Scholar 

  171. Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ (2010) Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia 58(7):831–838

    PubMed  Google Scholar 

  172. Barger SW, Harmon AD (1997) Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 388(6645):878–881

    Article  PubMed  CAS  Google Scholar 

  173. Yu Y, Richard DY (2015) Microglial Aβ receptors in Alzheimer’s disease. Cell Mol Neurobiol 35(1):71–83

    Article  PubMed  CAS  Google Scholar 

  174. Peng L, Yu Y, Liu J, Li S, He H, Cheng N, Ye RD (2015) The chemerin receptor CMKLR1 is a functional receptor for amyloid-β peptide. J Alzheimer’s Dis 43(1):227–242

    Article  CAS  Google Scholar 

  175. Koenigsknecht J, Landreth G (2004) Microglial phagocytosis of fibrillar β-amyloid through a β1 integrin-dependent mechanism. J Neurosci 24(44):9838–9846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Li K, Liu S, Yao S, Wang B, Dai D, Yao L (2009) Interaction between interleukin-8 and methylenetetrahydrofolate reductase genes modulates Alzheimer’s disease risk. Dement Geriatr Cognit Disord 27(3):286–291

    Article  CAS  Google Scholar 

  177. Wu J, Bie B, Yang H, Xu JJ, Brown DL, Naguib M (2013) Suppression of central chemokine fractalkine receptor signaling alleviates amyloid-induced memory deficiency. Neurobiol Aging 34(12):2843–2852

    Article  PubMed  CAS  Google Scholar 

  178. Yu S, Liu YP, Liu YH, Jiao SS, Liu L, Wang YJ, Fu WL (2016) Diagnostic utility of VEGF and soluble CD40L levels in serum of Alzheimer’s patients. Clinicachim Acta 453:154–159

    Article  CAS  Google Scholar 

  179. Alam Q, ZubairAlam M, Mushtaq G, Damanhouri GA, Rasool M, Amjad-Kamal M, Haque A (2016) Inflammatory process in Alzheimer’s and Parkinson’s diseases: central role of cytokines. Curr Pharm Des 22(5):541–548

    Article  PubMed  CAS  Google Scholar 

  180. Welser-Alves JV, Milner R (2013) Microglia are the major source of TNF-α and TGF-β1 in postnatal glial cultures; regulation by cytokines, lipopolysaccharide, and vitronectin. Neurochem Int 63(1):47–53

    Article  PubMed  CAS  Google Scholar 

  181. Wu D, Zhang X, Zhao M, Zhou AL (2015) The role of the TLR4/NF-κB signaling pathway in Aβ accumulation in primary hippocampal neurons. Sheng li xuebao [Acta physiologicaSinica] 67(3):319–328

    CAS  Google Scholar 

  182. Feld M, Krawczyk MC, Sol Fustinana M, Blake MG, Baratti CM, Romano A, Boccia MM (2014) Decrease of ERK/MAPK overactivation in prefrontal cortex reverses early memory deficit in a mouse model of Alzheimer’s disease. J Alzheimer’s Dis 40(1):69–82

    Article  CAS  Google Scholar 

  183. Feijoo C, Campbell DG, Jakes R, Goedert M, Cuenda A (2005) Evidence that phosphorylation of the microtubule-associated protein Tau by SAPK4/p38δ at Thr50 promotes microtubule assembly. J Cell Sci 118(2):397–408

    Article  PubMed  CAS  Google Scholar 

  184. Chen CH, Zhou W, Liu S, Deng Y, Cai F, Tone M, Song W et al (2012) Increased NF-κBsignalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int J Neuropsychopharmacol 15(1):77–90

    Article  PubMed  CAS  Google Scholar 

  185. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Fattahi MJ, Mirshafiey A (2014) Positive and negative effects of prostaglandins in A lzheimer’s disease. Psychiatry Clin Neurosci 68(1):50–60

    Article  PubMed  CAS  Google Scholar 

  187. Mori T, Koyama N, Arendash GW, Horikoshi-Sakuraba Y, Tan J, Town T (2010) Overexpression of human S100B exacerbates cerebral amyloidosis and gliosis in the Tg2576 mouse model of Alzheimer’s disease. Glia 58(3):300–314

    PubMed  PubMed Central  Google Scholar 

  188. Vogl T, Gharibyan AL, Morozova-Roche LA (2012) Pro-inflammatory S100A8 and S100A9 proteins: self-assembly into multifunctional native and amyloid complexes. Int J Mol Sci 13(3):2893–2917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Wang C, Klechikov AG, Gharibyan AL, Wärmländer SK, Jarvet J, Zhao L, Morozova-Roche LA (2014) The role of pro-inflammatory S100A9 in Alzheimer’s disease amyloid-neuroinflammatory cascade. Acta Neuropathol 127(4):507–522

    Article  PubMed  CAS  Google Scholar 

  190. Czapski GA, Gąssowska M, Wilkaniec A, Chalimoniuk M, Strosznajder JB, Adamczyk A (2016) The mechanisms regulating cyclin-dependent kinase 5 in hippocampus during systemic inflammatory response: the effect on inflammatory gene expression. Neurochem Int 93:103–112

    Article  PubMed  CAS  Google Scholar 

  191. Wong D, Dorovini-Zis K, Vincent SR (2004) Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood–brain barrier. Exp Neurol 190(2):446–455

    Article  PubMed  CAS  Google Scholar 

  192. Jaeger LB, Dohgu S, Sultana R, Lynch JL, Owen JB, Erickson MA, Banks WA et al (2009) Lipopolysaccharide alters the blood–brain barrier transport of amyloid β protein: a mechanism for inflammation in the progression of Alzheimer’s disease. Brain behav Immun 23(4):507–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Liu YP, Lin HI, Tzeng SF (2005) Tumor necrosis factor-α and interleukin-18 modulate neuronal cell fate in embryonic neural progenitor culture. Brain Res 1054(2):152–158

    Article  PubMed  CAS  Google Scholar 

  194. Bernier PJ, Bédard A, Vinet J, Lévesque M, Parent A (2002) Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci 99(17):11464–11469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Phiel CJ, Wilson CA, Lee VMY, Klein PS (2003) GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature 423(6938):435–439

    Article  PubMed  CAS  Google Scholar 

  196. Wang MJ, Huang HY, Chen WF, Chang HF, Kuo JS (2010) Glycogen synthase kinase-3β inactivation inhibits tumor necrosis factor-α production in microglia by modulating nuclear factor κB and MLK3/JNK signaling cascades. J Neuroinflamm 7(1):99

    Article  CAS  Google Scholar 

  197. Castello MA, Jeppson JD, Soriano S (2014) Moving beyond anti-amyloid therapy for the prevention and treatment of Alzheimer’s disease. BMC Neurol 14(1):1–5

    Article  CAS  Google Scholar 

  198. Von Bernhardi R, Cornejo F, Parada G, Eugenín J (2015) Role of TGFβ signaling in the pathogenesis of Alzheimer’s disease. Front Cell Neurosci 9:426

    Google Scholar 

  199. Tweedie D, Ferguson RA, Fishman K, Frankola KA, Van Praag H, Holloway HW, Rosi S et al (2012) Tumor necrosis factor-[alpha] synthesis inhibitor 3, 6 [variant prime]-dithiothalidomide attenuates markers of inflammation, Alzheimer pathology and behavioral deficits in animal models of neuroinflammation and Alzheimer’s disease. J Neuroinflam 9:106

    Article  CAS  Google Scholar 

  200. Parachikova A, Vasilevko V, Cribbs DH, LaFerla FM, Green KN (2010) Reductions in amyloid-β-derived neuroinflammation, with minocycline, restore cognition but do not significantly affect tau hyperphosphorylation. J Alzheimer’s Dis 21(2):527–542

    Article  CAS  Google Scholar 

  201. Bicca MA, Costa R, Loch-Neckel G, Figueiredo CP, Medeiros R, Calixto JB (2015) B2 receptor blockage prevents Aβ-induced cognitive impairment by neuroinflammation inhibition. Behav Brain Res 278:482–491

    Article  PubMed  CAS  Google Scholar 

  202. Cirillo C, Capoccia E, Iuvone T, Cuomo R, Sarnelli G, Steardo L, Esposito G (2015) S100B inhibitor pentamidine attenuates reactive gliosis and reduces neuronal loss in a mouse model of Alzheimer’s disease. BioMed Res Int 13:463

    Google Scholar 

  203. Green HF, Nolan YM (2012) GSK-3 mediates the release of IL-1β, TNF-α and IL-10 from cortical glia. Neurochem Int 61(5):666–671

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Behl.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, D., Behl, T., Sehgal, A. et al. Multifaceted Alzheimer’s Disease: Building a Roadmap for Advancement of Novel Therapies. Neurochem Res 46, 2832–2851 (2021). https://doi.org/10.1007/s11064-021-03415-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03415-w

Keywords

Navigation