Skip to main content

Advertisement

Log in

Bacopaside-I Alleviates the Detrimental Effects of Acute Paraquat Intoxication in the Adult Zebrafish Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Paraquat (PQ), an environmental neurotoxicant, causes acute fatal poisoning upon accidental or intentional ingestion (suicidal cases) worldwide. To date, an effective remedy for PQ toxicity is not available. In this study, we have evaluated the therapeutic efficacy of Bacopaside-I (BS-I), an active compound found in the plant extract of Bacopa monnieri (Brahmi), against acute PQ intoxication using zebrafish as a model organism. Adult zebrafish were injected with a dose of either 30 mg/kg or 50 mg/kg PQ. PQ-intoxicated zebrafish showed an increased rate of mortality and oxidative imbalance in their brain. Also, the proliferation of neural cells in the adult zebrafish brain was inhibited. However, when BS-I pretreated zebrafish were intoxicated with PQ, the toxic effects of PQ were ameliorated. PQ treatment also affected the expression of particular genes concerned with the apoptosis and dopamine signaling, which was not altered by BS-I administration. Our results highlight the efficiency of BS-I as a novel therapeutic agent for PQ intoxication. It further compels us to search and evaluate the molecular mechanisms targeted by BS-I to develop a potent therapy for acute PQ intoxication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data supporting this study will be made available on request.

References

  1. Dorooshi G, Zolfaghari S, Eizadi-Mood N, Gheshlaghi F (2018) A new treatment approach for acute paraquat poisoning. J Res Pharm Pract 7:115–116

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dinis-Oliveira RJ, Duarte JA, Sánchez-Navarro A, Remião F, Bastos ML, Carvalho F (2008) Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Crit Rev Toxicol 38:13–71

    Article  PubMed  CAS  Google Scholar 

  3. Chen HW, Tseng TK, Ding LW (2009) Intravenous paraquat poisoning. J Chin Med Assoc 72:547–550

    Article  PubMed  Google Scholar 

  4. Bismuth C, Hall AH, Baud FJ, Borron S (1996) Pulmonary dysfunction in survivors of acute paraquat poisoning. Vet Hum Toxicol 38:220–222

    PubMed  CAS  Google Scholar 

  5. Huang CL, Lee YC, Yang YC, Kuo TY, Huang NK (2012) Minocycline prevents paraquat-induced cell death through attenuating endoplasmic reticulum stress and mitochondrial dysfunction. Toxicol Lett 209:203–210

    Article  PubMed  CAS  Google Scholar 

  6. Blesa J, Phani S, Jackson-Lewis V, Przedborski S (2012) Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol 2012:845618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Dinis-Oliveira RJ, Remião F, Carmo H, Duarte JA, Navarro AS, Bastos ML, Carvalho F (2006) Paraquat exposure as an etiological factor of Parkinson’s disease. Neurotoxicology 27:1110–1122

    Article  PubMed  CAS  Google Scholar 

  8. Manning-Boğ AB, McCormack AL, Purisai MG, Bolin LM, Di Monte DA (2003) α-Synuclein overexpression protects against paraquat-induced neurodegeneration. J Neurosci 23:3095–3099

    Article  PubMed  PubMed Central  Google Scholar 

  9. Müller TE, Nunes ME, Menezes CC, Marins AT, Leitemperger J, Gressler ACL, Carvalho FB, de Freitas CM, Quadros VA, Fachinetto R, Rosemberg DB, Loro VL (2018) Sodium selenite prevents paraquat-induced neurotoxicity in zebrafish. Mol Neurobiol 55:1928–1941

    Article  PubMed  CAS  Google Scholar 

  10. Rappold PM, Cui M, Chesser AS, Tibbett J, Grima JC, Duan L, Sen N, Javitch JA, Tieu K (2011) Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3. Proc Natl Acad Sci 108:20766–20771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cobley JN, Fiorello ML, Bailey DM (2018) 13 Reasons why the brain is susceptible to oxidative stress. Redox Biol 15:490–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Del Pino J, Moyano P, Díaz GG, Anadon MJ, Diaz MJ, García JM, Lobo M, Pelayo A, Sola E, Frejo MT (2017) Primary hippocampal neuronal cell death induction after acute and repeated paraquat exposures mediated by AChE variants alteration and cholinergic and glutamatergic transmission disruption. Toxicology 390:88–99

    Article  PubMed  CAS  Google Scholar 

  13. Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 823:1–10

    Article  PubMed  CAS  Google Scholar 

  14. Huang M, Cai Q, Xu Y, Guo M, Zhu C, Li Y, Wu K, Zhou Z, Yang H (2019) Paraquat affects the differentiation of neural stem cells and impairs the function of vascular endothelial cells: a study of molecular mechanism. Environ Toxicol 34:548–555

    Article  PubMed  CAS  Google Scholar 

  15. Li K, Cheng X, Jiang J, Wang J, Xie J, Hu X, Huang Y, Song L, Liu M, Cai L, Chen L, Zhao S (2017) The toxic influence of paraquat on hippocampal neurogenesis in adult mice. Food Chem Toxicol 106:356–366

    Article  PubMed  CAS  Google Scholar 

  16. Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:339–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hogberg HT, Kinsner-Ovaskainen A, Hartung T, Coecke S, Bal-Price AK (2009) Gene expression as a sensitive endpoint to evaluate cell differentiation and maturation of the developing central nervous system in primary cultures of rat cerebellar granule cells (CGCs) exposed to pesticides. Toxicol Appl Pharmacol 235:268–286

    Article  PubMed  CAS  Google Scholar 

  18. Desplats P, Patel P, Kosberg K, Mante M, Patrick C, Rockenstein E, Fujita M, Hashimoto M, Masliah E (2012) Combined exposure to Maneb and Paraquat alters transcriptional regulation of neurogenesis-related genes in mice models of Parkinson’s disease. Mol Neurodegener 7:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chang X, Lu W, Dou T, Wang X, Lou D, Sun X, Zhou Z (2013) Paraquat inhibits cell viability via enhanced oxidative stress and apoptosis in human neural progenitor cells. Chem Biol Interact 206:248–255

    Article  PubMed  CAS  Google Scholar 

  20. Zhang Z-J (2004) Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders. Life Sci 75:1659–1699

    Article  PubMed  CAS  Google Scholar 

  21. Rabiei Z, Solati K, Amini-Khoei H (2019) Phytotherapy in treatment of Parkinson’s disease: a review. Pharm Biol 57:355–362

    Article  PubMed  PubMed Central  Google Scholar 

  22. Saini N, Singh D, Sandhir R (2012) Neuroprotective effects of Bacopa monnieri in experimental model of dementia. Neurochem Res 37:1928–1937

    Article  PubMed  CAS  Google Scholar 

  23. Abdul Manap AS, Vijayabalan S, Madhavan P, Chia YY, Arya A, Wong EH, Rizwan F, Bindal U, Koshy S (2019) Bacopa monnieri, a neuroprotective lead in Alzheimer disease: a review on its properties, mechanisms of action, and preclinical and clinical studies. Drug Target Insights 13:1177392819866412–1177392819866412

    Article  PubMed  PubMed Central  Google Scholar 

  24. Singh B, Pandey S, Rumman M, Mahdi AA (2020) Neuroprotective effects of Bacopa monnieri in Parkinson’s disease model. Metab Brain Dis 35:517–525

    Article  PubMed  CAS  Google Scholar 

  25. Brimson JM, Brimson S, Prasanth MI, Thitilertdecha P, Malar DS, Tencomnao T (2021) The effectiveness of Bacopa monnieri (Linn.) Wettst. as a nootropic, neuroprotective, or antidepressant supplement: analysis of the available clinical data. Sci Rep 11:596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hazra S, Kumar S, Saha GK, Mondal AC (2017) Reversion of BDNF, Akt and CREB in hippocampus of chronic unpredictable stress induced rats: effects of phytochemical, Bacopa Monnieri. Psychiatry Investig 14:74–80

    Article  PubMed  CAS  Google Scholar 

  27. Banerjee R, Hazra S, Ghosh AK, Mondal AC (2014) Chronic administration of Bacopa monniera increases BDNF protein and mRNA expressions: a study in chronic unpredictable stress induced animal model of depression. Psychiatry Investig 11:297–306

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kumar S, Mondal AC (2016) Neuroprotective, neurotrophic and anti-oxidative role of Bacopa monnieri on CUS induced model of depression in rat. Neurochem Res 41:3083–3094

    Article  PubMed  CAS  Google Scholar 

  29. Brimson JM, Prasanth MI, Plaingam W, Tencomnao T (2020) Bacopa monnieri (L.) wettst. Extract protects against glutamate toxicity and increases the longevity of Caenorhabditis elegans. J Tradit Complement Med 10:460–470

    Article  PubMed  Google Scholar 

  30. Dhanasekaran M, Tharakan B, Holcomb LA, Hitt AR, Young KA, Manyam BV (2007) Neuroprotective mechanisms of ayurvedic antidementia botanical Bacopa monniera. Phytother Res 21:965–969

    Article  PubMed  CAS  Google Scholar 

  31. Chaudhari KS, Tiwari NR, Tiwari RR, Sharma RS (2017) Neurocognitive effect of nootropic drug Brahmi (Bacopa monnieri) in Alzheimer’s disease. Ann Neurosci 24:111–122

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sinha S, Saxena R (2006) Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacoside-A content in medicinal plant Bacopa monnieri L. Chemosphere 62:1340–1350

    Article  PubMed  CAS  Google Scholar 

  33. Shinomol GK, Muralidhara (2011) Bacopa monnieri modulates endogenous cytoplasmic and mitochondrial oxidative markers in prepubertal mice brain. Phytomedicine 18:317–326

    Article  PubMed  Google Scholar 

  34. Phrompittayarat W, Putalun W, Tanaka H, Jetiyanon K, Wittaya-Areekul S, Ingkaninan K (2007) Determination of pseudojujubogenin glycosides from Brahmi based on immunoassay using a monoclonal antibody against Bacopaside I. Phytochem Anal 18:411–418

    Article  PubMed  CAS  Google Scholar 

  35. Le XT, Nguyet Pham HT, Van Nguyen T, Minh Nguyen K, Tanaka K, Fujiwara H, Matsumoto K (2015) Protective effects of Bacopa monnieri on ischemia-induced cognitive deficits in mice: the possible contribution of Bacopaside I and underlying mechanism. J Ethnopharmacol 164:37–45

    Article  PubMed  Google Scholar 

  36. Liu X, Liu F, Yue R, Li Y, Zhang J, Wang S, Zhang S, Wang R, Shan L, Zhang W (2013) The antidepressant-like effect of Bacopaside I: possible involvement of the oxidative stress system and the noradrenergic system. Pharmacol Biochem Behav 110:224–230

    Article  PubMed  CAS  Google Scholar 

  37. Phrompittayarat W, Wittaya-areekul S, Jetiyanon K, Putalun W, Tanaka H, Ingkaninan K (2008) Stability studies of saponins in Bacopa monnieri dried ethanolic extracts. Planta Med 74:1756–1763

    Article  PubMed  CAS  Google Scholar 

  38. Zu X, Zhang M, Li W, Xie H, Lin Z, Yang N, Liu X, Zhang W (2017) Antidepressant-like effect of Bacopaside I in mice exposed to chronic unpredictable mild stress by modulating the hypothalamic–pituitary–adrenal axis function and activating BDNF signaling pathway. Neurochem Res 42:3233–3244

    Article  PubMed  CAS  Google Scholar 

  39. Pham HTN, Tran HN, Nguyen PT, Le XT, Nguyen KM, Phan SV, Yoneyama M, Ogita K, Yamaguchi T, Folk WR, Yamaguchi M, Matsumoto K (2020) Bacopa monnieri (L.) Wettst. Extract improves memory performance via promotion of neurogenesis in the hippocampal dentate gyrus of adolescent mice. Int J Mol Sci 21:3365

    Article  PubMed Central  CAS  Google Scholar 

  40. de Abreu MS, Giacomini A, Genario R, Dos Santos BE, da Rosa LG, Demin KA, Wappler-Guzzetta EA, Kalueff AV (2019) Neuropharmacology, pharmacogenetics and pharmacogenomics of aggression: the zebrafish model. Pharmacol Res 141:602–608

    Article  PubMed  CAS  Google Scholar 

  41. Kalueff AV, Echevarria DJ, Homechaudhuri S, Stewart AM, Collier AD, Kaluyeva AA, Li S, Liu Y, Chen P, Wang J, Yang L, Mitra A, Pal S, Chaudhuri A, Roy A, Biswas M, Roy D, Podder A, Poudel MK, Katare DP, Mani RJ, Kyzar EJ, Gaikwad S, Nguyen M, Song C (2016) Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research. Aquatic Toxicol (Amst, Neth) 170:297–309

    Article  CAS  Google Scholar 

  42. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  43. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  PubMed  CAS  Google Scholar 

  44. Claiborne A (1985) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 283–284

    Google Scholar 

  45. Fatima M, Ahmad MH, Srivastav S, Rizvi MA, Mondal AC (2020) A selective D2 dopamine receptor agonist alleviates depression through up-regulation of tyrosine hydroxylase and increased neurogenesis in hippocampus of the prenatally stressed rats. Neurochem Int 136:104730

    Article  PubMed  CAS  Google Scholar 

  46. Uchiyama M, Mihara M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    Article  PubMed  CAS  Google Scholar 

  47. Srivastav S, Anand BG, Fatima M, Prajapati KP, Yadav SS, Kar K, Mondal AC (2020) Piperine-coated gold nanoparticles alleviate paraquat-induced neurotoxicity in Drosophila melanogaster. ACS Chem Neurosci 11:3772–3785

    Article  PubMed  CAS  Google Scholar 

  48. Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11:151–169

    Article  PubMed  CAS  Google Scholar 

  49. Anand SK, Mondal AC (2018) TrkB receptor antagonism inhibits stab injury induced proliferative response in adult zebrafish (Danio rerio) brain. Neurosci Lett 672:28–33

    Article  PubMed  CAS  Google Scholar 

  50. Fatima M, Srivastav S, Ahmad MH, Mondal AC (2019) Effects of chronic unpredictable mild stress induced prenatal stress on neurodevelopment of neonates: role of GSK-3β. Sci Rep 9:1305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Smeyne RJ, Breckenridge CB, Beck M, Jiao Y, Butt MT, Wolf JC, Zadory D, Minnema DJ, Sturgess NC, Travis KZ (2016) Assessment of the effects of MPTP and paraquat on dopaminergic neurons and microglia in the substantia nigra pars compacta of C57BL/6 mice. PloS ONE 11:e0164094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Dinis-Oliveira R, Duarte J, Sanchez-Navarro A, Remiao F, Bastos M, Carvalho F (2008) Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Crit Rev Toxicol 38:13–71

    Article  PubMed  CAS  Google Scholar 

  53. Pavan M (2013) Acute kidney injury following Paraquat poisoning in India. Iran J Kidney Dis 7:64

    PubMed  Google Scholar 

  54. Awadalla EA (2012) Efficacy of vitamin C against liver and kidney damage induced by paraquat toxicity. Exp Toxicol Pathol 64:431–434

    Article  PubMed  CAS  Google Scholar 

  55. Wu B, Song B, Tian S, Huo S, Cui C, Guo Y, Liu H (2012) Central nervous system damage due to acute paraquat poisoning: a neuroimaging study with 3.0 T MRI. Neurotoxicology 33:1330–1337

    Article  PubMed  CAS  Google Scholar 

  56. Gunnell D, Eddleston M, Phillips MR, Konradsen F (2007) The global distribution of fatal pesticide self-poisoning: systematic review. BMC Public Health 7:357

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kolilekas L, Ghizopoulou E, Retsou S, Kourelea S, Hadjistavrou C (2006) Severe paraquat poisoning. A long-term survivor. Respir Med Extra 2:67–70

    Article  Google Scholar 

  58. Elenga N, Merlin C, Le Guern R, Kom-Tchameni R, Ducrot YM, Pradier M, Ntab B, Dinh-Van KA, Sobesky M, Mathieu D, Dueymes JM, Egmann G, Kallel H, Mathieu-Nolf M (2018) Clinical features and prognosis of paraquat poisoning in French Guiana: a review of 62 cases. Medicine 97:e9621

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sittipunt C (2005) Paraquat poisoning. Respir Care 50:383–385

    PubMed  Google Scholar 

  60. Weng C-H, Hu C-C, Lin J-L, Lin-Tan D-T, Hsu C-W, Yen T-H (2013) Predictors of acute respiratory distress syndrome in patients with paraquat intoxication. PLoS ONE 8:e82695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Srivastav S, Fatima M, Mondal AC (2018) Bacopa monnieri alleviates paraquat induced toxicity in Drosophila by inhibiting jnk mediated apoptosis through improved mitochondrial function and redox stabilization. Neurochem Int 121:98–107

    Article  PubMed  CAS  Google Scholar 

  62. Hosamani R, Muralidhara (2010) Prophylactic treatment with Bacopa monnieri leaf powder mitigates paraquat-induced oxidative perturbations and lethality in Drosophila melanogaster. Indian J Biochem Biophys 47:75–82

    PubMed  CAS  Google Scholar 

  63. Bus JS, Aust SD, Gibson JE (1974) Superoxide- and singlet oxygen-catalyzed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) toxicity. Biochem Biophys Res Commun 58:749–755

    Article  PubMed  CAS  Google Scholar 

  64. Chen Q, Niu Y, Zhang R, Guo H, Gao Y, Li Y, Liu R (2010) The toxic influence of paraquat on hippocampus of mice: involvement of oxidative stress. Neurotoxicology 31:310–316

    Article  PubMed  CAS  Google Scholar 

  65. Joseph TP, Jagadeesan N, Sai LY, Lin SL, Sahu S, Schachner M (2020) Adhesion molecule L1 agonist mimetics protect against the pesticide paraquat-induced locomotor deficits and biochemical alterations in zebrafish. Front Neurosci 14:458

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gao L, Yuan H, Xu E, Liu J (2020) Toxicology of paraquat and pharmacology of the protective effect of 5-hydroxy-1-methylhydantoin on lung injury caused by paraquat based on metabolomics. Sci Rep 10:1790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Mehdi SH, Qamar A (2013) Paraquat-induced ultrastructural changes and DNA damage in the nervous system is mediated via oxidative-stress-induced cytotoxicity in Drosophila melanogaster. Toxicol Sci 134:355–365

    Article  PubMed  CAS  Google Scholar 

  68. Shukla AK, Pragya P, Chaouhan HS, Tiwari AK, Patel DK, Abdin MZ, Chowdhuri DK (2014) Heat shock protein-70 (Hsp-70) suppresses paraquat-induced neurodegeneration by inhibiting JNK and caspase-3 activation in Drosophila model of Parkinson’s disease. PLoS ONE 9:e98886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Nunes ME, Müller TE, Braga MM, Fontana BD, Quadros VA, Marins A, Rodrigues C, Menezes C, Rosemberg DB, Loro VL (2017) Chronic treatment with paraquat induces brain injury, changes in antioxidant defenses system, and modulates behavioral functions in zebrafish. Mol Neurobiol 54:3925–3934

    Article  PubMed  CAS  Google Scholar 

  70. Yadav SK, Prakash J, Chouhan S, Singh SP (2013) Mucuna pruriens seed extract reduces oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in paraquat-induced Parkinsonian mouse model. Neurochem Int 62:1039–1047

    Article  PubMed  CAS  Google Scholar 

  71. Ortiz MS, Forti KM, Suárez Martinez EB, Muñoz LG, Husain K, Muñiz WH (2016) Effects of antioxidant N-acetylcysteine against paraquat-induced oxidative stress in vital tissues of mice. Int J Sci Basic Appl Res 26:26–46

    PubMed  PubMed Central  Google Scholar 

  72. Pias EK, Ekshyyan OY, Rhoads CA, Fuseler J, Harrison L, Aw TY (2003) Differential effects of superoxide dismutase isoform expression on hydroperoxide-induced apoptosis in PC-12 cells. J Biol Chem 278:13294–13301

    Article  PubMed  CAS  Google Scholar 

  73. Kasahara E, Lin LR, Ho YS, Reddy VN (2005) SOD2 protects against oxidation-induced apoptosis in mouse retinal pigment epithelium: implications for age-related macular degeneration. Invest Ophthalmol Vis Sci 46:3426–3434

    Article  PubMed  Google Scholar 

  74. Kalmar B, Greensmith L (2009) Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev 61:310–318

    Article  PubMed  CAS  Google Scholar 

  75. Polla BS, Kantengwa S, François D, Salvioli S, Franceschi C, Marsac C, Cossarizza A (1996) Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc Natl Acad Sci USA 93:6458–6463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Gupta SC, Siddique HR, Mathur N, Vishwakarma AL, Mishra RK, Saxena DK, Chowdhuri DK (2007) Induction of hsp70, alterations in oxidative stress markers and apoptosis against dichlorvos exposure in transgenic Drosophila melanogaster: modulation by reactive oxygen species. Biochem Biophys Acta 1770:1382–1394

    Article  PubMed  CAS  Google Scholar 

  77. Chowdhuri DK, Parmar D, Kakkar P, Shukla R, Seth PK, Srimal RC (2002) Antistress effects of bacosides of Bacopa monnieri: modulation of Hsp70 expression, superoxide dismutase and cytochrome P450 activity in rat brain. Phytother Res 16:639–645

    Article  PubMed  CAS  Google Scholar 

  78. Wang Q, Liu S, Hu D, Wang Z, Wang L, Wu T, Wu Z, Mohan C, Peng A (2016) Identification of apoptosis and macrophage migration events in paraquat-induced oxidative stress using a zebrafish model. Life Sci 157:116–124

    Article  PubMed  CAS  Google Scholar 

  79. McCarthy S, Somayajulu M, Sikorska M, Borowy-Borowski H, Pandey S (2004) Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble Coenzyme Q10. Toxicol Appl Pharmacol 201:21–31

    Article  PubMed  CAS  Google Scholar 

  80. Anand SK, Mondal AC (2017) Cellular and molecular attributes of neural stem cell niches in adult zebrafish brain. Dev Neurobiol 77:1188–1205

    Article  PubMed  Google Scholar 

  81. Cacialli P, D’angelo L, Kah O, Coumailleau P, Gueguen M-M, Pellegrini E, Lucini C (2018) Neuronal expression of brain derived neurotrophic factor in the injured telencephalon of adult zebrafish. J Comp Neurol 526:569–582

    Article  PubMed  CAS  Google Scholar 

  82. Bortolotto JW, Cognato GP, Christoff RR, Roesler LN, Leite CE, Kist LW, Bogo MR, Vianna MR, Bonan CD (2014) Long-term exposure to paraquat alters behavioral parameters and dopamine levels in adult zebrafish (Danio rerio). Zebrafish 11:142–153

    Article  PubMed  CAS  Google Scholar 

  83. Breckenridge CB, Sturgess NC, Butt M, Wolf JC, Zadory D, Beck M, Mathews JM, Tisdel MO, Minnema D, Travis KZ, Cook AR, Botham PA, Smith LL (2013) Pharmacokinetic, neurochemical, stereological and neuropathological studies on the potential effects of paraquat in the substantia nigra pars compacta and striatum of male C57BL/6J mice. Neurotoxicology 37:1–14

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

ACM highly acknowledges the financial supports from DBT NER (BT/PR32907/MED/122/227/2019), DBT-BUILDER (Level-III), DST-FIST-II and School of Life Sciences, Jawaharlal Nehru University, New Delhi, India. SKA acknowledges the financial support from CSIR-HRDG, (09/263(1101)/2016-EMR-I) New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

ACM and SKA designed the experiments. SKA and MRS performed the experiments. The manuscript was written by SKA, formatted by SKA and MRS, and reviewed by ACM.

Corresponding author

Correspondence to Amal Chandra Mondal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, S.K., Sahu, M.R. & Mondal, A.C. Bacopaside-I Alleviates the Detrimental Effects of Acute Paraquat Intoxication in the Adult Zebrafish Brain. Neurochem Res 46, 3059–3074 (2021). https://doi.org/10.1007/s11064-021-03416-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03416-9

Keywords

Navigation