Skip to main content

Advertisement

Log in

Circ_CLIP2 promotes glioma progression through targeting the miR-195-5p/HMGB3 axis

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Background

Circular RNA (circRNA) has been demonstrated to play key roles in regulating glioma progression. Understanding the regulatory mechanism of circRNA in glioma is vital to reveal the pathogenesis of glioma and develop novel therapeutic strategies. Therefore, our study focuses on the role and underlying mechanism of Circ_CLIP2 in glioma.

Methods

The expression of Circ_CLIP2, miR-195-5p and HMGB3 in glioma cells and tissues were analyzed using qRT-PCR. Cell proliferation was determined with colony formation and MTT assays. Cell cycle and apoptosis were examined by flow cytometry. Western blot was conducted for analyzing HMGB3, PCNA, Bax, Bcl-2, cleaved-caspase 3, Wnt-1 and β-catenin. Dual-luciferase reporter assay was measured to investigate the interaction among Circ_CLIP2, miR-195-5p and HMGB3.

Results

The expression of Circ_CLIP2 and HMGB3 were increased while miR-195-5p was down-regulated in glioma cells and patients. Silencing of Circ_CLIP2 inhibited cell proliferation, enhanced cell apoptosis and inhibited the Wnt/β-catenin signaling pathway. Circ_CLIP2 suppressed miR-195-5p expression by directly sponging miR-195-5p. MiR-195-5p inhibited HMGB3 expression via directly targeting HMGB3. Knockdown of miR-195-5p facilitated cell proliferation, inhibited cell apoptosis and activated Wnt/β-catenin signaling, which were reversed by silencing of HMGB3.

Conclusion

Knockdown of Circ_CLIP2 suppresses glioma progression by targeting miR-195-5p/HMGB3 thus inhibiting Wnt/β-catenin signaling. This study may provide potential therapeutic targets against glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Reni M, Mazza E, Zanon S, Gatta G, Vecht CJ (2017) Central nervous system gliomas. Crit Rev Oncol Hematol 113:213–234. https://doi.org/10.1016/j.critrevonc.2017.03.021

    Article  PubMed  Google Scholar 

  2. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Wrensch MR, Barnholtz-Sloan JS (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol 16:896–913. https://doi.org/10.1093/neuonc/nou087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen R, Smith-Cohn M, Cohen AL, Colman H (2017) Glioma Subclassifications and their clinical significance. Neurotherapeutics 14:284–297. https://doi.org/10.1007/s13311-017-0519-x

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chowdhary MM, Ene CI, Silbergeld DL (2015) Treatment of gliomas: how did we get here? Surg Neurol Int 6:S85-88. https://doi.org/10.4103/2152-7806.151348

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li F, Liu Z, Sun H, Li C, Wang W, Ye L, Yan C, Tian J, Wang H (2020) PCC0208017, a novel small-molecule inhibitor of MARK3/MARK4, suppresses glioma progression in vitro and in vivo. Acta pharmaceutica Sinica B 10:289–300. https://doi.org/10.1016/j.apsb.2019.09.004

    Article  CAS  PubMed  Google Scholar 

  6. He ZQ, Duan H, Ke C, Zhang XH, Guo CC, Al-Nahari F, Zhang J, Chen ZH, Chen YS, Liu ZG, Wang J, Chen ZP, Jiang XB, Mou YG (2017) Evaluation of cumulative prognostic score based on pretreatment plasma fibrinogen and serum albumin levels in patients with newly diagnosed high-grade gliomas. Oncotarget 8:49605–49614. https://doi.org/10.18632/oncotarget.17849

    Article  PubMed  PubMed Central  Google Scholar 

  7. Steinbach JP, Weller M (2004) Apoptosis in gliomas: molecular mechanisms and therapeutic implications. J Neurooncol 70:245–254. https://doi.org/10.1007/s11060-004-2753-4

    Article  PubMed  Google Scholar 

  8. Sun J, Li B, Shu C, Ma Q, Wang J (2020) Functions and clinical significance of circular RNAs in glioma. Mol Cancer 19:34. https://doi.org/10.1186/s12943-019-1121-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rynkeviciene R, Simiene J, Strainiene E, Stankevicius V, Usinskiene J, Miseikyte Kaubriene E, Meskinyte I, Cicenas J, Suziedelis K (2018) Non-Coding RNAs in Glioma. Cancers. https://doi.org/10.3390/cancers11010017

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mizoguchi M, Guan Y, Yoshimoto K, Hata N, Amano T, Nakamizo A, Sasaki T (2012) MicroRNAs in human malignant gliomas. J Oncol. https://doi.org/10.1155/2012/732874

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang X, Yang H, Zhao L, Li G, Duan Y (2019) Circular RNA PRKCI promotes glioma cell progression by inhibiting microRNA-545. Cell Death Dis 10:616. https://doi.org/10.1038/s41419-019-1863-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Song X, Zhang N, Han P, Moon BS, Lai RK, Wang K, Lu W (2016) Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res 44:e87. https://doi.org/10.1093/nar/gkw075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang X, Li XD, Fu Z, Zhou Y, Huang X, Jiang X (2020) Long noncoding RNA LINC00473/miR1955p promotes glioma progression via YAP1TEAD1Hippo signaling. Int J Oncol 56:508–521. https://doi.org/10.3892/ijo.2019.4946

    Article  CAS  PubMed  Google Scholar 

  14. Jia Y, Tian Y, An S, Yang D (2020) Effects of microRNA-195 on the prognosis of glioma patients and the proliferation and apoptosis of human glioma cells. Pathology Oncology Research: POR 26:753–763. https://doi.org/10.1007/s12253-019-00622-3

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Mo Y, Gong Z, Yang X, Yang M, Zhang S, Xiong F, Xiang B, Zhou M, Liao Q, Zhang W, Li X, Li X, Li Y, Li G, Zeng Z, Xiong W (2017) Circular RNAs in human cancer. Mol Cancer 16:25. https://doi.org/10.1186/s12943-017-0598-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nemeth MJ, Curtis DJ, Kirby MR, Garrett-Beal LJ, Seidel NE, Cline AP, Bodine DM (2003) Hmgb3: an HMG-box family member expressed in primitive hematopoietic cells that inhibits myeloid and B-cell differentiation. Blood 102:1298–1306. https://doi.org/10.1182/blood-2002-11-3541

    Article  CAS  PubMed  Google Scholar 

  17. Liu J, Wang L, Li X (2018) HMGB3 promotes the proliferation and metastasis of glioblastoma and is negatively regulated by miR-200b-3p and miR-200c-3p. Cell Biochem Funct 36:357–365. https://doi.org/10.1002/cbf.3355

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Ma Y, Zhang T, Feng C, Liu Y (2020) High-mobility group box 3 (HMGB3) silencing inhibits non-small cell lung cancer development through regulating Wnt/beta-catenin pathway. Biol Chem. https://doi.org/10.1515/hsz-2020-0144

    Article  PubMed  Google Scholar 

  19. Mu F, Huang J, Xing T, Jing Y, Cui T, Guo Y, Yan X, Li H, Wang N (2019) The Wnt/beta-catenin/LEF1 pathway promotes cell proliferation at least in part through direct upregulation of miR-17-92 cluster. Front Genet 10:525. https://doi.org/10.3389/fgene.2019.00525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480. https://doi.org/10.1016/j.cell.2006.10.018

    Article  CAS  PubMed  Google Scholar 

  21. Panda AC (2018) Circular RNAs Act as miRNA sponges. Adv Exp Med Biol 1087:67–79. https://doi.org/10.1007/978-981-13-1426-1_6

    Article  CAS  PubMed  Google Scholar 

  22. Chen TY, Liu Y, Chen L, Luo J, Zhang C, Shen XF (2020) Identification of the potential biomarkers in patients with glioma: a weighted gene co-expression network analysis. Carcinogenesis 41:743–750. https://doi.org/10.1093/carcin/bgz194

    Article  CAS  PubMed  Google Scholar 

  23. Liu J, Zhao K, Huang N, Zhang N (2019) Circular RNAs and human glioma. Cancer Biol Med 16:11–23. https://doi.org/10.20892/j.issn.2095-3941.2018.0425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang R, Zhang S, Chen X, Li N, Li J, Jia R, Pan Y, Liang H (2018) CircNT5E Acts as a sponge of miR-422a to promote glioblastoma tumorigenesis. Cancer Res 78:4812–4825. https://doi.org/10.1158/0008-5472.CAN-18-0532

    Article  CAS  PubMed  Google Scholar 

  25. Li M, Li J, Liu L, Li W, Yang Y, Yuan J (2013) MicroRNA in human glioma cancers (Basel) 5:1306–1331. https://doi.org/10.3390/cancers5041306

    Article  CAS  Google Scholar 

  26. Wang BC, Ma J (2015) Role of NicroRNAs in malignant glioma. Chin Med J (Engl) 128:1238–1244. https://doi.org/10.4103/0366-6999.156141

    Article  CAS  Google Scholar 

  27. Chen J, Chen T, Zhu Y, Li Y, Zhang Y, Wang Y, Li X, Xie X, Wang J, Huang M, Sun X, Ke Y (2019) circPTN sponges miR-145-5p/miR-330-5p to promote proliferation and stemness in glioma. J Exp Clin Cancer Res 38:398. https://doi.org/10.1186/s13046-019-1376-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yilaz Susluer S, Biray Avci C, Dodurga Y, Ozlem Dogan Sigva Z, Oktar N, Gunduz C (2015) Downregulation of miR-195 via cyclosporin A in human glioblastoma cells. J BUON 20:1337–1340

    PubMed  Google Scholar 

  29. Hui W, Yuntao L, Lun L, WenSheng L, ChaoFeng L, HaiYong H, Yueyang B (2013) MicroRNA-195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1. PloS ONE 8:e54932. https://doi.org/10.1371/journal.pone.0054932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kulcheski FR, Christoff AP, Margis R (2016) Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol 238:42–51. https://doi.org/10.1016/j.jbiotec.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  31. Song N, Wang B, Feng G, Duan L, Yuan S, Jia W, Liu Y (2019) Knockdown of high mobility group box 3 impairs cell viability and colony formation but increases apoptosis in A549 human non-small cell lung cancer cells. Oncol Lett 17:2937–2945. https://doi.org/10.3892/ol.2019.9927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gu J, Xu T, Huang QH, Zhang CM, Chen HY (2019) HMGB3 silence inhibits breast cancer cell proliferation and tumor growth by interacting with hypoxia-inducible factor 1alpha. Cancer Manag Res 11:5075–5089. https://doi.org/10.2147/CMAR.S204357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ 3rd, Lotze MT, Tang D (2014) HMGB1 in health and disease. Mol Aspects Med 40:1–116. https://doi.org/10.1016/j.mam.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  34. Wang P, Zhang L, Yin S, Xu Y, Tai S, Zhang LI, Liang C (2021) hsa_circ_0062019 promotes the proliferation, migration, and invasion of prostate cancer cells via the miR-195-5p/HMGA2 axis. Acta Biochim Biophys Sin 53:815–822. https://doi.org/10.1093/abbs/gmab058

    Article  PubMed  Google Scholar 

  35. Pang B, Fan H, Zhang IY, Liu B, Feng B, Meng L, Zhang R, Sadeghi S, Guo H, Pang Q (2012) HMGA1 expression in human gliomas and its correlation with tumor proliferation, invasion and angiogenesis. J Neurooncol 106:543–549. https://doi.org/10.1007/s11060-011-0710-6

    Article  CAS  PubMed  Google Scholar 

  36. Zeng Y, Que T, Lin J, Zhan Z, Xu A, Wu Z, Xie C, Luo J, Ding S, Long H, Zhang X, Song Y (2021) Oncogenic ZEB2/miR-637/HMGA1 signaling axis targeting vimentin promotes the malignant phenotype of glioma. Mol Ther Nucl acids 23:769–782. https://doi.org/10.1016/j.omtn.2020.12.029

    Article  CAS  Google Scholar 

  37. Wang J, Xu X, Mo S, Tian Y, Wu J, Zhang J, Zhao J (2016) Involvement of microRNA-1297, a new regulator of HMGA1, in the regulation of glioma cell growth in vivo and in vitro. Am J Transl Res 8:2149–2158

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Puca F, Tosti N, Federico A, Kuzay Y, Pepe A, Morlando S, Savarese T, D’Alessio F, Colamaio M, Sarnataro D, Ziberi S, De Martino M, Fusco A, Battista S (2019) HMGA1 negatively regulates NUMB expression at transcriptional and post transcriptional level in glioblastoma stem cells. Cell Cycle 18:1446–1457. https://doi.org/10.1080/15384101.2019.1618541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bilir B, Kucuk O, Moreno CS (2013) Wnt signaling blockage inhibits cell proliferation and migration, and induces apoptosis in triple-negative breast cancer cells. J Transl Med 11:280. https://doi.org/10.1186/1479-5876-11-280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu C, Jia S, Zhao S, Shao X (2019) MiR-342 regulates cell proliferation and apoptosis in hepatocellular carcinoma through Wnt/beta-catenin signaling pathway. Cancer Biomark 25:115–126. https://doi.org/10.3233/CBM-192399

    Article  CAS  PubMed  Google Scholar 

  41. Garg M, Maurya N (2019) WNT/beta-catenin signaling in urothelial carcinoma of bladder. World J Nephrol 8:83–94. https://doi.org/10.5527/wjn.v8.i5.83

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Jiangxi provincial department of education natural science foundation youth project (Grant No. GJJ180153), Science and technology plan of Jiangxi provincial health commission (Grant No. 20201063) and National Natural Science Foundation of China (Grant No. 81760445).

Author information

Authors and Affiliations

Authors

Contributions

BX: conceptualization, writing—original draft preparation, validation, visualization, investigation, methodology; SL: methodology; MW: software; XS: data curation; WT: visualization; MY: conceptualization, writing- original draft preparation, supervision, writing—reviewing and editing; XZ: conceptualization, writing—original draft preparation, supervision, writing—reviewing and editing.

Corresponding authors

Correspondence to Min-hua Ye or Xin-gen Zhu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

Our study was approved by the Ethics Committee of Second Affiliated Hospital of Nanchang University.

Informed consent

Written informed consent were provided by all patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, B., Lv, Sg., Wu, Mj. et al. Circ_CLIP2 promotes glioma progression through targeting the miR-195-5p/HMGB3 axis. J Neurooncol 154, 131–144 (2021). https://doi.org/10.1007/s11060-021-03814-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-021-03814-7

Keywords

Navigation