Skip to main content
Log in

Norovirus Foodborne Outbreak Associated With the Consumption of Ice Pop, Southern Brazil, 2020

  • Brief Communication
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Norovirus is a major cause of foodborne-associated acute gastroenteritis (AGE) outbreaks worldwide. Usually, food products are contaminated either during harvesting or preparation, and the most common products associated to norovirus outbreaks are raw or undercooked bivalve shellfish, fruits (frozen berries) and ready-to-eat produce. In the present study, we investigated an AGE outbreak caused by norovirus associated with the consumption of ice pops in southern Brazil. Clinical stool samples from patients and ice pops samples were collected and analyzed for viruses’ detection. By using RT-qPCR and sequencing, we detected the uncommon genotype GII.12[P16] in clinical samples and GII.12 in samples of ice pop. Strains shared identity of 100% at nucleotide level strongly suggesting the consumption of ice pops as the source of the outbreak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data Availability

The data generated during and/or analyzed during the current study are included in this published article and additional information are available from the corresponding author on reasonable request.

References

  • Ahmed, S. M., Hall, A. J., Robinson, A. E., Verhoef, L., Premkumar, P., Parashar, U. D., Koopmans, M., & Lopman, B. A. (2014). Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. The Lancet Infectious Diseases, 14(8), 725–730.

    PubMed  PubMed Central  Google Scholar 

  • Alfano-Sobsey, E., Sweat, D., Hall, A., Breedlove, F., Rodriguez, R., Greene, S., Pierce, A., Sobsey, M., Davies, M., & Ledford, S. L. (2012). Norovirus outbreak associated with undercooked oysters and secondary household transmission. Epidemiology and Infection, 140(2), 276–282.

    CAS  PubMed  Google Scholar 

  • Ao, Y., Wang, J., Ling, H., He, Y., Dong, X., Wang, X., Peng, J., Zhang, H., Jin, M., & Duan, Z. (2017). Norovirus GII.P16/GII.2-associated gastroenteritis, China, 2016. Emerging Infectious Diseases, 23, 1172–1175.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atmar, R. L., Ramani, S., & Estes, M. (2018). Human noroviruses: Recent advances in a 50-year history. Current Opinion in Infectious Diseases, 31(5), 422–432.

    PubMed  Google Scholar 

  • Bányai, K., Estes, M., Martella, V., & Parashar, U. (2018). Viral gastroenteritis. Lancet, 392, 175–186.

    PubMed  Google Scholar 

  • Barclay, L., Cannon, J. L., Wikswo, M. E., Phillips, A. R., Browne, H., Montmayeur, A. M., Tatusov, R. L., Burke, R. M., Hall, A. J., & Vinjé, J. (2019). Emerging novel GII.P16 noroviruses associated with multiple capsid genotypes. Viruses, 11, E535.

    PubMed  Google Scholar 

  • Barclay, L., Davis, T., & Vinjé, J. (2021). Rare Norovirus GIV Foodborne Outbreak, Wisconsin, USA. Emerging Infectious Diseases, 27(4), 1151–1154.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barreira, D. M. P. G., Fumian, T. M., Tonini, M. A. L., Volpini, L. P. B., Santos, R. P., Ribeiro, A. L. C., Leite, J. P. G., Souza, M. T. B. M. E., Brasil, P., da, Cunha, D. C., Miagostovich, M. P., & Spano, L. C. (2017). Detection and molecular characterization of the novel recombinant norovirus GII.P16-GII.4 Sydney in southeastern Brazil in 2016. PLoS One, 12(12), e0189504.

    PubMed  PubMed Central  Google Scholar 

  • Bellou, M., Kokkinos, P., & Vantarakis, A. (2013). Shellfish-borne viral outbreaks: A systematic review. Food and Environmental Virology, 5, 13–23.

    CAS  PubMed  Google Scholar 

  • Bidalot, M., Théry, L., Kaplon, J., De Rougemont, A., & Ambert-Balay, K. (2017). Emergence of new recombinant noroviruses GII.p16-GII.4 and GII.p16-GII.2, France, winter 2016 to 2017. Euro Surveill, 22(15), 30508.

    PubMed  PubMed Central  Google Scholar 

  • Cannon, J. L., Barclay, L., Collins, N. R., Wikswo, M. E., Castro, C. J., Magaña, L. C., Gregoricus, N., Marine, R. L., Chhabra, P., & Vinjé, J. (2017). Genetic and epidemiologic trends of norovirus outbreaks in the United States from 2013 to 2016 demonstrated emergence of Novel GII.4 recombinant viruses. Journal of Clinical Microbiology, 55(7), 2208–2221.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cantelli, P., da Silva, M., Fumian, T., da Cunha, D., Andrade, J., Malta, F., da Silva, E., Mouta, S., Fialho, A., de Moraes, M., Brasil, P., Miagostovich, M., & Leite, J. (2019). High genetic diversity of noroviruses in children from a community-based study in Rio de Janeiro, Brazil, 2014–2018. Archives of Virology, 164(5), 1427–1432.

    CAS  PubMed  Google Scholar 

  • Cheung, S. K. C., Kwok, K., Zhang, L. Y., Mohammad, K. N., Lui, G. C. Y., Lee, N., Nelson, E. A. S., Lai, R. W. M., Leung, T. F., Chan, P. K. S., & Chan, M. C. (2019). Higher viral load of emerging norovirus GII.P16-GII.2 than pandemic GII.4 and epidemic GII.17, Hong Kong, China. Emerging Infectious Diseases, 25(1), 119–122.

    PubMed  PubMed Central  Google Scholar 

  • Chhabra, P., de Graaf, M., Parra, G., Chan, M., Green, K., Martella, V., Wang, Q., White, P., Katayama, K., Vennema, H., Koopmans, M., & Vinjé, J. (2019). Updated classification of norovirus genogroups and genotypes. Journal of General Virology, 100(10), 1393–1406.

    CAS  Google Scholar 

  • Choi, Y. S., Koo, E. S., Kim, M. S., Choi, J. D., Shin, Y., & Jeong, Y. S. (2017). Re-emergence of a GII.4 norovirus sydney 2012 variant equipped with GII.P16 RdRp and its predominance over novel variants of GII.17 in South Korea in 2016. Food and Environmental Virology, 9(2), 168–178.

    PubMed  Google Scholar 

  • de Andrade, J. D., Fumian, T. M., Leite, J. P., de Assis, M. R., Fialho, A. M., Mouta, S., Santiago, C. M., & Miagostovich, M. P. (2018). Norovirus GII.17 associated with a foodborne acute gastroenteritis outbreak in Brazil, 2016. Food and Environment Virology, 10, 212–216.

    Google Scholar 

  • de Andrade, J. D., Rocha, M. S., Carvalho-Costa, F. A., Fioretti, J. M., Xavier, M. D., Nunes, Z. M., Cardoso, J., Fialho, A. M., Leite, J. P., & Miagostovich, M. P. (2014). Noroviruses associated with outbreaks of acute gastroenteritis in the state of Rio Grande do Sul, Brazil, 2004. Journal of Clinical Virology, 61(3), 345–352. https://doi.org/10.1016/j.jcv.2014.08.024

    Article  Google Scholar 

  • de Graaf, M., van Beek, J., Vennema, H., Podkolzin, A. T., Hewitt, J., Bucardo, F., Templeton, K., Mans, J., Nordgren, J., Reuter, G., & Lynch, M. (2015). Emergence of a novel GII.17 norovirus—End of the GII.4 era. Eurosurveillance, 20, 21178.

    PubMed  Google Scholar 

  • Doyle, A., Barataud, D., Gallay, A., Thiolet, J. M., Le Guyaguer, S., Kohli, E., & Vaillant, V. (2004). Norovirus foodborne outbreaks associated with the consumption of oysters from the Etang de Thau, France, December 2002. Eurosurveillance, 9(3), 24–26.

    CAS  PubMed  Google Scholar 

  • FAO/WHO (2012). Guidelines on the application of general principles of food hygiene to the control of viruses in food. In: Codex Alimentarius International Food Standards CAC/GL 79.

  • Fouillet, A., Fournet, N., Forgeot, C., Jones, G., Septfons, A., Franconeri, L., Ambert-Balay, K., Schmidt, J., Guérin, P., de Valk, H., & Caserio-Schönemann, C. (2020). Large concomitant outbreaks of acute gastroenteritis emergency visits in adults and food-borne events suspected to be linked to raw shellfish, France, December 2019 to January 2020. Eurosurveillance, 25(7), 2000060.

    PubMed Central  Google Scholar 

  • Fumian, T. M., Justino, M. C., D’Arc Pereira Mascarenhas, J., Reymão, T. K., Abreu, E., Soares, L., Linhares, A. C., & Gabbay, Y. B. (2013). Quantitative and molecular analysis of noroviruses RNA in blood from children hospitalized for acute gastroenteritis in Belém, Brazil. Journal of Clinical Virology, 58(1), 31–35. https://doi.org/10.1016/j.jcv.2013.06.043

    Article  CAS  PubMed  Google Scholar 

  • Giammanco, G. M., Rotolo, V., Medici, M. C., Tummolo, F., Bonura, F., Chezzi, C., Martella, V., & De Grazia, S. (2012). Recombinant norovirus GII.g/GII.12 gastroenteritis in children. Infection, Genetics and Evolution, 12, 169–174.

    CAS  PubMed  Google Scholar 

  • Green, K. (2013). Caliciviridae: The noroviruses. In D. M. Knipe (Ed.), Fields Virology (6th ed.). Lippincott Williams & Wilkins.

    Google Scholar 

  • Hardstaff, J. L., Clough, H. E., Lutje, V., McIntyre, K. M., Harris, J. P., Garner, P., & O’Brien, S. J. (2018). Foodborne and food-handler norovirus outbreaks: A systematic review. Foodborne Pathogens and Disease, 15(10), 589–597.

    PubMed  PubMed Central  Google Scholar 

  • Hernandez, J. M., Silva, L. D., Sousa Junior, E. C., Cardoso, J. F., Reymão, T. K. A., Portela, A. C. R., de Lima, C. P. S., Teixeira, D. M., Lucena, M. S. S., Nunes, M. R. T., & Gabbay, Y. B. (2020). Evolutionary and molecular analysis of complete genome sequences of norovirus from Brazil: Emerging recombinant strain GII.P16/GII.4. Frontiers in Microbiology, 6(11), 1870.

    Google Scholar 

  • Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F. B., Takeda, N., & Katayama, K. (2003). Broadly reactive and highly sensitive assay for norwalk-like viruses based on real-time quantitative reverse transcription-PCR. Journal of Clinical Microbiology, 41(4), 1548–1557.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, H., & Yoon, Y. (2021). Etiological agents implicated in foodborne illness world Wide. Food Science of Animal Resources, 41(1), 1–7.

    PubMed  PubMed Central  Google Scholar 

  • Lun, J. H., Hewitt, J., Sitabkhan, A., Eden, J. S., Enosi Tuipulotu, D., Netzler, N. E., Morrell, L., Merif, J., Jones, R., Huang, B., Warrilow, D., Ressler, K. A., Ferson, M. J., Dwyer, D. E., Kok, J., Rawlinson, W. D., Deere, D., Crosbie, N. D., & White, P. A. (2018). Emerging recombinant noroviruses identified by clinical and waste water screening. Emerging Microbes & Infection, 7(1), 50.

    Google Scholar 

  • Mans, J., Murray, T. Y., & Taylor, M. B. (2014). Novel norovirus recombinants detected in South Africa. Virology Journal, 11, 168.

    PubMed  PubMed Central  Google Scholar 

  • Morillo, S. G., Luchs, A., Cilli, A., Ribeiro, C. D., Carmona, R. D., & Timenetsky, M. D. (2017). Norovirus GIIPe genotype: tracking a foodborne outbreak on a cruise ship through molecular epidemiology, Brazil, 2014. Food Environmental Virology, 9, 142–148.

    CAS  PubMed  Google Scholar 

  • Morillo, S. G., Luchs, A., Cilli, A., & Timenetsky, M. D. (2012). Rapid detection of norovirus in naturally contaminated food: Foodborne gastroenteritis outbreak on a cruise ship in Brazil, 2010. Food and Environmental Virology, 4, 124–129.

    PubMed  Google Scholar 

  • Niendorf, S., Jacobsen, S., Faber, M., Eis-Hubinger, A. M., Hofmann, J., Zimmermann, O., Hohne, M., & Bock, C. T. (2017). Steep rise in norovirus cases and emergence of a new recombinant strain GIIP16-GII2, Germany, winter 2016. Eurosurveillance. https://doi.org/10.2807/1560-7917.ES.2017.22.4.30447

    Article  PubMed  PubMed Central  Google Scholar 

  • Pabbaraju, K., Wong, A. A., Tipples, G. A., & Pang, X. L. (2019). Emergence of a novel recombinant norovirus GII.P16-GII.12 strain causing gastroenteritis, Alberta, Canada. Emerging Infectious Diseases, 25(8), 1556–1559.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pina, S., Jofre, J., Emerson, S. U., Purcell, R. H., & Girones, R. (1998). Characterization of a strain of infectious hepatitis E virus isolated from sewage in an area where hepatitis E is not endemic. Applied and Environment Microbiology, 64(11), 4485–4488.

    CAS  Google Scholar 

  • Prado, T., Fumian, T. M., Mannarino, C. F., Resende, P. C., Motta, F. C., Eppinghaus, A. L. F., do Vale, V. H. C., Braz, R. M. S., de Andrade, J. D. S. R., Maranhão, A. G., & Miagostovich, M. P. (2021). Wastewater-based epidemiology as a useful tool to track SARS-CoV-2 and support public health policies at municipal level in Brazil. Water Research, 191, 116810.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruis, C., Roy, S., Brown, J. R., Allen, D. J., Goldstein, R. A., & Breuer, J. (2017). The emerging GII.P16-GII.4 Sydney 2012 norovirus lineage is circulating worldwide, arose bylate-2014 and contains polymerase changes that may increase virus transmission. PLoS ONE, 12, e0179572.

    PubMed  PubMed Central  Google Scholar 

  • Sarmento, S. K., Guerra, C. R., Malta, F. C., Coutinho, R., Miagostovich, M. P., & Fumian, T. M. (2020). Human norovirus detection in bivalve shellfish in Brazil and evaluation of viral infectivity using PMA treatment. Marine Pollution Bulletin, 157, 111315.

    CAS  PubMed  Google Scholar 

  • Saupe, A. A., Rounds, J., Sorenson, A., Hedeen, N., Bagstad, E., Reinberg, R., Wagley, A. G., Cebelinski, E., & Smith, K. (2020). Outbreak of norovirus gastroenteritis associated with ice cream contaminated by frozen raspberries from China; Minnesota, USA, 2016. Clinical Infectious Diseases. https://doi.org/10.1093/cid/ciaa821

    Article  PubMed  Google Scholar 

  • Teunis, P. F., Moe, C. L., Liu, P., Miller, S. E., Lindesmith, L., Baric, R. S., Le Pendu, J., & Calderon, R. L. (2008). Norwalk virus: How infectious is it? Journal of Medical Virology, 80(8), 1468–1476.

    PubMed  Google Scholar 

  • Tohma, K., Lepore, C. J., Ford-Siltz, L. A., Parra, G. I., Chan, M., Bull, R., & Vinje, J. (2017). Phylogenetic analyses suggest that factors other than the capsid protein play a role in the epidemic potential of GII2 norovirus. mSphere, 2(3), e00187.

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Beek, J., de Graaf, M., Al-Hello, H., Allen, D. J., Ambert-Balay, K., Botteldoorn, N., Brytting, M., Buesa, J., Cabrerizo, M., Chan, M., Cloak, F., Di Bartolo, I., Guix, S., Hewitt, J., Iritani, N., Jin, M., Johne, R., Lederer, I., Mans, J.,...Koopmans, M. P. G. (2018). Molecular surveillance of norovirus, 2005–16: an epidemiological analysis of data collected from the NoroNet network. The Lancet Infectious Diseases, 18(5), 545–553.

    PubMed  Google Scholar 

  • Vega, E., & Vinjé, J. (2011). Novel GII. 12 norovirus strain, United States, 2009–2010. Emerging Infectious Diseases, 17, 1516–1518.

    PubMed  PubMed Central  Google Scholar 

  • Woods, J. W., Calci, K. R., Marchant-Tambone, J. G., & Burkhardt, W., 3rd. (2016). Detection and molecular characterization of norovirus from oysters implicated in outbreaks in the US. Food Microbiology, 59, 76–84.

    PubMed  Google Scholar 

  • World Health Organization (2015). WHO estimates of the global burden of foodborne diseases. Available from: https://www.who.int/foodsafety/publications/foodborne_disease/fergreport/en/. Accessed on 13 Jan 2021.

  • Zeng, S.-Q., Halkosalo, A., Salminen, M., Szakal, E. D., Puustinen, L., & Vesikari, T. (2008). One-step quantitative RT-PCR for the detection of rotavirus in acute gastroenteritis. Journal of Virological Methods, 153, 238–240.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Everton Conceição da Silveira, Roberto Carlos Freitas Bugs, Eliane Maria Manara Rossoni and Giovana Dallaio Curzel for collaborating in the investigation of the outbreak. Also, we would like to thank the LVCA team for technical support.

Funding

This work was supported by The Brazilian National Council for Scientific and Technological Development (CNPq), PAEF—Oswaldo Cruz Institute (IOC-023) and Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ) [grant number 202.796/2019, TMF—Jovem Cientista do Nosso Estado and 202.821/2018, MPM—Cientista do Nosso Estado programs]. This research study is under the scope of the activities of FIOCRUZ as a Collaborating Center of PAHO/WHO of Public and Environmental Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tulio Machado Fumian.

Ethics declarations

Conflict of interest

The authors declare they have no actual or potential competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fumian, T.M., Ferreira, F.C., de Andrade, J. et al. Norovirus Foodborne Outbreak Associated With the Consumption of Ice Pop, Southern Brazil, 2020. Food Environ Virol 13, 553–559 (2021). https://doi.org/10.1007/s12560-021-09495-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-021-09495-9

Keywords

Navigation