Skip to main content

Advertisement

Log in

Thioredoxin-interacting protein (TXNIP) as a target for Alzheimer’s disease: flavonoids and phenols

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by amyloid plaques and tangles that have become the fifth leading cause of death worldwide. Previous studies have found that thioredoxin interacting protein (TXNIP) expression was increased during the development of AD neurons. TXNIP separates from the TXNIP-thioredoxin complex, and the TXNIP-NLRP3 complex assembles ASC and pro-caspase-1 to form the NLRP3 inflammasome, which triggers AD inflammation and apoptosis. CB-dock was used to explore whether 21 natural flavonoids and phenols target TXNIP based on references. Docking results showed that rutin, puerarin, baicalin, luteolin and quercetin are the most potent TXNIP inhibitors, and among them, rutin as the most effective flavonoid. And rosmarinic acid is the most potent TXNIP inhibitor of phenols. These phytochemicals could be helpful to find the lead compounds in designing and developing novel agents for Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2

Similar content being viewed by others

References

  • Abais JM, Xia M, Zhang Y, Boini KM, Li PL (2015) Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal 22:1111–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel-Naim AB, Alghamdi AA, Algandaby MM, Al-Abbasi FA, Al-Abd AM, Eid BG et al (2018) Rutin isolated from chrozophora tinctoria enhances bone cell proliferation and ossification markers. Oxid Med Cell Longev 2018:5106469

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahn H, Lee GS (2017) Isorhamnetin and hyperoside derived from water dropwort inhibits inflammasome activation. Phytomedicine 24:77–86

    Article  CAS  PubMed  Google Scholar 

  • Ahsan AU, Sharma VL, Wani A, Chopra M (2020) Naringenin upregulates AMPK-mediated autophagy to rescue neuronal cells from β-Amyloid ((1–42)) evoked neurotoxicity. Mol Neurobiol 57:3589–3602

    Article  CAS  PubMed  Google Scholar 

  • Alagawany M, Abd El-Hack ME, Farag MR, Gopi M, Karthik K, Malik YS et al (2017) Rosmarinic acid: modes of action, medicinal values and health benefits. Anim Health Res Rev 18:167–176

    Article  PubMed  Google Scholar 

  • Alberdi E, Sánchez-Gómez MV, Ruiz A, Cavaliere F, Ortiz-Sanz C, Quintela-López T et al (2018) Mangiferin and morin attenuate oxidative stress, mitochondrial dysfunction, and neurocytotoxicity, induced by amyloid beta Oligomers. Oxid Med Cell Longev 2018:2856063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amanzadeh E, Esmaeili A, Rahgozar S, Nourbakhshnia M (2019) Application of quercetin in neurological disorders: from nutrition to nanomedicine. Rev Neurosci 30:555–572

    Article  PubMed  Google Scholar 

  • Arowoogun J, Akanni OO, Adefisan AO, Owumi SE, Tijani AS, Adaramoye OA (2021) Rutin ameliorates copper sulfate-induced brain damage via antioxidative and anti-inflammatory activities in rats. J Biochem Mol Toxicol 35:22623

    Article  CAS  Google Scholar 

  • Bai J, Zhang Y, Tang C, Hou Y, Ai X, Chen X et al (2021) Gallic acid: pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother 133:110985

    Article  CAS  PubMed  Google Scholar 

  • Baum L, Lam CW, Cheung SK, Kwok T, Lui V, Tsoh J et al (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 28:110–113

    Article  PubMed  Google Scholar 

  • Bedarida T, Baron S, Vibert F, Ayer A, Henrion D, Thioulouse E et al (2016) Resveratrol decreases TXNIP mRNA and protein nuclear expressions with an arterial function improvement in old mice. J Gerontol A Biol Sci Med Sci 71:720–729

    Article  CAS  PubMed  Google Scholar 

  • Braidy N, Behzad S, Habtemariam S, Ahmed T, Daglia M, Nabavi SM et al (2017) Neuroprotective effects of citrus fruit-derived flavonoids, nobiletin and tangeretin in Alzheimer’s and Parkinson’s disease. CNS Neurol Disord Drug Targets 16:387–397

    Article  CAS  PubMed  Google Scholar 

  • Budzynska B, Faggio C, Kruk-Slomka M, Samec D, Nabavi SF, Sureda A et al (2019) Rutin as neuroprotective agent: from bench to bedside. Curr Med Chem 26:5152–5164

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Tang C, Gao M, Rui Y, Zhang J, Wang L et al (2020) Hyperoside alleviates epilepsy-induced neuronal damage by enhancing antioxidant levels and reducing autophagy. J Ethnopharmacol 257:112884

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Ou S, Zhou L, Tang H, Xu J, Guo K (2017) Formononetin attenuates Aβ(25–35)-induced cytotoxicity in HT22 cells via PI3K/Akt signaling and non-amyloidogenic cleavage of APP. Neurosci Lett 639:36–42

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Wei YZ, He XM, Li DD, Wang GQ, Li JJ et al (2019a) Naringenin produces neuroprotection against LPS-induced dopamine neurotoxicity via the inhibition of microglial NLRP3 inflammasome activation. Front Immunol 10:936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Le TH, Du Q, Zhao Z, Liu Y, Zou J et al (2019b) Genistein protects against DSS-induced colitis by inhibiting NLRP3 inflammasome via TGR5-cAMP signaling. Int Immunopharmacol 71:144–154

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Cui J, Ji X, Yao L (2020) Neuroprotective functions of calycosin against intracerebral hemorrhage-induced oxidative stress and neuroinflammation. Fut Med Chem 12:583–592

    CAS  Google Scholar 

  • Chen M, Li J, Liu X, Song Z, Han S, Shi R et al (2021a) Chrysin prevents lipopolysaccharide-induced acute lung injury in mice by suppressing the IRE1α/TXNIP/NLRP3 pathway. Pulm Pharmacol Ther 68:102018

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Famurewa AC, Tang J, Olatunde OO, Olatunji OJ (2021b) Hyperoside attenuates neuroinflammation, cognitive impairment and oxidative stress via suppressing TNF-α/NF-κB/caspase-3 signaling in type 2 diabetes rats. Nutr Neurosci. https://doi.org/10.1080/1028415x.2021.19010471-11

    Article  PubMed  Google Scholar 

  • Cicek M, Unsal V, Doganer A, Demir M (2021) Investigation of oxidant/antioxidant and anti-inflammatory effects of apigenin on apoptosis in sepsis-induced rat lung. J Biochem Mol Toxicol 35:22743

    Article  CAS  Google Scholar 

  • Cortes-Canteli M, Iadecola C (2020) Alzheimer’s disease and vascular aging: JACC focus seminar. J Am Coll Cardiol 75:942–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox KH, Pipingas A, Scholey AB (2015) Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J Psychopharmacol 29:642–651

    Article  CAS  PubMed  Google Scholar 

  • Daglia M, Di Lorenzo A, Nabavi SF, Talas ZS, Nabavi SM (2014) Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat! Curr Pharm Biotechnol 15:362–372

    Article  CAS  PubMed  Google Scholar 

  • Daily JW, Kang S, Park S (2021) Protection against Alzheimer’s disease by luteolin: role of brain glucose regulation, anti-inflammatory activity, and the gut microbiota-liver-brain axis. BioFactors 47:218–231

    Article  CAS  PubMed  Google Scholar 

  • Deng M, Chen H, Long J, Song J, Xie L, Li X (2020) Calycosin: a review of its pharmacological effects and application prospects. Rev Anti Infect Ther. https://doi.org/10.1080/14787210.2021.18631451-15

    Article  Google Scholar 

  • DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinda B, Dinda S, DasSharma S, Banik R, Chakraborty A, Dinda M (2017) Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur J Med Chem 131:68–80

    Article  CAS  PubMed  Google Scholar 

  • Ding H, Wang H, Zhao Y, Sun D, Zhai X (2015) Protective effects of baicalin on Aβ1-42-induced learning and memory deficit, oxidative stress, and apoptosis in rat. Cell Mol Neurobiol 35:623–632

    Article  CAS  PubMed  Google Scholar 

  • Dourado NS, Souza CDS, de Almeida MMA, Bispo da Silva A, Dos Santos BL, Silva VDA et al (2020) Neuroimmunomodulatory and neuroprotective effects of the flavonoid apigenin in in vitro models of neuroinflammation associated with Alzheimer’s disease. Front Aging Neurosci 12:119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan F, Yang L, Li R, Zou X, Li N, Meng X et al (2020) Salidroside as a potential neuroprotective agent for ischemic stroke: a review of sources, pharmacokinetics, mechanism and safety. Biomed Pharmacother 129:110458

    Article  CAS  PubMed  Google Scholar 

  • Fei HX, Zhang YB, Liu T, Zhang XJ, Wu SL (2018) Neuroprotective effect of formononetin in ameliorating learning and memory impairment in mouse model of Alzheimer’s disease. Biosci Biotechnol Biochem 82:57–64

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Zhang L (2019) Resveratrol suppresses Aβ-induced microglial activation through the TXNIP/TRX/NLRP3 signaling pathway. DNA Cell Biol 38:874–879

    Article  CAS  PubMed  Google Scholar 

  • Feng ST, Wang ZZ, Yuan YH, Sun HM, Chen NH, Zhang Y (2019) Mangiferin: a multipotent natural product preventing neurodegeneration in Alzheimer’s and Parkinson’s disease models. Pharmacol Res 146:104336

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Guo F, Mai H, Liu J, Xia Z, Zhu G et al (2020) Pterostilbene, a bioactive component of blueberries, alleviates renal interstitial fibrosis by inhibiting macrophage-myofibroblast transition. Am J Chin Med 48:1715–1729

    Article  CAS  PubMed  Google Scholar 

  • Gao J, He H, Jiang W, Chang X, Zhu L, Luo F et al (2015) Salidroside ameliorates cognitive impairment in a D-galactose-induced rat model of Alzheimer’s disease. Behav Brain Res 293:27–33

    Article  CAS  PubMed  Google Scholar 

  • Ghofrani S, Joghataei MT, Mohseni S, Baluchnejadmojarad T, Bagheri M, Khamse S et al (2015) Naringenin improves learning and memory in an Alzheimer’s disease rat model: insights into the underlying mechanisms. Eur J Pharmacol 764:195–201

    Article  CAS  PubMed  Google Scholar 

  • Habtemariam S (2016) Rutin as a natural therapy for Alzheimer’s disease: insights into its mechanisms of action. Curr Med Chem 23:860–873

    Article  CAS  PubMed  Google Scholar 

  • Hamdan DI, El-Shiekh RA, El-Sayed MA, Khalil HMA, Mousa MR, Al-Gendy AA et al (2020) Phytochemical characterization and anti-inflammatory potential of Egyptian Murcott mandarin cultivar waste (stem, leaves and peel). Food Funct 11:8214–8236

    Article  CAS  PubMed  Google Scholar 

  • Hishikawa N, Takahashi Y, Amakusa Y, Tanno Y, Tuji Y, Niwa H et al (2012) Effects of turmeric on Alzheimer’s disease with behavioral and psychological symptoms of dementia. Ayu 33:499–504

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang P, Zheng N, Zhou HB, Huang J (2020) Curcumin inhibits BACE1 expression through the interaction between ERβ and NFκB signaling pathway in SH-SY5Y cells. Mol Cell Biochem 463:161–173

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA et al (2019) Luteolin, a flavonoid, as an anticancer agent: a review. Biomed Pharmacother 112:108612

    Article  CAS  PubMed  Google Scholar 

  • Ishola IO, Olubodun-Obadun TG, Ojulari MA, Adeyemi OO (2020) Rutin ameliorates scopolamine-induced learning and memory impairments through enhancement of antioxidant defense system and cholinergic signaling. Drug Metab Pers Ther. https://doi.org/10.1515/dmdi-2020-0118

    Article  PubMed  Google Scholar 

  • Jeon YD, Lee JH, Lee YM, Kim DK (2020) Puerarin inhibits inflammation and oxidative stress in dextran sulfate sodium-induced colitis mice model. Biomed Pharmacother 124:109847

    Article  CAS  PubMed  Google Scholar 

  • Jia Q, Yang R, Liu XF, Ma SF (2018) protective effects of genistein on myocardial injury in diabetic rats. Sichuan Da Xue Xue Bao Yi Xue Ban 49:706–711

    PubMed  Google Scholar 

  • Jin X, Liu MY, Zhang DF, Zhong X, Du K, Qian P et al (2019) Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway. CNS Neurosci Ther 25:575–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi R, Kulkarni YA, Wairkar S (2018) Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: an update. Life Sci 215:43–56

    Article  CAS  PubMed  Google Scholar 

  • Kempuraj D, Thangavel R, Kempuraj DD, Ahmed ME, Selvakumar GP, Raikwar SP et al (2021) Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. BioFactors 47:190–197

    Article  CAS  PubMed  Google Scholar 

  • Khan H, Ullah H, Aschner M, Cheang WS, Akkol EK (2019) Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules 10:59

    Article  PubMed Central  CAS  Google Scholar 

  • Kseibati MO, Sharawy MH, Salem HA (2020) Chrysin mitigates bleomycin-induced pulmonary fibrosis in rats through regulating inflammation, oxidative stress, and hypoxia. Int Immunopharmacol 89:107011

    Article  CAS  PubMed  Google Scholar 

  • Kuppan G, Balasubramanyam J, Monickaraj F, Srinivasan G, Mohan V, Balasubramanyam M (2010) Transcriptional regulation of cytokines and oxidative stress by gallic acid in human THP-1 monocytes. Cytokine 49:229–234

    Article  CAS  PubMed  Google Scholar 

  • Lei LY, Wang RC, Pan YL, Yue ZG, Zhou R, Xie P et al (2021) Mangiferin inhibited neuroinflammation through regulating microglial polarization and suppressing NF-κB, NLRP3 pathway. Chin J Nat Med 19:112–119

    PubMed  Google Scholar 

  • Leong PK, Ko KM (2015) Schisandrin B induces an Nrf2-mediated thioredoxin expression and suppresses the activation of inflammasome in vitro and in vivo. BioFactors 41:314–323

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Zhang X (2021) Genistein attenuates cognitive deficits and neuroapoptosis in hippocampus induced by ketamine exposure in neonatal rats. Synapse 75:e22181

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li J, Li S, Li Y, Wang X, Liu B et al (2015) Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK. Toxicol Appl Pharmacol 286:53–63

    Article  CAS  PubMed  Google Scholar 

  • Li DD, Zhang YH, Zhang W, Zhao P (2019) Meta-analysis of randomized controlled trials on the efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease. Front Neurosci 13:472

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Chen FJ, Yang WL, Qiao HZ, Zhang SJ (2021) Quercetin improves cognitive disorder in aging mice by inhibiting NLRP3 inflammasome activation. Food Funct 12:717–725

    Article  CAS  PubMed  Google Scholar 

  • Lian D, Yuan H, Yin X, Wu Y, He R, Huang Y et al (2019) Puerarin inhibits hyperglycemia-induced inter-endothelial junction through suppressing endothelial Nlrp3 inflammasome activation via ROS-dependent oxidative pathway. Phytomedicine 55:310–319

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Luo T, Weng A, Huang X, Yao Y, Fu Z et al (2020) Gallic acid alleviates gouty arthritis by inhibiting NLRP3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling. Front Immunol 11:580593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CY, Bai K, Liu XH, Zhang LM, Yu GR (2018) Hyperoside protects the blood-brain barrier from neurotoxicity of amyloid beta 1–42. Neural Regen Res 13:1974–1980

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Cao XL, Liu GQ, Zhou T, Yang XL, Ma BX (2019) The in silico and in vivo evaluation of puerarin against Alzheimer’s disease. Food Funct 10:799–813

    Article  PubMed  Google Scholar 

  • Liu Y, Grimm M, Dai WT, Hou MC, Xiao ZX, Cao Y (2020) CB-Dock: a web server for cavity detection-guided protein-ligand blind docking. Acta Pharmacol Sin 41:138–144

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Song Y, Hu A (2021a) Neuroprotective mechanisms of mangiferin in neurodegenerative diseases. Drug Dev Res. https://doi.org/10.1002/ddr.21783

    Article  PubMed  Google Scholar 

  • Liu Y, Piao XJ, Xu WT, Zhang Y, Zhang T, Xue H et al (2021b) Calycosin induces mitochondrial-dependent apoptosis and cell cycle arrest, and inhibits cell migration through a ROS-mediated signaling pathway in HepG2 hepatocellular carcinoma cells. Toxicol in Vitro 70:105052

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Lu Q, Chen W, Li J, Li C, Zheng Z (2018) Vitamin D3 protects against diabetic retinopathy by inhibiting high-glucose-induced activation of the ROS/TXNIP/NLRP3 inflammasome pathway. J Diabetes Res 2018:8193523

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu C, Lv J, Jiang N, Wang H, Huang H, Zhang L et al (2020) Protective effects of genistein on the cognitive deficits induced by chronic sleep deprivation. Phytother Res 34:846–858

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Zou L, Sun H, Peng J, Gao C, Bao L et al (2020) A review of the anti-inflammatory effects of rosmarinic acid on inflammatory diseases. Front Pharmacol 11:153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado Dutra J, Espitia PJP, Andrade Batista R (2021) Formononetin: biological effects and uses—a review. Food Chem 359:129975

    Article  CAS  PubMed  Google Scholar 

  • Mani R, Natesan V (2018) Chrysin: sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 145:187–196

    Article  CAS  PubMed  Google Scholar 

  • Melone MAB, Dato C, Paladino S, Coppola C, Trebini C, Giordana MT et al (2018) Verapamil inhibits Ser202/Thr205 phosphorylation of tau by blocking TXNIP/ROS/p38 MAPK pathway. Pharm Res 35:44

    Article  PubMed  CAS  Google Scholar 

  • Mirhadi E, Roufogalis BD, Banach M, Barati M, Sahebkar A (2021) Resveratrol: mechanistic and therapeutic perspectives in pulmonary arterial hypertension. Pharmacol Res 163:105287

    Article  CAS  PubMed  Google Scholar 

  • Moeini R, Memariani Z, Asadi F, Bozorgi M, Gorji N (2019) Pistacia genus as a potential source of neuroprotective natural products. Planta Med 85:1326–1350

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Koyama N, Yokoo T, Segawa T, Maeda M, Sawmiller D et al (2020) Gallic acid is a dual α/β-secretase modulator that reverses cognitive impairment and remediates pathology in Alzheimer mice. J Biol Chem 295:16251–16266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabavi SF, Braidy N, Gortzi O, Sobarzo-Sanchez E, Daglia M, Skalicka-Woźniak K et al (2015) Luteolin as an anti-inflammatory and neuroprotective agent: a brief review. Brain Res Bull 119:1–11

    Article  CAS  PubMed  Google Scholar 

  • Nakajima A, Ohizumi Y (2019) Potential benefits of nobiletin, a citrus flavonoid, against Alzheimer’s disease and Parkinson’s disease. Int J Mol Sci 20:3380

    Article  CAS  PubMed Central  Google Scholar 

  • Nasoohi S, Ismael S, Ishrat T (2018) Thioredoxin-interacting protein (TXNIP) in cerebrovascular and neurodegenerative diseases: regulation and implication. Mol Neurobiol 55:7900–7920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naz S, Imran M, Rauf A, Orhan IE, Shariati MA, Iahtisham Ul H et al (2019) Chrysin: pharmacological and therapeutic properties. Life Sci 235:116797

    Article  CAS  PubMed  Google Scholar 

  • Nemoto K, Ikeda A, Yoshida C, Kimura J, Mori J, Fujiwara H et al (2013) Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines. Biochem Biophys Res Commun 431:530–534

    Article  CAS  PubMed  Google Scholar 

  • Nikbakht F, Khadem Y, Haghani S, Hoseininia H, Moein Sadat A, Heshemi P et al (2019) Protective role of apigenin against Aβ 25–35 toxicity via inhibition of mitochondrial cytochrome c release. Basic Clin Neurosci 10:557–566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu X, Sang H, Wang J (2021) Naringenin attenuates experimental autoimmune encephalomyelitis by protecting the intact of blood-brain barrier and controlling inflammatory cell migration. J Nutr Biochem 89:108560

    Article  CAS  PubMed  Google Scholar 

  • Nkpaa KW, Onyeso GI (2018) Rutin attenuates neurobehavioral deficits, oxidative stress, neuro-inflammation and apoptosis in fluoride treated rats. Neurosci Lett 682:92–99

    Article  CAS  PubMed  Google Scholar 

  • Nyandwi JB, Ko YS, Jin H, Yun SP, Park SW, Kim HJ (2020) Rosmarinic acid inhibits oxLDL-induced inflammasome activation under high-glucose conditions through downregulating the p38-FOXO1-TXNIP pathway. Biochem Pharmacol 182:114246

    Article  CAS  PubMed  Google Scholar 

  • Olajide OA, Sarker SD (2020) Alzheimer’s disease: natural products as inhibitors of neuroinflammation. Inflammopharmacology 28:1439–1455

    Article  PubMed  PubMed Central  Google Scholar 

  • Orlov MA (2019) Alzheimer’s disease therapy: challenges and perspectives. Adv Gerontol 32:639–651

    CAS  PubMed  Google Scholar 

  • Pan Q, Guo K, Xue M, Tu Q (2020) Estrogen protects neuroblastoma cell from amyloid-β 42 (Aβ42)-induced apoptosis via TXNIP/TRX axis and AMPK signaling. Neurochem Int 135:104685

    Article  CAS  PubMed  Google Scholar 

  • Panda SS, Jhanji N (2020) Natural products as potential anti-Alzheimer agents. Curr Med Chem 27:5887–5917

    Article  CAS  PubMed  Google Scholar 

  • Peñalver P, Zodio S, Lucas R, de-Paz MV, Morales JC (2020) Neuroprotective and anti-inflammatory effects of pterostilbene metabolites in human neuroblastoma SH-SY5Y and RAW 2647 macrophage cells. J Agric Food Chem 68:1609–1620

    Article  PubMed  CAS  Google Scholar 

  • Pohl F, Kong Thoo Lin P (2018) The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: In vitro,in vivo and clinical trials. Molecules 23:3283

    Article  PubMed Central  CAS  Google Scholar 

  • Polekhina G, Ascher DB, Kok SF, Beckham S, Wilce M, Waltham M (2013) Structure of the N-terminal domain of human thioredoxin-interacting protein. Acta Crystallogr D Biol Crystallogr 69:333–344

    Article  CAS  PubMed  Google Scholar 

  • Pontes-Quero GM, Benito-Garzón L, Pérez Cano J, Aguilar MR, Vázquez-Lasa B (2021) Amphiphilic polymeric nanoparticles encapsulating curcumin: Antioxidant, anti-inflammatory and biocompatibility studies. Mater Sci Eng C Mater Biol Appl 121:111793

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Shang L, Liao Z, Su H, Jing H, Wu B et al (2019) Intracerebroventricular injection of resveratrol ameliorated Aβ-induced learning and cognitive decline in mice. Metab Brain Dis 34:257–266

    Article  CAS  PubMed  Google Scholar 

  • Rahman MH, Akter R, Bhattacharya T, Abdel-Daim MM, Alkahtani S, Arafah MW et al (2020) Resveratrol and neuroprotection: impact and its therapeutic potential in Alzheimer’s disease. Front Pharmacol 11:619024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK (2019) Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog Neurobiol 174:53–89

    Article  CAS  PubMed  Google Scholar 

  • Shentu YP, Hu WT, Liang JW, Liuyang ZY, Wei H, Qun W et al (2019) Genistein decreases APP/tau phosphorylation and ameliorates Aβ overproduction through inhibiting CIP2A. Curr Alzheimer Res 16:732–740

    Article  CAS  PubMed  Google Scholar 

  • Song J, Li J, Hou F, Wang X, Liu B (2015) Mangiferin inhibits endoplasmic reticulum stress-associated thioredoxin-interacting protein/NLRP3 inflammasome activation with regulation of AMPK in endothelial cells. Metabolism 64:428–437

    Article  CAS  PubMed  Google Scholar 

  • Song L, Li X, Bai XX, Gao J, Wang CY (2017) Calycosin improves cognitive function in a transgenic mouse model of Alzheimer’s disease by activating the protein kinase C pathway. Neural Regen Res 12:1870–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S (2018) Neuroprotective and cognitive enhancement potentials of baicalin: a review. Brain Sci 8:104

    Article  PubMed Central  CAS  Google Scholar 

  • Sun Z, Wang X (2020) Protective effects of polydatin on multiple organ ischemia-reperfusion injury. Bioorg Chem 94:103485

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Jiao X, Ma Y, Liu Y, Zhang L, He Y et al (2016) Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem Biophys Res Commun 481:63–70

    Article  CAS  PubMed  Google Scholar 

  • Sun HJ, Jin XM, Xu J, Xiao Q (2020a) Baicalin alleviates age-related macular degeneration via miR-223/NLRP3-regulated pyroptosis. Pharmacology 105:28–38

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Liu MW, Zhao YH, Lu YX, Wang YA, Tong CW (2020b) Baicalin attenuates lipopolysaccharide-induced renal tubular epithelial cell injury by inhibiting the TXNIP/NLRP3 signalling pathway via increasing miR-223-3p expression. J Biol Regul Homeost Agents 34:69–82

    CAS  PubMed  Google Scholar 

  • Sureda A, Sanches Silva A, Sánchez-Machado DI, López-Cervantes J, Daglia M, Nabavi SF et al (2017) Hypotensive effects of genistein: from chemistry to medicine. Chem Biol Interact 268:37–46

    Article  CAS  PubMed  Google Scholar 

  • Tang KS (2021) Protective effects of polydatin against dementia-related disorders. Curr Neuropharmacol 19:127–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tay KC, Tan LT, Chan CK, Hong SL, Chan KG, Yap WH et al (2019) Formononetin: a review of its anticancer potentials and mechanisms. Front Pharmacol 10:820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thingore C, Kshirsagar V, Juvekar A (2021) Amelioration of oxidative stress and neuroinflammation in lipopolysaccharide-induced memory impairment using Rosmarinic acid in mice. Metab Brain Dis 36:299–313

    Article  CAS  PubMed  Google Scholar 

  • Torres-Acosta N, O’Keefe JH, O’Keefe EL, Isaacson R, Small G (2020) Therapeutic potential of TNF-α inhibition for Alzheimer’s disease prevention. J Alzheimers Dis 78:619–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsubaki H, Tooyama I, Walker DG (2020) Thioredoxin-interacting protein (TXNIP) with focus on brain and neurodegenerative diseases. Int J Mol Sci 21:9357

    Article  CAS  PubMed Central  Google Scholar 

  • Turner RS, Thomas RG, Craft S, van Dyck CH, Mintzer J, Reynolds BA et al (2015) A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 85:1383–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vedagiri A, Thangarajan S (2016) Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid β25-35 induced oxidative stress in rat hippocampal region: an efficient formulation approach for Alzheimer’s disease. Neuropeptides 58:111–125

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Ding XQ, Gu TT, Song L, Li JM, Xue QC et al (2015) Pterostilbene and allopurinol reduce fructose-induced podocyte oxidative stress and inflammation via microRNA-377. Free Radic Biol Med 83:214–226

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Zhu X, Zhang K, Yao Y, Zhuang M, Tan C et al (2017a) Puerarin inhibits amyloid β-induced NLRP3 inflammasome activation in retinal pigment epithelial cells via suppressing ROS-dependent oxidative and endoplasmic reticulum stresses. Exp Cell Res 357:335–340

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wu QH, Sui Y, Wang Y, Qiu X (2017b) Rutin protects endothelial dysfunction by disturbing Nox4 and ROS-sensitive NLRP3 inflammasome. Biomed Pharmacother 86:32–40

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Xu Y, Wang X, Guo C, Wang T, Wang ZY (2019a) Dl-3-n-Butylphthalide inhibits NLRP3 inflammasome and mitigates Alzheimer’s-like pathology via Nrf2-TXNIP-TRX axis. Antioxid Redox Signal 30:1411–1431

    Article  PubMed  Google Scholar 

  • Wang M, Firrman J, Liu L, Yam K (2019b) A review on flavonoid apigenin: dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. Biomed Res Int 2019:7010467

    PubMed  PubMed Central  Google Scholar 

  • Wang DS, Yan LY, Yang DZ, Lyu Y, Fang LH, Wang SB et al (2020a) Formononetin ameliorates myocardial ischemia/reperfusion injury in rats by suppressing the ROS-TXNIP-NLRP3 pathway. Biochem Biophys Res Commun 525:759–766

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Guo Y, Qiao Y, Zhang J, Jiang P (2020b) Nobiletin ameliorates NLRP3 inflammasome-mediated inflammation through promoting autophagy via the AMPK Pathway. Mol Neurobiol 57:5056–5068

    Article  CAS  PubMed  Google Scholar 

  • Wang SW, Sheng H, Bai YF, Weng YY, Fan XY, Zheng F et al (2020c) Inhibition of histone acetyltransferase by naringenin and hesperetin suppresses Txnip expression and protects pancreatic β cells in diabetic mice. Phytomedicine 29:153454. https://doi.org/10.1016/j.phymed.2020.153454153454

    Article  Google Scholar 

  • Wang X, Yuwen T, Yanqin T (2021) Mangiferin inhibits inflammation and cell proliferation, and activates proapoptotic events via NF-κB inhibition in DMBA-induced mammary carcinogenesis in rats. J Environ Pathol Toxicol Oncol 40:1–9

    Article  CAS  PubMed  Google Scholar 

  • Witte AV, Kerti L, Margulies DS, Flöel A (2014) Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J Neurosci 34:7862–7870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Xu X, Li Y, Kou J, Huang F, Liu B et al (2014) Quercetin, luteolin and epigallocatechin gallate alleviate TXNIP and NLRP3-mediated inflammation and apoptosis with regulation of AMPK in endothelial cells. Eur J Pharmacol 745:59–68

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Tang L, Duan R, Hu X, Geng F, Zhang Y et al (2021) Interaction mechanisms and structure-affinity relationships between hyperoside and soybean β-conglycinin and glycinin. Food Chem 347:129052

    Article  CAS  PubMed  Google Scholar 

  • Xiao HT, Qi XL, Liang Y, Lin CY, Wang X, Guan ZZ et al (2014) Membrane permeability-guided identification of neuroprotective components from Polygonum cuspidatun. Pharm Biol 52:356–361

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Qin X, Wan J, Li R (2019) Pharmacological targets and the biological mechanisms of formononetin for Alzheimer’s disease: a network analysis. Med Sci Monit 25:4273–4277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Z, Cao Z, Yang J, Jia Z, Du Y, Sun G et al (2021) Baicalin promotes hippocampal neurogenesis via the Wnt/β-catenin pathway in a chronic unpredictable mild stress-induced mouse model of depression. Biochem Pharmacol 190:114594

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Lu H, Yang S, Zeng Y, Li W, Wang L et al (2020) Salidroside attenuates cognitive dysfunction in senescence-accelerated mouse prone 8 (SAMP8) mice and modulates inflammation of the gut-brain axis. Front Pharmacol 11:568423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Hu MJ, Wang YQ, Cui YL (2019) Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 24:1123

    Article  CAS  PubMed Central  Google Scholar 

  • Xu J, Liu J, Li Q, Mi Y, Zhou D, Meng Q et al (2021) Pterostilbene alleviates Aβ(1–42) -induced cognitive dysfunction via inhibition of oxidative stress by activating Nrf2 signaling pathway. Mol Nutr Food Res 65:e2000711

    Article  PubMed  CAS  Google Scholar 

  • Yamagata K, Hashiguchi K, Yamamoto H, Tagami M (2019) Dietary apigenin reduces induction of LOX-1 and NLRP3 expression, leukocyte adhesion, and acetylated low-density lipoprotein uptake in human endothelial cells exposed to trimethylamine-N-oxide. J Cardiovasc Pharmacol 74:558–565

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Kayama T, Noguchi-Shinohara M, Hamaguchi T, Yamada M, Abe K et al (2021) Rosmarinic acid suppresses tau phosphorylation and cognitive decline by downregulating the JNK signaling pathway. NPJ Sci Food 5:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang S, Zhou H, Wang G, Zhong XH, Shen QL, Zhang XJ et al (2020) Quercetin is protective against short-term dietary advanced glycation end products intake induced cognitive dysfunction in aged ICR mice. J Food Biochem 44:13164

    Article  Google Scholar 

  • Yang AJT, Bagit A, MacPherson REK (2021) Resveratrol, metabolic dysregulation, and Alzheimer’s disease: considerations for neurogenerative disease. Int J Mol Sci 22:4628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X, Zuo D, Yu L, Zhang L, Tang J, Cui C et al (2017) ROS/TXNIP pathway contributes to thrombin induced NLRP3 inflammasome activation and cell apoptosis in microglia. Biochem Biophys Res Commun 485:499–505

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Guo Q, Li X, Tang T, Li C, Wang H et al (2018) Curcumin suppresses IL-1β secretion and prevents inflammation through inhibition of the NLRP3 inflammasome. J Immunol 200:2835–2846

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara E, Masaki S, Matsuo Y, Chen Z, Tian H, Yodoi J (2014) Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases. Front Immunol 4:514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Youn K, Lee S, Jun M (2019) Discovery of nobiletin from citrus peel as a potent inhibitor of β-Amyloid peptide toxicity. Nutrients 11:2648

    Article  CAS  PubMed Central  Google Scholar 

  • Yu M, Chen X, Liu J, Ma Q, Zhuo Z, Chen H et al (2019) Gallic acid disruption of Aβ(1–42) aggregation rescues cognitive decline of APP/PS1 double transgenic mouse. Neurobiol Dis 124:67–80

    Article  CAS  PubMed  Google Scholar 

  • Zarini-Gakiye E, Amini J, Sanadgol N, Vaezi G, Parivar K (2020) Recent updates in the Alzheimer’s disease etiopathology and possible treatment approaches: a narrative review of current clinical trials. Curr Mol Pharmacol 13:273–294

    Article  CAS  PubMed  Google Scholar 

  • Zeng KW, Wang XM, Ko H, Kwon HC, Cha JW, Yang HO (2011) Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloid β-protein via the PI3K/Akt/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway. Eur J Pharmacol 672:45–55

    Article  CAS  PubMed  Google Scholar 

  • Zeng W, Jin L, Zhang F, Zhang C, Liang W (2018) Naringenin as a potential immunomodulator in therapeutics. Pharmacol Res 135:122–126

    Article  CAS  PubMed  Google Scholar 

  • Zhang L (2019) Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine. Drug Deliv 26:860–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang QY, Pan Y, Wang R, Kang LL, Xue QC, Wang XN et al (2014) Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats. J Nutr Biochem 25:420–428

    Article  CAS  PubMed  Google Scholar 

  • Zhang BC, Li Z, Xu W, Xiang CH, Ma YF (2018a) Luteolin alleviates NLRP3 inflammasome activation and directs macrophage polarization in lipopolysaccharide-stimulated RAW264.7 cells. Am J Transl Res 10:265–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Kong WN, Chai XQ (2018b) Compound of icariin, astragalus, and puerarin mitigates iron overload in the cerebral cortex of Alzheimer’s disease mice. Neural Regen Res 13:731–736

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang E, Huang J, Wang K, Yu Q, Zhu C, Ren H (2020a) Pterostilbene protects against lipopolysaccharide/D-galactosamine-induced acute liver failure by upregulating the Nrf2 pathway and inhibiting NF-κB, MAPK, and NLRP3 inflammasome activation. J Med Food 23:952–960

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang Y, Li R, Zhu L, Fu B, Yan T (2020b) Salidroside ameliorates Parkinson’s disease by inhibiting NLRP3-dependent pyroptosis. Aging (albany NY) 12:9405–9426

    Article  CAS  Google Scholar 

  • Zhang Y, Han Z, Jiang A, Wu D, Li S, Liu Z et al (2020c) Protective effects of pterostilbene on lipopolysaccharide-induced acute lung injury in mice by inhibiting NF-κB and activating Nrf2/HO-1 signaling pathways. Front Pharmacol 11:591836

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Xie L, Long J, Xie Q, Zheng Y, Liu K et al (2021a) Salidroside: a review of its recent advances in synthetic pathways and pharmacological properties. Chem Biol Interact 339:109268

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yu X, Wang M, Ding Y, Guo H, Liu J et al (2021b) Hyperoside from Z. bungeanum leaves restores insulin secretion and mitochondrial function by regulating pancreatic cellular redox status in diabetic mice. Free Radic Biol Med 162:412–422

    Article  CAS  PubMed  Google Scholar 

  • Zhao XJ, Yu HW, Yang YZ, Wu WY, Chen TY, Jia KK et al (2018) Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway. Redox Biol 18:124–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Lu M, Mao Z, Xiao J, Huang Q, Lin X et al (2020) Modulation of interfacial phenolic antioxidant distribution in Pickering emulsions via interactions between zein nanoparticles and gallic acid. Int J Biol Macromol 152:223–233

    Article  CAS  PubMed  Google Scholar 

  • Zhenxia Z, Min L, Peikui Y, Zikai C, Yaqun L, Junli W et al (2021) Inhibition of tau aggregation and associated cytotoxicity on neuron-like cells by calycosin. Int J Biol Macromol 171:74–81

    Article  PubMed  CAS  Google Scholar 

  • Zhong Z, Han J, Zhang J, Xiao Q, Hu J, Chen L (2018) Pharmacological activities, mechanisms of action, and safety of salidroside in the central nervous system. Drug Des Devel Ther 12:1479–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zia A, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S (2021) The role of curcumin in aging and senescence: molecular mechanisms. Biomed Pharmacother 134:111119

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Himbert S, Dujardin A, Juhasz J, Ros S, Stöver HDH et al (2021) Curcumin and homotaurine suppress amyloid-β(25–35) aggregation in synthetic brain membranes. ACS Chem Neurosci 12:1395–1405

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study were supported by the National Natural Science Foundation of China (82004180, 81873351); the Distinguished Young Scholars Project of Natural Science Foundation of Anhui Province in China (1908085J27); the Key Project of Overseas Visits for the Excellent Young Talents in Universities of Anhui Province in China (gxgwfx2020041); the Project Foundation of Support Program for the Excellent Young Faculties in Universities of Anhui Province in China (gxyq2019033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Zhou or Biao Cai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Hu, G., Shao, N. et al. Thioredoxin-interacting protein (TXNIP) as a target for Alzheimer’s disease: flavonoids and phenols. Inflammopharmacol 29, 1317–1329 (2021). https://doi.org/10.1007/s10787-021-00861-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-021-00861-4

Keywords

Navigation