Skip to main content

Advertisement

Log in

Prediction of antischistosomal small molecules using machine learning in the era of big data

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Schistosomiasis is a neglected tropical disease caused by helminths of the Schistosoma genus. Despite its high morbidity and socio-economic burden, therapeutics are just a handful with praziquantel being the main drug. Praziquantel is an old drug registered for human use in 1982 and has since been administered en masse for chemotherapy, risking the development of resistance, thus the need for new drugs with different mechanisms of action. This review examines the use of machine learning (ML) in this era of big data to aid in the prediction of novel antischistosomal molecules. It first discusses the challenges of drug discovery in schistosomiasis. Explanations are then offered for big data, its characteristics and then, some open databases where large biochemical data on schistosomiasis can be obtained for ML model development are examined. The concepts of artificial intelligence, ML, and deep learning and their drug applications are explored in schistosomiasis. The use of binary classification in predicting antischistosomal compounds and some algorithms that have been applied including random forest and naive Bayesian are discussed. For this review, some deep learning algorithms (deep neural networks) are proposed as novel algorithms for predicting antischistosomal molecules via binary classification. Databases specifically designed for housing bioactivity data on antischistosomal molecules enriched with functional genomic datasets and ontologies are thus urgently needed for developing predictive ML models.

Graphic abstract

This shows the application of machine learning techniques for the discovery of novel antischistosomal small molecules via binary classification in the era of big data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. LoVerde PT (2019) Schistosomiasis. Advances in Experimental Medicine and Biology. Springer, New York LLC, pp 45–70

    Google Scholar 

  2. Adenowo AF, Oyinloye BE, Ogunyinka BI, Kappo AP (2015) Impact of human schistosomiasis in sub-Saharan Africa. Braz J Infect Dis 19:196–205. https://doi.org/10.1016/j.bjid.2014.11.004

    Article  PubMed  Google Scholar 

  3. Vos T, Abajobir AA, Abbafati C et al (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 390:1211–1259. https://doi.org/10.1016/S0140-6736(17)32154-2

    Article  Google Scholar 

  4. Freer JB, Bourke CD, Durhuus GH et al (2018) Schistosomiasis in the first 1000 days. Lancet Infect Dis 18:e193–e203

    Article  Google Scholar 

  5. Neves BJ, Dantas RF, Senger MR et al (2016) Discovery of new anti-schistosomal hits by integration of QSAR-based virtual screening and high content screening. J Med Chem 59:7075–7088. https://doi.org/10.1021/acs.jmedchem.5b02038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moreira-Filho JT, Dantas RF, Senger MR, et al (2019) Shortcuts to schistosomiasis drug discovery: The state-of-the-art. In: Annual Reports in Medicinal Chemistry. Academic Press Inc., pp 139–180

  7. da Siqueira L, P, Fontes DAF, Aguilera CSB, et al (2017) Schistosomiasis: drugs used and treatment strategies. Acta Trop 176:179–187

    Article  CAS  Google Scholar 

  8. Bergquist R, Elmorshedy H (2018) Artemether and praziquantel: Origin, mode of action, impact, and suggested application for effective control of human schistosomiasis. Trop. Med. Infect. Dis. 3

  9. Tavares NC, de Aguiar PHN, Gava SG, et al (2016) Schistosomiasis: Setting Routes for Drug Discovery. In: Special Topics in Drug Discovery. InTech

  10. Xu JF, Xu J, Li SZ et al (2013) Transmission risks of schistosomiasis japonica: extraction from back-propagation artificial neural network and logistic regression model. PLoS Negl Trop Dis. https://doi.org/10.1371/journal.pntd.0002123

    Article  PubMed  PubMed Central  Google Scholar 

  11. Caffrey CR, Secor WE (2011) Schistosomiasis: from drug deployment to drug development. Curr Opin Infect Dis 24:410–417

    Article  Google Scholar 

  12. Gouveia M, Brindley P, Gärtner F et al (2018) Drug repurposing for schistosomiasis: combinations of drugs or biomolecules. Pharmaceuticals 11:15. https://doi.org/10.3390/ph11010015

    Article  CAS  PubMed Central  Google Scholar 

  13. Ponder EL, Freundlich JS, Sarker M, Ekins S (2014) Computational models for neglected diseases: gaps and opportunities. Pharm Res 31:271–277. https://doi.org/10.1007/s11095-013-1170-9

    Article  CAS  PubMed  Google Scholar 

  14. Winkler DA (2021) Use of artificial intelligence and machine learning for discovery of drugs for neglected tropical diseases. Front Chem 9:1–15. https://doi.org/10.3389/fchem.2021.614073

    Article  CAS  Google Scholar 

  15. Fusco T, Bi Y, Wang H, Browne F (2020) Data mining and machine learning approaches for prediction modelling of schistosomiasis disease vectors: epidemic disease prediction modelling. Int J Mach Learn Cybern 11:1159–1178. https://doi.org/10.1007/s13042-019-01029-x

    Article  PubMed  Google Scholar 

  16. Shen Y, Sung MH, King CH et al (2020) Modeling approaches to predicting persistent hotspots in score studies for gaining control of schistosomiasis Mansoni in Kenya and Tanzania. J Infect Dis 221:796–803. https://doi.org/10.1093/infdis/jiz529

    Article  CAS  PubMed  Google Scholar 

  17. Li G, Zhou X, Liu J et al (2018) Comparison of three data mining models for prediction of advanced schistosomiasis prognosis in the Hubei province. PLoS Negl Trop Dis. https://doi.org/10.1371/journal.pntd.0006262

    Article  PubMed  PubMed Central  Google Scholar 

  18. Holmström O, Linder N, Ngasala B et al (2017) Point-of-care mobile digital microscopy and deep learning for the detection of soil-transmitted helminths and Schistosoma haematobium. Glob Health Action. https://doi.org/10.1080/16549716.2017.1337325

    Article  PubMed  PubMed Central  Google Scholar 

  19. Angela MU, Oluwatosin AM (2016) Predicting the Risk of Infection with SCHISTOSOMA HAEMATOBIUM using Machine Learning

  20. Garcia FP, Guedes GP, Belloze KT (2020) Identifying Schistosoma mansoni essential protein candidates based on machine learning. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, pp 123–128

  21. Campos TDL, Young ND, Korhonen PK, et al (2014) Identification of G protein-coupled receptors in Schistosoma haematobium and S. mansoni by comparative genomics. Parasit Vectors 7: 242. https://doi.org/10.1186/1756-3305-7-242

  22. Rojo-Arreola L, Long T, Asarnow D et al (2014) Chemical and genetic validation of the statin drug target to treat the helminth disease. Schistosomiasis. https://doi.org/10.1371/journal.pone.0087594

    Article  Google Scholar 

  23. Gaba S, Jamal S, Drug Discovery Consortium OS, Scaria V (2014) Cheminformatics models for inhibitors of Schistosoma mansoni Thioredoxin glutathione reductase. Sci World J 2014:1–9. https://doi.org/10.1155/2014/957107

    Article  Google Scholar 

  24. Min S, Lee B, Yoon S (2017) Deep learning in bioinformatics. Brief Bioinform 18:851–869. https://doi.org/10.1093/bib/bbw068

    Article  PubMed  Google Scholar 

  25. Jin X, Wah BW, Cheng X, Wang Y (2015) Significance and challenges of big data research. Big Data Res 2:59–64. https://doi.org/10.1016/j.bdr.2015.01.006

    Article  Google Scholar 

  26. Zhu H (2020) Big data and artificial intelligence modeling for drug discovery. Annu Rev Pharmacol Toxicol 60:573–589

    Article  CAS  Google Scholar 

  27. Baro E, Degoul S, Beuscart R, Chazard E (2015) Toward a literature-driven definition of big data in healthcare. Biomed Res Int. https://doi.org/10.1155/2015/639021

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhao L, Ciallella HL, Aleksunes LM, Zhu H (2020) Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling. Drug Discov Today 25:1624–1638. https://doi.org/10.1016/j.drudis.2020.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lo YC, Rensi SE, Torng W, Altman RB (2018) Machine learning in chemoinformatics and drug discovery. Drug Discov Today 23:1538–1546

    Article  CAS  Google Scholar 

  30. Kim S (2016) Getting the most out of PubChem for virtual screening. Expert Opin Drug Discov 11:843–855

    Article  Google Scholar 

  31. Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107. https://doi.org/10.1093/nar/gkr777

    Article  CAS  PubMed  Google Scholar 

  32. Wishart DS, Feunang YD, Guo AC et al (2018) DrugBank 5.0: a major update to the drugbank database for 2018. Nucleic Acids Res 46:D1074–D1082. https://doi.org/10.1093/nar/gkx1037

    Article  CAS  PubMed  Google Scholar 

  33. Gilson MK, Liu T, Baitaluk M et al (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44:D1045–D1053. https://doi.org/10.1093/nar/gkv1072

    Article  CAS  PubMed  Google Scholar 

  34. Burley SK, Berman HM, Kleywegt GJ, et al (2017) Protein Data Bank (PDB): The single global macromolecular structure archive. In: Methods in Molecular Biology. Humana Press Inc., pp 627–641

  35. Zerlotini A, Aguiar ERGR, Yu F et al (2013) SchistoDB: An updated genome resource for the three key schistosomes of humans. Nucleic Acids Res. https://doi.org/10.1093/nar/gks1087

    Article  PubMed  Google Scholar 

  36. Kim S, Chen J, Cheng T et al (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49:D1388–D1395. https://doi.org/10.1093/nar/gkaa971

    Article  CAS  PubMed  Google Scholar 

  37. Mendez D, Gaulton A, Bento AP et al (2019) ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res 47:D930–D940. https://doi.org/10.1093/nar/gky1075

    Article  CAS  PubMed  Google Scholar 

  38. David L, Thakkar A, Mercado R, Engkvist O (2020) Molecular representations in AI-driven drug discovery: a review and practical guide. J Cheminform 12:1–22. https://doi.org/10.1186/s13321-020-00460-5

    Article  CAS  Google Scholar 

  39. Kim H, Kim E, Lee I et al (2020) Artificial intelligence in drug discovery: a comprehensive review of data-driven and machine learning approaches. Biotechnol Bioprocess Eng 25:895–930. https://doi.org/10.1007/s12257-020-0049-y

    Article  CAS  PubMed  Google Scholar 

  40. Hong H, Xie Q, Ge W et al (2008) Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J Chem Inf Model 48:1337–1344. https://doi.org/10.1021/ci800038f

    Article  CAS  PubMed  Google Scholar 

  41. Ponzoni I, Sebastián-Pérez V, Requena-Triguero C et al (2017) Hybridizing feature selection and feature learning approaches in QSAR modeling for drug discovery /631/114/2248 /631/154/309 /639/638/563/606 /119/118 article. Sci Rep 7:1–19. https://doi.org/10.1038/s41598-017-02114-3

    Article  CAS  Google Scholar 

  42. Moriwaki H, Tian Y-S, Kawashita N, Takagi T (2018) Mordred: a molecular descriptor calculator. J Cheminform 10:4. https://doi.org/10.1186/s13321-018-0258-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krstajic D, Buturovic L, Thomas S, Leahy DE (2017) Binary classification models with “Uncertain” predictions

  44. Uddin S, Khan A, Hossain ME, Moni MA (2019) Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak 19:281. https://doi.org/10.1186/s12911-019-1004-8

    Article  PubMed  PubMed Central  Google Scholar 

  45. Armutlu P, Ozdemir ME, Uney-Yuksektepe F et al (2008) Classification of drug molecules considering their IC50 values using mixed-integer linear programming based hyper-boxes method. BMC Bioinformatics 9:411. https://doi.org/10.1186/1471-2105-9-411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Uçar MK, Nour M, Sindi H, Polat K (2020) The effect of training and testing process on machine learning in biomedical datasets. Math Probl Eng. https://doi.org/10.1155/2020/2836236

    Article  Google Scholar 

  47. Patel L, Shukla T, Huang X et al (2020) Machine learning methods in drug discovery. Molecules 25:5277. https://doi.org/10.3390/molecules25225277

    Article  CAS  PubMed Central  Google Scholar 

  48. Schmitz S, Adams R, Walsh C (2012) The use of continuous data versus binary data in MTC models: a case study in rheumatoid arthritis. BMC Med Res Methodol. https://doi.org/10.1186/1471-2288-12-167

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bagherian M, Sabeti E, Wang K et al (2021) Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Brief Bioinform 22:247–269. https://doi.org/10.1093/bib/bbz157

    Article  PubMed  Google Scholar 

  50. Krawczyk B (2016) Learning from imbalanced data: open challenges and future directions. Prog Artif Intell 5:221–232. https://doi.org/10.1007/s13748-016-0094-0

    Article  Google Scholar 

  51. Stefanowski J Dealing with Data Difficulty Factors while Learning from Imbalanced Data

  52. Raj KP, Raju KVS (2017) Using Machine Learning Algorithms To. 1:2007

  53. Lago EM, Xavier RP, Teixeira TR et al (2018) Antischistosomal agents: state of art and perspectives. Future Med Chem 10:89–120. https://doi.org/10.4155/fmc-2017-0112

    Article  CAS  PubMed  Google Scholar 

  54. Feng C, Wang H, Lu N et al (2014) Log-transformation and its implications for data analysis. Shanghai Arch Psychiatry 26:105–109. https://doi.org/10.3969/j.issn.1002-0829.2014.02

    Article  PubMed  PubMed Central  Google Scholar 

  55. Richman MB, Trafalis TB, Adrianto I (2009) Missing data imputation through machine learning algorithms. In: Artificial Intelligence Methods in the Environmental Sciences. Eds: Sue Ellen Haupt, Antonello Pasini, Caren Marzban. Springer Netherlands, pp 153–169

  56. Cheng CY, Tseng WL, Chang CF et al (2020) A deep learning approach for missing data imputation of rating scales assessing attention-deficit hyperactivity disorder. Front Psychiatry 11:673. https://doi.org/10.3389/fpsyt.2020.00673

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhou ZH, Liu XY (2010) On multi-class cost-sensitive learning. Comput Intell 26:232–257. https://doi.org/10.1111/j.1467-8640.2010.00358.x

    Article  CAS  Google Scholar 

  58. Hamet P, Tremblay J (2017) Artificial intelligence in medicine. Metabolism 69:S36–S40. https://doi.org/10.1016/j.metabol.2017.01.011

    Article  CAS  Google Scholar 

  59. de Jong J, Cutcutache I, Page M et al (2021) Towards realizing the vision of precision medicine: AI based prediction of clinical drug response. Brain. https://doi.org/10.1093/brain/awab108

    Article  PubMed  PubMed Central  Google Scholar 

  60. Keshavarzi Arshadi A, Webb J, Salem M et al (2020) Artificial intelligence for COVID-19 drug discovery and vaccine development. Front Artif Intell. https://doi.org/10.3389/frai.2020.00065

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mak KK, Pichika MR (2019) Artificial intelligence in drug development: present status and future prospects. Drug Discov Today 24:773–780. https://doi.org/10.1016/j.drudis.2018.11.014

    Article  PubMed  Google Scholar 

  62. Bruno S, Pharmaceutical T, Healthcare GNS, et al (2017) AI-powered drug discovery captures pharma interest. 35: https://doi.org/10.1038/nature22322

  63. Kim S, Thiessen PA, Bolton EE et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44:D1202–D1213. https://doi.org/10.1093/nar/gkv951

    Article  CAS  PubMed  Google Scholar 

  64. Polishchuk PG, Madzhidov TI, Varnek A (2013) Estimation of the size of drug-like chemical space based on GDB-17 data. J Comput Aided Mol Des. https://doi.org/10.1007/s10822-013-9672-4

    Article  PubMed  Google Scholar 

  65. Williams K, Bilsland E, Sparkes A et al (2015) Cheaper faster drug development validated by the repositioning of drugs against neglected tropical diseases. J R Soc Interface. https://doi.org/10.1098/rsif.2014.1289

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sparkes A, Aubrey W, Byrne E et al (2010) Towards Robot Scientists for autonomous scientific discovery. Autom Exp 2:1. https://doi.org/10.1186/1759-4499-2-1

    Article  PubMed  PubMed Central  Google Scholar 

  67. Abbasi B, Goldenholz DM (2019) Machine learning applications in epilepsy. Epilepsia 60:2037–2047

    Article  Google Scholar 

  68. Vamathevan J, Clark D, Czodrowski P et al (2019) Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 18:463–477. https://doi.org/10.1038/s41573-019-0024-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Larrañaga P, Calvo B, Santana R et al (2006) Machine learning in bioinformatics. Brief Bioinform 7:86–112

    Article  Google Scholar 

  70. Nguyen G, Dlugolinsky S, Bobák M et al (2019) Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey. Artif Intell Rev 52:77–124. https://doi.org/10.1007/s10462-018-09679-z

    Article  Google Scholar 

  71. Fawagreh K, Gaber MM, Elyan E (2014) Random forests: from early developments to recent advancements. Syst Sci Control Eng 2:602–609. https://doi.org/10.1080/21642583.2014.956265

    Article  Google Scholar 

  72. Mahesh JU, Naganjaneyulu KV, Likitha P, Aishwarya KNSS (2014) Analysis of J48 algorithm in classification-ebola virus. Int J Emerg Trends Sci Technol 1:1289–1292

    Google Scholar 

  73. Peña-Guerrero J, Nguewa PA, García-Sosa AT (2021) Machine learning, artificial intelligence, and data science breaking into drug design and neglected diseases. Wiley Interdiscip Rev Comput Mol Sci. https://doi.org/10.1002/wcms.1513

    Article  Google Scholar 

  74. Zhang Z (2016) Naïve bayes classification in R. Ann Transl Med. 4: 1–5. https://doi.org/10.21037/atm.2016.03.38

  75. Zorn KM, Sun S, McConnon CL et al (2021) A Machine learning strategy for drug discovery identifies anti-schistosomal small molecules. ACS Infect Dis 7:406–420. https://doi.org/10.1021/acsinfecdis.0c00754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, Lopez A (2020) A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing 408:189–215. https://doi.org/10.1016/j.neucom.2019.10.118

    Article  Google Scholar 

  77. Jing Y, Bian Y, Hu Z et al (2018) Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era. AAPS J. https://doi.org/10.1208/s12248-018-0210-0

    Article  PubMed  Google Scholar 

  78. Shrestha A, Mahmood A (2019) Review of deep learning algorithms and architectures. IEEE Access 7:53040–53065

    Article  Google Scholar 

  79. Yamashita R, Nishio M, Do RKG, Togashi K (2018) Convolutional neural networks: an overview and application in radiology. Insights Imaging 9:611–629

    Article  Google Scholar 

  80. Koutsoukas A, Monaghan KJ, Li X, Huan J (2017) Deep-learning: investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data. J Cheminform 9:42. https://doi.org/10.1186/s13321-017-0226-y

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nwankpa C, Ijomah W, Gachagan A, Marshall S (2018) Activation Functions: Comparison of trends in Practice and Research for Deep Learning. arXiv

  82. Winkler DA, Le TC (2017) Performance of deep and shallow neural networks, the universal approximation theorem, activity cliffs, and QSAR. Mol Inform 36:1–6. https://doi.org/10.1002/minf.201600118

    Article  CAS  Google Scholar 

  83. Lusci A, Pollastri G, Baldi P (2013) Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model 53:1563–1575. https://doi.org/10.1021/ci400187y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mahmud M, Shamim Kaiser M, Hussain A et al (2018) of deep learning and reinforcement learning to biological data. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2018.2790388

    Article  PubMed  Google Scholar 

  85. Lenselink EB, Ten Dijke N, Bongers B et al (2017) Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set. J Cheminform. https://doi.org/10.1186/s13321-017-0232-0

  86. Bengio Y, Courville A, Vincent P (2013) Representation Learning : A Review and New Perspectives 35:1798–1828

    Google Scholar 

  87. Ying X (2019) An Overview of Overfitting and its Solutions. In: Journal of Physics: Conference Series. Institute of Physics Publishing

  88. Lei S, Zhang H, Wang K, Su Z (2018) How training data affect the accuracy and robustness of neural networks for image classification

  89. Kuc-Czarnecka M, Olczyk M (2020) How ethics combine with big data: a bibliometric analysis. Humanit Soc Sci Commun 7:1–9. https://doi.org/10.1057/s41599-020-00638-0

    Article  Google Scholar 

  90. Mafud AC, Ferreira LG, Mascarenhas YP et al (2016) Discovery of Novel Antischistosomal Agents by Molecular Modeling Approaches. Trends Parasitol 32:874–886. https://doi.org/10.1016/j.pt.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  91. Cai C, Wang S, Xu Y et al (2020) Transfer Learning for Drug Discovery. J Med Chem 63:8683–8694. https://doi.org/10.1021/acs.jmedchem.9b02147

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was not funded.

Author information

Authors and Affiliations

Authors

Contributions

SKK conceptualized the review. SKK and KAM co-wrote the first draft with contributions from WAM, EB and MDW. All authors read and accepted the final draft for submission.

Corresponding author

Correspondence to Samuel K. Kwofie.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwofie, S.K., Agyenkwa-Mawuli, K., Broni, E. et al. Prediction of antischistosomal small molecules using machine learning in the era of big data. Mol Divers 26, 1597–1607 (2022). https://doi.org/10.1007/s11030-021-10288-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10288-2

Keywords

Navigation