Skip to main content

Advertisement

Log in

Pursuing Multiple Biomarkers for Early Idiopathic Parkinson’s Disease Diagnosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) ranks first in the world as a neurodegenerative movement disorder and occurs most commonly in an idiopathic form. PD patients may have motor symptoms, non-motor symptoms, including cognitive and behavioral changes, and symptoms related to autonomic nervous system (ANS) failures, such as gastrointestinal, urinary, and cardiovascular symptoms. Unfortunately, the diagnostic accuracy of PD by general neurologists is relatively low. Currently, there is no objective molecular or biochemical test for PD; its diagnosis is based on clinical criteria, mainly by cardinal motor symptoms, which manifest when patients have lost about 60–80% of dopaminergic neurons. Therefore, it is urgent to establish a panel of biomarkers for the early and accurate diagnosis of PD. Once the disease is accurately diagnosed, it may be easier to unravel idiopathic PD’s pathogenesis, and ultimately, finding a cure. This review discusses several biomarkers’ potential to set a panel for early idiopathic PD diagnosis and future directions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Alves G, Forsaa EB, Pedersen KF, Dreetz Gjerstad M, Larsen JP (2008) Epidemiology of Parkinson’s disease. J Neurol 255(Suppl 5):18–32. https://doi.org/10.1007/s00415-008-5004-3

    Article  PubMed  Google Scholar 

  2. Horowitz MP, Greenamyre JT (2010) Gene-environment interactions in Parkinson’s disease: the importance of animal modeling. Clin Pharmacol Ther 88(4):467–474. https://doi.org/10.1038/clpt.2010.138[pii]

    Article  CAS  PubMed  Google Scholar 

  3. Allam MF, Del Castillo AS, Navajas RF-C (2005) Parkinson’s disease risk factors: genetic, environmental, or both? Neurol Res 27(2):206–208. https://doi.org/10.1179/016164105X22057

    Article  CAS  PubMed  Google Scholar 

  4. Hornykiewicz O (2006) The discovery of dopamine deficiency in the parkinsonian brain. J Neural Transm Suppl 70:9–15. https://doi.org/10.1007/978-3-211-45295-0_3

    Article  CAS  Google Scholar 

  5. Shults CW (2006) Lewy bodies. Proc Natl Acad Sci U S A 103(6):1661–1668. https://doi.org/10.1073/pnas.0509567103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Levy OA, Malagelada C, Greene LA (2009) Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps. Apoptosis 14(4):478–500. https://doi.org/10.1007/s10495-008-0309-3

    Article  PubMed  PubMed Central  Google Scholar 

  7. Beitz JM (2014) Parkinson’s disease: a review. Front Biosci (Schol Ed) 6:65–74. https://doi.org/10.2741/s415

    Article  Google Scholar 

  8. Gelb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson disease. Arch Neurol 56(1):33–39. https://doi.org/10.1001/archneur.56.1.33

    Article  CAS  PubMed  Google Scholar 

  9. Löhle M, Storch A, Reichmann H (2009) Beyond tremor and rigidity: non-motor features of Parkinson’s disease. J Neural Transm (Vienna) 116(11):1483–1492. https://doi.org/10.1007/s00702-009-0274-1

    Article  Google Scholar 

  10. Abbott RD, Petrovitch H, White LR, Masaki KH, Tanner CM, Curb JD, Grandinetti A, Blanchette PL, et al (2001) Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology 57(3):456–462. https://doi.org/10.1212/wnl.57.3.456

    Article  CAS  PubMed  Google Scholar 

  11. Hornykiewicz O (2002) Dopamine miracle: from brain homogenate to dopamine replacement. Mov Disord 17(3):501–508. https://doi.org/10.1002/mds.10115

    Article  PubMed  Google Scholar 

  12. Rao SS, Hofmann LA, Shakil A (2006) Parkinson’s disease: diagnosis and treatment. Am Fam Physician 74(12):2046–2054

    PubMed  Google Scholar 

  13. Duarte-Jurado AP, Gopar-Cuevas Y, Saucedo-Cardenas O, Loera-Arias MJ, Montes-de-Oca-Luna R, Garcia-Garcia A, Rodriguez-Rocha H (2021) Antioxidant therapeutics in Parkinson’s disease: current challenges and opportunities. Antioxidants 10(3):453. https://doi.org/10.3390/antiox10030453

  14. Stoker TB, Barker RA (2020) Recent developments in the treatment of Parkinson’s disease. F1000Res 9:862. https://doi.org/10.12688/f1000research.25634.1

  15. Balestrino R, Schapira AHV (2020) Parkinson disease. Eur J Neurol 27(1):27–42. https://doi.org/10.1111/ene.14108

    Article  CAS  PubMed  Google Scholar 

  16. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376. https://doi.org/10.1136/jnnp.2007.131045

    Article  CAS  PubMed  Google Scholar 

  17. Wu Y, Yao Q, Jiang GX, Wang G, Cheng Q (2020) Identification of distinct blood-based biomarkers in early stage of Parkinson’s disease. Neurol Sci 41(4):893–901. https://doi.org/10.1007/s10072-019-04165-y

    Article  PubMed  Google Scholar 

  18. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, et al (2008) Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23(15):2129–2170. https://doi.org/10.1002/mds.22340

    Article  PubMed  Google Scholar 

  19. Chaudhuri KR, Schrag A, Weintraub D, Rizos A, Rodriguez-Blazquez C, Mamikonyan E, Martinez-Martin P (2020) The movement disorder society nonmotor rating scale: initial validation study. Mov Disord 35(1):116–133. https://doi.org/10.1002/mds.27862

    Article  CAS  PubMed  Google Scholar 

  20. Heinzel S, Berg D, Gasser T, Chen H, Yao C, Postuma RB, Disease MTFotDoPs (2019) Update of the MDS research criteria for prodromal Parkinson’s disease. Mov Disord 34(10):1464–1470. https://doi.org/10.1002/mds.27802

    Article  PubMed  Google Scholar 

  21. Marsili L, Rizzo G, Colosimo C (2018) Diagnostic criteria for Parkinson’s disease: from James Parkinson to the concept of prodromal disease. Front Neurol 9:156. https://doi.org/10.3389/fneur.2018.00156

    Article  PubMed  PubMed Central  Google Scholar 

  22. Joutsa J, Gardberg M, Röyttä M, Kaasinen V (2014) Diagnostic accuracy of parkinsonism syndromes by general neurologists. Parkinsonism Relat Disord 20(8):840–844. https://doi.org/10.1016/j.parkreldis.2014.04.019

    Article  PubMed  Google Scholar 

  23. Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G (2016) Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology 86(6):566–576. https://doi.org/10.1212/WNL.0000000000002350

    Article  PubMed  Google Scholar 

  24. Kalender WA (2006) X-ray computed tomography. Phys Med Biol 51(13):R29-43. https://doi.org/10.1088/0031-9155/51/13/R03

    Article  PubMed  Google Scholar 

  25. Emamzadeh FN, Surguchov A (2018) Parkinson’s disease: biomarkers, treatment, and risk factors. Front Neurosci 12:612. https://doi.org/10.3389/fnins.2018.00612

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lotankar S, Prabhavalkar KS, Bhatt LK (2017) Biomarkers for Parkinson’s disease: recent advancement. Neurosci Bull 33(5):585–597. https://doi.org/10.1007/s12264-017-0183-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meyer PT, Frings L, Rücker G, Hellwig S (2017) F-FDG PET in Parkinsonism: differential diagnosis and evaluation of cognitive impairment. J Nucl Med 58(12):1888–1898. https://doi.org/10.2967/jnumed.116.186403

    Article  CAS  PubMed  Google Scholar 

  28. Skowronek C, Zange L, Lipp A (2019) Cardiac 123I-MIBG scintigraphy in neurodegenerative Parkinson syndromes: performance and pitfalls in clinical practice. Front Neurol 10:152. https://doi.org/10.3389/fneur.2019.00152

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rascol O, Schelosky L (2009) 123I-metaiodobenzylguanidine scintigraphy in Parkinson’s disease and related disorders. Mov Disord 24(Suppl 2):S732–741. https://doi.org/10.1002/mds.22499

    Article  PubMed  Google Scholar 

  30. Group BDW (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95 https://doi.org/10.1067/mcp.2001.113989

  31. Huss R (2015) Biomarkers. In: Atala A, Allickson JG (eds) Translational regenerative medicine. pp 235–241. https://doi.org/10.1016/b978-0-12-410396-2.00019-0

  32. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5(6):463–466. https://doi.org/10.1097/COH.0b013e32833ed177

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mayeux R (2004) Biomarkers: potential uses and limitations. NeuroRx 1(2):182–188. https://doi.org/10.1602/neurorx.1.2.182

    Article  PubMed  PubMed Central  Google Scholar 

  34. Parnetti L, Gaetani L, Eusebi P, Paciotti S, Hansson O, El-Agnaf O, Mollenhauer B, Blennow K, et al (2019) CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol 18(6):573–586. https://doi.org/10.1016/S1474-4422(19)30024-9

    Article  CAS  PubMed  Google Scholar 

  35. Espay AJ, Schwarzschild MA, Tanner CM, Fernandez HH, Simon DK, Leverenz JB, Merola A, Chen-Plotkin A, et al (2017) Biomarker-driven phenotyping in Parkinson’s disease: a translational missing link in disease-modifying clinical trials. Mov Disord 32(3):319–324. https://doi.org/10.1002/mds.26913

    Article  PubMed  PubMed Central  Google Scholar 

  36. Breydo L, Wu JW (1822) Uversky VN (2012) Α-synuclein misfolding and Parkinson’s disease. Biochim Biophys Acta 2:261–285. https://doi.org/10.1016/j.bbadis.2011.10.002

    Article  CAS  Google Scholar 

  37. Bertoncini CW, Jung YS, Fernandez CO, Hoyer W, Griesinger C, Jovin TM, Zweckstetter M (2005) Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proc Natl Acad Sci U S A 102(5):1430–1435. https://doi.org/10.1073/pnas.0407146102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Villar-Piqué A, Lopes da Fonseca T, Outeiro TF (2016) Structure, function and toxicity of alpha-synuclein: the Bermuda triangle in synucleinopathies. J Neurochem 139(Suppl 1):240–255. https://doi.org/10.1111/jnc.13249

    Article  CAS  PubMed  Google Scholar 

  39. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, et al (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841. https://doi.org/10.1126/science.1090278

    Article  CAS  PubMed  Google Scholar 

  40. Smith WW, Margolis RL, Li X, Troncoso JC, Lee MK, Dawson VL, Dawson TM, Iwatsubo T, et al (2005) Alpha-synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. J Neurosci 25(23):5544–5552. https://doi.org/10.1523/JNEUROSCI.0482-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, et al (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4(2):160–164. https://doi.org/10.1038/ncb748

    Article  CAS  PubMed  Google Scholar 

  42. Chahine LM, Beach TG, Brumm MC, Adler CH, Coffey CS, Mosovsky S, Caspell-Garcia C, Serrano GE, et al (2020) In vivo distribution of α-synuclein in multiple tissues and biofluids in Parkinson disease. Neurology 95(9):e1267–e1284. https://doi.org/10.1212/WNL.0000000000010404

  43. Castanedo-Cazares JP, Rodriguez-Leyva I (2015) Skin biomarkers for neurodegenerative disease: a future perspective. Neurodegener Dis Manag 5(6):465–467. https://doi.org/10.2217/nmt.15.51

    Article  PubMed  Google Scholar 

  44. Teves JMY, Bhargava V, Kirwan KR, Corenblum MJ, Justiniano R, Wondrak GT, Anandhan A, Flores AJ, et al (2017) Parkinson’s disease skin fibroblasts display signature alterations in growth, redox homeostasis, mitochondrial function, and autophagy. Front Neurosci 11:737. https://doi.org/10.3389/fnins.2017.00737

    Article  PubMed  Google Scholar 

  45. Rodríguez-Leyva I, Calderón-Garcidueñas AL, Jiménez-Capdeville ME, Rentería-Palomo AA, Hernandez-Rodriguez HG, Valdés-Rodríguez R, Fuentes-Ahumada C, Torres-Álvarez B, et al (2014) α-Synuclein inclusions in the skin of Parkinson’s disease and parkinsonism. Ann Clin Transl Neurol 1(7):471–478. https://doi.org/10.1002/acn3.78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Atarashi R, Sano K, Satoh K, Nishida N (2011) Real-time quaking-induced conversion: a highly sensitive assay for prion detection. Prion 5(3):150–153. https://doi.org/10.4161/pri.5.3.16893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barria MA, Gonzalez-Romero D, Soto C (2012) Cyclic amplification of prion protein misfolding. Methods Mol Biol 849:199–212. https://doi.org/10.1007/978-1-61779-551-0_14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Manne S, Kondru N, Jin H, Serrano GE, Anantharam V, Kanthasamy A, Adler CH, Beach TG, et al (2020) Blinded RT-QuIC Analysis of α-Synuclein biomarker in skin tissue from Parkinson’s disease patients. Mov Disord 35(12):2230–2239. https://doi.org/10.1002/mds.28242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Z, Becker K, Donadio V, Siedlak S, Yuan J, Rezaee M, Incensi A, Kuzkina A, et al (2020) Skin α-synuclein aggregation seeding activity as a novel biomarker for Parkinson disease. JAMA Neurol 78(1):30–40. https://doi.org/10.1001/jamaneurol.2020.3311

  50. Atarashi R, Wilham JM, Christensen L, Hughson AG, Moore RA, Johnson LM, Onwubiko HA, Priola SA, et al (2008) Simplified ultrasensitive prion detection by recombinant PrP conversion with shaking. Nat Methods 5(3):211–212. https://doi.org/10.1038/nmeth0308-211

    Article  CAS  PubMed  Google Scholar 

  51. Wang N, Gibbons CH, Lafo J, Freeman R (2013) α-Synuclein in cutaneous autonomic nerves. Neurology 81(18):1604–1610. https://doi.org/10.1212/WNL.0b013e3182a9f449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Trivedi DK, Sinclair E, Xu Y, Sarkar D, Walton-Doyle C, Liscio C, Banks P, Milne J, et al (2019) Discovery of volatile biomarkers of Parkinson’s disease from Sebum. ACS Cent Sci 5(4):599–606. https://doi.org/10.1021/acscentsci.8b00879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim YJ, Lee CM, Kim S, Jang JW, Lee SY, Lee SH (2019) Risk of Parkinson’s disease after colectomy: longitudinal follow-up study using a national sample cohort. J Neurol. https://doi.org/10.1007/s00415-019-09617-1

    Article  PubMed  Google Scholar 

  54. Felice VD, Quigley EM, Sullivan AM, O’Keeffe GW, O’Mahony SM (2016) Microbiota-gut-brain signalling in Parkinson’s disease: implications for non-motor symptoms. Parkinsonism Relat Disord 27:1–8. https://doi.org/10.1016/j.parkreldis.2016.03.012

    Article  PubMed  Google Scholar 

  55. Zhu X, Han Y, Du J, Liu R, Jin K, Yi W (2017) Microbiota-gut-brain axis and the central nervous system. Oncotarget 8 (32):53829–53838. https://doi.org/10.18632/oncotarget.17754

  56. Vlassov AV, Magdaleno S, Setterquist R (1820) Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 7:940–948. https://doi.org/10.1016/j.bbagen.2012.03.017

    Article  CAS  Google Scholar 

  57. Mathivanan S, Fahner CJ, Reid GE, Simpson RJ (2012) ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res 40 (Database issue):D1241–1244. https://doi.org/10.1093/nar/gkr828

  58. Proia P, Schiera G, Mineo M, Ingrassia AM, Santoro G, Savettieri G, Di Liegro I (2008) Astrocytes shed extracellular vesicles that contain fibroblast growth factor-2 and vascular endothelial growth factor. Int J Mol Med 21(1):63–67

    CAS  PubMed  Google Scholar 

  59. Schiera G, Proia P, Alberti C, Mineo M, Savettieri G, Di Liegro I (2007) Neurons produce FGF2 and VEGF and secrete them at least in part by shedding extracellular vesicles. J Cell Mol Med 11(6):1384–1394. https://doi.org/10.1111/j.1582-4934.2007.00100.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pant S, Hilton H, Burczynski ME (2012) The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem Pharmacol 83(11):1484–1494. https://doi.org/10.1016/j.bcp.2011.12.037

    Article  CAS  PubMed  Google Scholar 

  61. Howitt J, Hill AF (2016) Exosomes in the pathology of neurodegenerative diseases. J Biol Chem 291(52):26589–26597. https://doi.org/10.1074/jbc.R116.757955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C, Li Y, Aro P, et al (2014) Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol 128(5):639–650. https://doi.org/10.1007/s00401-014-1314-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, Vanderburg CR, McLean PJ (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7:42. https://doi.org/10.1186/1750-1326-7-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cao Z, Wu Y, Liu G, Jiang Y, Wang X, Wang Z, Feng T (2019) α-Synuclein in salivary extracellular vesicles as a potential biomarker of Parkinson’s disease. Neurosci Lett 696:114–120. https://doi.org/10.1016/j.neulet.2018.12.030

    Article  CAS  PubMed  Google Scholar 

  65. Lynge Pedersen AM, Belstrøm D (2019) The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent 80(Suppl 1):S3–S12. https://doi.org/10.1016/j.jdent.2018.08.010

    Article  CAS  PubMed  Google Scholar 

  66. Marsh PD, Do T, Beighton D (2000) Devine DA (2016) Influence of saliva on the oral microbiota. Periodontol 70(1):80–92. https://doi.org/10.1111/prd.12098

    Article  Google Scholar 

  67. Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J, Earl AM, Giannoukos G, Boylan MR, et al (2014) Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci U S A 111(22):E2329-2338. https://doi.org/10.1073/pnas.1319284111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schmidt TS, Hayward MR, Coelho LP, Li SS, Costea PI, Voigt AY, Wirbel J, Maistrenko OM, et al (2019) Extensive transmission of microbes along the gastrointestinal tract. Elife 8. https://doi.org/10.7554/eLife.42693

  69. Mihaila D, Donegan J, Barns S, LaRocca D, Du Q, Zheng D, Vidal M, Neville C, et al (2019) The oral microbiome of early stage Parkinson’s disease and its relationship with functional measures of motor and non-motor function. PLoS ONE 14(6):e0218252. https://doi.org/10.1371/journal.pone.0218252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Belibasakis GN, Bostanci N, Marsh PD, Zaura E (2019) Applications of the oral microbiome in personalized dentistry. Arch Oral Biol 104:7–12. https://doi.org/10.1016/j.archoralbio.2019.05.023

    Article  PubMed  Google Scholar 

  71. Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H, Coron E, Bruley des Varannes S, et al (2013) Colonic inflammation in Parkinson’s disease. Neurobiol Dis 50:42–48. https://doi.org/10.1016/j.nbd.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  72. Tripathi A, Lammers KM, Goldblum S, Shea-Donohue T, Netzel-Arnett S, Buzza MS, Antalis TM, Vogel SN, et al (2009) Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci U S A 106(39):16799–16804. https://doi.org/10.1073/pnas.0906773106

    Article  PubMed  PubMed Central  Google Scholar 

  73. El Asmar R, Panigrahi P, Bamford P, Berti I, Not T, Coppa GV, Catassi C, Fasano A (2002) Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology 123(5):1607–1615. https://doi.org/10.1053/gast.2002.36578

    Article  CAS  PubMed  Google Scholar 

  74. Wilson CM, McGilligan K, Thomas DW (1988) Determination of fecal alpha 1-antitrypsin concentration by radial immunodiffusion: two systems compared. Clin Chem 34(2):372–376

    Article  CAS  PubMed  Google Scholar 

  75. Silva MT (2010) When two is better than one: macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. J Leukoc Biol 87(1):93–106. https://doi.org/10.1189/jlb.0809549

    Article  CAS  PubMed  Google Scholar 

  76. Hessian PA, Edgeworth J, Hogg N (1993) MRP-8 and MRP-14, two abundant Ca(2+)-binding proteins of neutrophils and monocytes. J Leukoc Biol 53(2):197–204

    Article  CAS  PubMed  Google Scholar 

  77. Roth J, Goebeler M, Wrocklage V, van den Bos C, Sorg C (1994) Expression of the calcium-binding proteins MRP8 and MRP14 in monocytes is regulated by a calcium-induced suppressor mechanism. Biochem J 301(Pt 3):655–660. https://doi.org/10.1042/bj3010655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Eue I, König S, Pior J, Sorg C (2002) S100A8, S100A9 and the S100A8/A9 heterodimer complex specifically bind to human endothelial cells: identification and characterization of ligands for the myeloid-related proteins S100A9 and S100A8/A9 on human dermal microvascular endothelial cell line-1 cells. Int Immunol 14(3):287–297. https://doi.org/10.1093/intimm/14.3.287

    Article  CAS  PubMed  Google Scholar 

  79. Clohessy PA, Golden BE (1995) Calprotectin-mediated zinc chelation as a biostatic mechanism in host defence. Scand J Immunol 42(5):551–556. https://doi.org/10.1111/j.1365-3083.1995.tb03695.x

    Article  CAS  PubMed  Google Scholar 

  80. Masson PL, Heremans JF, Schonne E (1969) Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med 130(3):643–658. https://doi.org/10.1084/jem.130.3.643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Summerton CB, Longlands MG, Wiener K, Shreeve DR (2002) Faecal calprotectin: a marker of inflammation throughout the intestinal tract. Eur J Gastroenterol Hepatol 14(8):841–845. https://doi.org/10.1097/00042737-200208000-00005

    Article  CAS  PubMed  Google Scholar 

  82. Guerrant RL, Araujo V, Soares E, Kotloff K, Lima AA, Cooper WH, Lee AG (1992) Measurement of fecal lactoferrin as a marker of fecal leukocytes. J Clin Microbiol 30(5):1238–1242. https://doi.org/10.1128/JCM.30.5.1238-1242.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schwiertz A, Spiegel J, Dillmann U, Grundmann D, Bürmann J, Faßbender K, Schäfer KH, Unger MM (2018) Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson’s disease. Parkinsonism Relat Disord 50:104–107. https://doi.org/10.1016/j.parkreldis.2018.02.022

    Article  PubMed  Google Scholar 

  84. Mulak A, Koszewicz M, Panek-Jeziorna M, Koziorowska-Gawron E, Budrewicz S (2019) Fecal calprotectin as a marker of the gut immune system activation is elevated in Parkinson’s disease. Front Neurosci 13:992. https://doi.org/10.3389/fnins.2019.00992

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wakabayashi K, Takahashi H, Takeda S, Ohama E, Ikuta F (1988) Parkinson’s disease: the presence of Lewy bodies in Auerbach’s and Meissner’s plexuses. Acta Neuropathol 76(3):217–221. https://doi.org/10.1007/BF00687767

    Article  CAS  PubMed  Google Scholar 

  86. Hilton D, Stephens M, Kirk L, Edwards P, Potter R, Zajicek J, Broughton E, Hagan H, et al (2014) Accumulation of α-synuclein in the bowel of patients in the pre-clinical phase of Parkinson’s disease. Acta Neuropathol 127(2):235–241. https://doi.org/10.1007/s00401-013-1214-6

    Article  CAS  PubMed  Google Scholar 

  87. Yan F, Chen Y, Li M, Wang Y, Zhang W, Chen X, Ye Q (2018) Gastrointestinal nervous system α-synuclein as a potential biomarker of Parkinson disease. Medicine (Baltimore) 97(28):e11337. https://doi.org/10.1097/MD.0000000000011337

    Article  CAS  Google Scholar 

  88. Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA, Estes JD, Dodiya HB, et al (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE 6(12):e28032. https://doi.org/10.1371/journal.pone.0028032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, Blennerhassett PA, et al (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23(12):1132–1139. https://doi.org/10.1111/j.1365-2982.2011.01796.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108(38):16050–16055. https://doi.org/10.1073/pnas.1102999108

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6):1469-1480.e1412. https://doi.org/10.1016/j.cell.2016.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977. https://doi.org/10.1038/nn.4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108(Suppl 1):4586–4591. https://doi.org/10.1073/pnas.1000097107

    Article  PubMed  Google Scholar 

  94. Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, Bürmann J, Faßbender K, Schwiertz A, et al (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72. https://doi.org/10.1016/j.parkreldis.2016.08.019

    Article  PubMed  Google Scholar 

  95. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28(10):1221–1227. https://doi.org/10.1136/gut.28.10.1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hamer HM, Jonkers DM, Bast A, Vanhoutvin SA, Fischer MA, Kodde A, Troost FJ, Venema K, et al (2009) Butyrate modulates oxidative stress in the colonic mucosa of healthy humans. Clin Nutr 28(1):88–93. https://doi.org/10.1016/j.clnu.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  97. Neunlist M, Dobreva G, Schemann M (1999) Characteristics of mucosally projecting myenteric neurones in the guinea-pig proximal colon. J Physiol 517(Pt 2):533–546. https://doi.org/10.1111/j.1469-7793.1999.0533t.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Clark A, Mach N (2017) The crosstalk between the gut microbiota and mitochondria during exercise. Front Physiol 8:319. https://doi.org/10.3389/fphys.2017.00319

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ma J, Coarfa C, Qin X, Bonnen PE, Milosavljevic A, Versalovic J, Aagaard K (2014) mtDNA haplogroup and single nucleotide polymorphisms structure human microbiome communities. BMC Genomics 15:257. https://doi.org/10.1186/1471-2164-15-257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Giles RE, Blanc H, Cann HM, Wallace DC (1980) Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A 77(11):6715–6719. https://doi.org/10.1073/pnas.77.11.6715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Moeller AH, Suzuki TA, Phifer-Rixey M, Nachman MW (2018) Transmission modes of the mammalian gut microbiota. Science 362(6413):453–457. https://doi.org/10.1126/science.aat7164

    Article  CAS  PubMed  Google Scholar 

  102. Yardeni T, Tanes CE, Bittinger K, Mattei LM, Schaefer PM, Singh LN, Wu GD, Murdock DG, et al (2019) Host mitochondria influence gut microbiome diversity: A role for ROS. Sci Signal 12(588). https://doi.org/10.1126/scisignal.aaw3159

  103. Chahine LM, Stern MB, Chen-Plotkin A (2014) Blood-based biomarkers for Parkinson’s disease. Parkinsonism Relat Disord 20(Suppl 1):S99-103. https://doi.org/10.1016/S1353-8020(13)70025-7

    Article  PubMed  PubMed Central  Google Scholar 

  104. Miller DW, Hague SM, Clarimon J, Baptista M, Gwinn-Hardy K, Cookson MR, Singleton AB (2004) Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology 62(10):1835–1838. https://doi.org/10.1212/01.wnl.0000127517.33208.f4

    Article  CAS  PubMed  Google Scholar 

  105. Barbour R, Kling K, Anderson JP, Banducci K, Cole T, Diep L, Fox M, Goldstein JM, et al (2008) Red blood cells are the major source of alpha-synuclein in blood. Neurodegener Dis 5(2):55–59. https://doi.org/10.1159/000112832

    Article  CAS  PubMed  Google Scholar 

  106. Tian C, Liu G, Gao L, Soltys D, Pan C, Stewart T, Shi M, Xie Z, et al (2019) Erythrocytic α-Synuclein as a potential biomarker for Parkinson’s disease. Transl Neurodegener 8:15. https://doi.org/10.1186/s40035-019-0155-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E (2008) The antioxidant properties of serum albumin. FEBS Lett 582(13):1783–1787. https://doi.org/10.1016/j.febslet.2008.04.057

    Article  CAS  PubMed  Google Scholar 

  108. Ueno SI, Hatano T, Okuzumi A, Saiki S, Oji Y, Mori A, Koinuma T, Fujimaki M, et al (2020) Nonmercaptalbumin as an oxidative stress marker in Parkinson’s and PARK2 disease. Ann Clin Transl Neurol 7(3):307–317. https://doi.org/10.1002/acn3.50990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H (2019) Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry 90(8):870–881. https://doi.org/10.1136/jnnp-2018-320106

    Article  PubMed  Google Scholar 

  110. Disanto G, Barro C, Benkert P, Naegelin Y, Schädelin S, Giardiello A, Zecca C, Blennow K, et al (2017) Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann Neurol 81(6):857–870. https://doi.org/10.1002/ana.24954

  111. Lin YS, Lee WJ, Wang SJ, Fuh JL (2018) Levels of plasma neurofilament light chain and cognitive function in patients with Alzheimer or Parkinson disease. Sci Rep 8(1):17368. https://doi.org/10.1038/s41598-018-35766-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lin CH, Chiu MJ (2020) Author response: Blood NfL: a biomarker for disease severity and progression in Parkinson disease. Neurology 95(14):658. https://doi.org/10.1212/WNL.0000000000010664

    Article  PubMed  Google Scholar 

  113. Sampedro F, Pérez-González R, Martínez-Horta S, Marín-Lahoz J, Pagonabarraga J, Kulisevsky J (2020) Serum neurofilament light chain levels reflect cortical neurodegeneration in de novo Parkinson’s disease. Parkinsonism Relat Disord 74:43–49. https://doi.org/10.1016/j.parkreldis.2020.04.009

    Article  PubMed  Google Scholar 

  114. Marques TM, van Rumund A, Oeckl P, Kuiperij HB, Esselink RAJ, Bloem BR, Otto M, Verbeek MM (2019) Serum NFL discriminates Parkinson disease from atypical parkinsonisms. Neurology 92(13):e1479–e1486. https://doi.org/10.1212/WNL.0000000000007179

    Article  PubMed  Google Scholar 

  115. Chung CC, Chan L, Chen JH, Bamodu OA, Hong CT (2020) Neurofilament light chain level in plasma extracellular vesicles and Parkinson’s disease. Ther Adv Neurol Disord 13:1756286420975917. https://doi.org/10.1177/1756286420975917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hansson O, Janelidze S, Hall S, Magdalinou N, Lees AJ, Andreasson U, Norgren N, Linder J, et al (2017) Blood-based NfL: A biomarker for differential diagnosis of parkinsonian disorder. Neurology 88(10):930–937. https://doi.org/10.1212/WNL.0000000000003680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bäckström D, Linder J, Jakobson Mo S, Riklund K, Zetterberg H, Blennow K, Forsgren L, Lenfeldt N (2020) NfL as a biomarker for neurodegeneration and survival in Parkinson disease. Neurology 95(7):e827–e838. https://doi.org/10.1212/WNL.0000000000010084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mizobuchi N, Hoseki J, Kubota H, Toyokuni S, Nozaki J, Naitoh M, Koizumi A, Nagata K (2007) ARMET is a soluble ER protein induced by the unfolded protein response via ERSE-II element. Cell Struct Funct 32(1):41–50. https://doi.org/10.1247/csf.07001

    Article  CAS  PubMed  Google Scholar 

  119. Petrova P, Raibekas A, Pevsner J, Vigo N, Anafi M, Moore MK, Peaire AE, Shridhar V, et al (2003) MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J Mol Neurosci 20(2):173–188. https://doi.org/10.1385/jmn:20:2:173

    Article  CAS  PubMed  Google Scholar 

  120. Zhang GL, Wang LH, Liu XY, Zhang YX, Hu MY, Liu L, Fang YY, Mu Y, et al (2018) Cerebral dopamine neurotrophic factor (CDNF) has neuroprotective effects against cerebral ischemia that may occur through the endoplasmic reticulum stress pathway. Int J Mol Sci 19(7):1905. https://doi.org/10.3390/ijms19071905

  121. Volmer R, van der Ploeg K, Ron D (2013) Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc Natl Acad Sci U S A 110(12):4628–4633. https://doi.org/10.1073/pnas.1217611110

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sousa-Victor P, Neves J, Cedron-Craft W, Ventura PB, Liao CY, Riley RR, Soifer I, van Bruggen N, et al (2019) MANF regulates metabolic and immune homeostasis in ageing and protects against liver damage. Nat Metab 1(2):276–290. https://doi.org/10.1038/s42255-018-0023-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Galli E, Planken A, Kadastik-Eerme L, Saarma M, Taba P, Lindholm P (2019) Increased serum levels of mesencephalic astrocyte-derived neurotrophic factor in subjects with Parkinson’s disease. Front Neurosci 13:929. https://doi.org/10.3389/fnins.2019.00929

    Article  PubMed  PubMed Central  Google Scholar 

  124. Shang P, Zhang Y, Ma D, Hao Y, Wang X, Xin M, Zhu M, Feng J (2019) Inflammation resolution and specialized pro-resolving lipid mediators in CNS diseases. Expert Opin Ther Targets 23(11):967–986. https://doi.org/10.1080/14728222.2019.1691525

    Article  CAS  PubMed  Google Scholar 

  125. Abdolmaleki F, Kovanen PT, Mardani R, Gheibi-Hayat SM, Bo S, Sahebkar A (2020) Resolvins: emerging players in autoimmune and inflammatory diseases. Clin Rev Allergy Immunol 58(1):82–91. https://doi.org/10.1007/s12016-019-08754-9

    Article  CAS  PubMed  Google Scholar 

  126. Ren YZ, Zhang BZ, Zhao XJ, Zhang ZY (2020) Resolvin D1 ameliorates cognitive impairment following traumatic brain injury via protecting astrocytic mitochondria. J Neurochem 154(5):530–546. https://doi.org/10.1111/jnc.14962

    Article  CAS  PubMed  Google Scholar 

  127. Krashia P, Cordella A, Nobili A, La Barbera L, Federici M, Leuti A, Campanelli F, Natale G, et al (2019) Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson’s disease. Nat Commun 10(1):3945. https://doi.org/10.1038/s41467-019-11928-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47(6 Suppl 3):S161-170. https://doi.org/10.1212/wnl.47.6_suppl_3.161s

    Article  CAS  PubMed  Google Scholar 

  129. Cipriani S, Chen X, Schwarzschild MA (2010) Urate: a novel biomarker of Parkinson’s disease risk, diagnosis and prognosis. Biomark Med 4(5):701–712. https://doi.org/10.2217/bmm.10.94

    Article  CAS  PubMed  Google Scholar 

  130. Hediger MA, Johnson RJ, Miyazaki H, Endou H (2005) Molecular physiology of urate transport. Physiology (Bethesda) 20:125–133. https://doi.org/10.1152/physiol.00039.2004

    Article  CAS  Google Scholar 

  131. Yeum KJ, Russell RM, Krinsky NI, Aldini G (2004) Biomarkers of antioxidant capacity in the hydrophilic and lipophilic compartments of human plasma. Arch Biochem Biophys 430(1):97–103. https://doi.org/10.1016/j.abb.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  132. de Lau LM, Koudstaal PJ, Hofman A, Breteler MM (2005) Serum uric acid levels and the risk of Parkinson disease. Ann Neurol 58(5):797–800. https://doi.org/10.1002/ana.20663

    Article  CAS  PubMed  Google Scholar 

  133. Church WH, Ward VL (1994) Uric acid is reduced in the substantia nigra in Parkinson’s disease: effect on dopamine oxidation. Brain Res Bull 33(4):419–425. https://doi.org/10.1016/0361-9230(94)90285-2

    Article  CAS  PubMed  Google Scholar 

  134. Davis JW, Grandinetti A, Waslien CI, Ross GW, White LR, Morens DM (1996) Observations on serum uric acid levels and the risk of idiopathic Parkinson’s disease. Am J Epidemiol 144(5):480–484. https://doi.org/10.1093/oxfordjournals.aje.a008954

    Article  CAS  PubMed  Google Scholar 

  135. Weisskopf MG, O’Reilly E, Chen H, Schwarzschild MA, Ascherio A (2007) Plasma urate and risk of Parkinson’s disease. Am J Epidemiol 166(5):561–567. https://doi.org/10.1093/aje/kwm127

    Article  CAS  PubMed  Google Scholar 

  136. O’Reilly EJ, Gao X, Weisskopf MG, Chen H, Schwarzschild MA, Spiegelman D, Ascherio A (2010) Plasma urate and Parkinson’s disease in women. Am J Epidemiol 172(6):666–670. https://doi.org/10.1093/aje/kwq195

    Article  PubMed  PubMed Central  Google Scholar 

  137. Gao X, O’Reilly É, Schwarzschild MA, Ascherio A (2016) Prospective study of plasma urate and risk of Parkinson disease in men and women. Neurology 86(6):520–526. https://doi.org/10.1212/WNL.0000000000002351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cantoni GL (1953) The nature of the active methyl donor formed enzymatically from L-methionine and adenosinetriphosphate. J Amer Chem Soc 74:2942–2943. https://doi.org/10.1021/ja01131a519

    Article  Google Scholar 

  139. Silla Y, Varshney S, Ray A, Basak T, Zinellu A, Sabareesh V, Carru C, Sengupta S (2019) Hydrolysis of homocysteine thiolactone results in the formation of Protein-Cys-S-S-homocysteinylation. Proteins 87(8):625–634. https://doi.org/10.1002/prot.25681

    Article  CAS  PubMed  Google Scholar 

  140. Hasan T, Arora R, Bansal AK, Bhattacharya R, Sharma GS, Singh LR (2019) Disturbed homocysteine metabolism is associated with cancer. Exp Mol Med 51(2):1–13. https://doi.org/10.1038/s12276-019-0216-4

    Article  CAS  PubMed  Google Scholar 

  141. Quadri P, Fragiacomo C, Pezzati R, Zanda E, Forloni G, Tettamanti M, Lucca U (2004) Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. Am J Clin Nutr 80(1):114–122. https://doi.org/10.1093/ajcn/80.1.114

    Article  CAS  PubMed  Google Scholar 

  142. Kuhn W, Roebroek R, Blom H, van Oppenraaij D, Przuntek H, Kretschmer A, Büttner T, Woitalla D, et al (1998) Elevated plasma levels of homocysteine in Parkinson’s disease. Eur Neurol 40(4):225–227. https://doi.org/10.1159/000007984

    Article  CAS  PubMed  Google Scholar 

  143. Sleeman I, Lawson RA, Yarnall AJ, Duncan GW, Johnston F, Khoo TK, Burn DJ (2019) Urate and homocysteine: predicting motor and cognitive changes in newly diagnosed Parkinson’s disease. J Parkinsons Dis 9(2):351–359. https://doi.org/10.3233/JPD-181535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. McLeish MJ, Kenyon GL (2005) Relating structure to mechanism in creatine kinase. Crit Rev Biochem Mol Biol 40(1):1–20. https://doi.org/10.1080/10409230590918577

    Article  CAS  PubMed  Google Scholar 

  145. Eppenberger HM, Dawson DM, Kaplan NO (1967) The comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues. J Biol Chem 242(2):204–209

  146. Wyss M, Smeitink J, Wevers RA, Wallimann T (1992) Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochim Biophys Acta 1102(2):119–166. https://doi.org/10.1016/0005-2728(92)90096-k

    Article  CAS  PubMed  Google Scholar 

  147. Schlattner U, Tokarska-Schlattner M, Wallimann T (2006) Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta 1762(2):164–180. https://doi.org/10.1016/j.bbadis.2005.09.004

    Article  CAS  PubMed  Google Scholar 

  148. Beal MF (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 23(7):298–304. https://doi.org/10.1016/s0166-2236(00)01584-8

    Article  CAS  PubMed  Google Scholar 

  149. Xu J, Fu X, Pan M, Zhou X, Chen Z, Wang D, Zhang X, Chen Q, et al (2019) Mitochondrial creatine kinase is decreased in the serum of idiopathic Parkinson’s disease patients. Aging Dis 10(3):601–610. https://doi.org/10.14336/AD.2018.0615

  150. Bujak R, Struck-Lewicka W, Markuszewski MJ, Kaliszan R (2015) Metabolomics for laboratory diagnostics. J Pharm Biomed Anal 113:108–120. https://doi.org/10.1016/j.jpba.2014.12.017

    Article  CAS  PubMed  Google Scholar 

  151. Bogdanov M, Matson WR, Wang L, Matson T, Saunders-Pullman R, Bressman SS, Flint Beal M (2008) Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 131(Pt 2):389–396. https://doi.org/10.1093/brain/awm304

    Article  PubMed  Google Scholar 

  152. Ahmed SS, Santosh W, Kumar S, Christlet HT (2009) Metabolic profiling of Parkinson’s disease: evidence of biomarker from gene expression analysis and rapid neural network detection. J Biomed Sci 16:63. https://doi.org/10.1186/1423-0127-16-63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Trupp M, Jonsson P, Ohrfelt A, Zetterberg H, Obudulu O, Malm L, Wuolikainen A, Linder J, et al (2014) Metabolite and peptide levels in plasma and CSF differentiating healthy controls from patients with newly diagnosed Parkinson’s disease. J Parkinsons Dis 4(3):549–560. https://doi.org/10.3233/JPD-140389

    Article  CAS  PubMed  Google Scholar 

  154. Yakhine-Diop SMS, Morales-García JA, Niso-Santano M, González-Polo RA, Uribe-Carretero E, Martinez-Chacon G, Durand S, Maiuri MC, et al (2020) Metabolic alterations in plasma from patients with familial and idiopathic Parkinson’s disease. Aging (Albany NY) 12(17):16690–16708. https://doi.org/10.18632/aging.103992

  155. Shao Y, Li T, Liu Z, Wang X, Xu X, Li S, Xu G, Le W (2021) Comprehensive metabolic profiling of Parkinson’s disease by liquid chromatography-mass spectrometry. Mol Neurodegener 16(1):4. https://doi.org/10.1186/s13024-021-00425-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Johansen KK, Wang L, Aasly JO, White LR, Matson WR, Henchcliffe C, Beal MF, Bogdanov M (2009) Metabolomic profiling in LRRK2-related Parkinson’s disease. PLoS ONE 4(10):e7551. https://doi.org/10.1371/journal.pone.0007551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Grosshans H, Slack FJ (2002) Micro-RNAs: small is plentiful. J Cell Biol 156(1):17–21. https://doi.org/10.1083/jcb.200111033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854. https://doi.org/10.1016/0092-8674(93)90529-y

  159. Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F, Bittner R, Lassmann H, Wekerle H, et al (2009) MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132(Pt 12):3342–3352. https://doi.org/10.1093/brain/awp300

    Article  PubMed  Google Scholar 

  160. Femminella GD, Ferrara N, Rengo G (2015) The emerging role of microRNAs in Alzheimer’s disease. Front Physiol 6:40. https://doi.org/10.3389/fphys.2015.00040

    Article  PubMed  PubMed Central  Google Scholar 

  161. Behbahanipour M, Peymani M, Salari M, Hashemi MS, Nasr-Esfahani MH, Ghaedi K (2019) Expression profiling of blood microRNAs 885, 361, and 17 in the patients with the Parkinson’s disease: integrating interaction data to uncover the possible triggering age-related mechanisms. Sci Rep 9(1):13759. https://doi.org/10.1038/s41598-019-50256-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wu J, Gao Y (2015) Physiological conditions can be reflected in human urine proteome and metabolome. Expert Rev Proteomics 12(6):623–636. https://doi.org/10.1586/14789450.2015.1094380

    Article  CAS  PubMed  Google Scholar 

  163. Singh A, Kukreti R, Saso L, Kukreti S (2019) Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 24(8). https://doi.org/10.3390/molecules24081583

  164. Sato S, Mizuno Y, Hattori N (2005) Urinary 8-hydroxydeoxyguanosine levels as a biomarker for progression of Parkinson disease. Neurology 64(6):1081–1083. https://doi.org/10.1212/01.WNL.0000154597.24838.6B

    Article  CAS  PubMed  Google Scholar 

  165. Hirayama M, Nakamura T, Watanabe H, Uchida K, Hama T, Hara T, Niimi Y, Ito M, et al (2011) Urinary 8-hydroxydeoxyguanosine correlate with hallucinations rather than motor symptoms in Parkinson’s disease. Parkinsonism Relat Disord 17(1):46–49. https://doi.org/10.1016/j.parkreldis.2010.11.004

    Article  PubMed  Google Scholar 

  166. Tan L, Yu JT (2012) The kynurenine pathway in neurodegenerative diseases: mechanistic and therapeutic considerations. J Neurol Sci 323(1–2):1–8. https://doi.org/10.1016/j.jns.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  167. Bai JH, Zheng YL, Yu YP (2020) Urinary kynurenine as a biomarker for Parkinson’s disease. Neurol Sci. https://doi.org/10.1007/s10072-020-04589-x

    Article  PubMed  PubMed Central  Google Scholar 

  168. Luan H, Liu LF, Meng N, Tang Z, Chua KK, Chen LL, Song JX, Mok VC, et al (2015) LC-MS-based urinary metabolite signatures in idiopathic Parkinson’s disease. J Proteome Res 14(1):467–478. https://doi.org/10.1021/pr500807t

    Article  CAS  PubMed  Google Scholar 

  169. Wang S, Kojima K, Mobley JA, West AB (2019) Proteomic analysis of urinary extracellular vesicles reveal biomarkers for neurologic disease. EBioMedicine 45:351–361. https://doi.org/10.1016/j.ebiom.2019.06.021

    Article  PubMed  PubMed Central  Google Scholar 

  170. Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD, Peddada SD, Factor SA, et al (2017) Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord 32(5):739–749. https://doi.org/10.1002/mds.26942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Simuni T, Caspell-Garcia C, Coffey C, Lasch S, Tanner C, Marek K, Investigators P (2016) How stable are Parkinson’s disease subtypes in de novo patients: Analysis of the PPMI cohort? Parkinsonism Relat Disord 28:62–67. https://doi.org/10.1016/j.parkreldis.2016.04.027

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Y.G.C. (No. CVU: 856246) and A.P.D.J. (No. CVU: 708195) received a scholarship from the National Council of Science and Technology (Consejo Nacional de Ciencia y Tecnología, CONACYT). All figures were created with Biorender.com.

Funding

This research has been funded by Programa de Apoyo a la Investigación Científica y Tecnológica (PAICyT) 2021: SA1872-21 (A.G.G), and SA1891-21 (H.R.R).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Humberto Rodriguez-Rocha or Aracely Garcia-Garcia.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopar-Cuevas, Y., Duarte-Jurado, A.P., Diaz-Perez, R.N. et al. Pursuing Multiple Biomarkers for Early Idiopathic Parkinson’s Disease Diagnosis. Mol Neurobiol 58, 5517–5532 (2021). https://doi.org/10.1007/s12035-021-02500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02500-z

Keywords

Navigation