Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Endogenous stress-related signal directs shoot stem cell fate in Arabidopsis thaliana

Abstract

Stem cell populations in all multicellular organisms are situated in a niche, which is a special microenvironment that defines stem cell fate. The interplay between stem cells and their niches is crucial for stem cell maintenance. Here, we show that an endogenous stress-related signal (ESS) is overrepresented in the shoot stem cell niche under natural growth conditions, and the vast majority of known stem-cell-specific and niche-specific genes responded to stress signals. Interference with the ESS in the stem cell niche by blocking ethylene signalling impaired stem cell maintenance. Ethylene-insensitive 3 (EIN3), the key transcription factor in ethylene signalling, directly actives the expression of the stress hub transcription factor AGAMOUS-LIKE 22 (AGL22) in the stem cell niche and relays ESS signals to the WUSCHEL/CLAVATA network. Our results provide a mechanistic framework for ESS signalling control of the stem cell niche and demonstrate that plant stem cells are maintained by a native stress microenvironment in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plant stem cells are accumulated in the mpclv3 double mutant.
Fig. 2: SNC-specific genes respond to ethylene.
Fig. 3: EIN3 and EILs are involved in stem cell maintenance.
Fig. 4: EIN3 directly activates AGL22 expression.
Fig. 5: AGL22 maintains stem cell fate by positively regulating WUS expression.
Fig. 6: AGL22 mediates ESS signalling transduction in the stem cell niche.
Fig. 7: AGL22 integrates endogenous and exogenous stress signals to regulate plant development.

Similar content being viewed by others

Data availability

The RNA-seq data have been deposited in the NCBI GEO and are accessible through GEO series accession number GSE77169. Source data are provided with this paper.

References

  1. Aichinger, E., Kornet, N., Friedrich, T. & Laux, T. Plant stem cell niches. Annu. Rev. Plant Biol. 63, 615–636 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Stahl, Y. & Simon, R. Plant stem cell niches. Int. J. Dev. Biol. 49, 479–489 (2005).

    Article  PubMed  Google Scholar 

  3. Weigel, D. & Jurgens, G. Stem cells that make stems. Nature 415, 751–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Barton, M. K. Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Dev. Biol. 341, 95–113 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Soyars, C. L., James, S. R. & Nimchuk, Z. L. Ready, aim, shoot: stem cell regulation of the shoot apical meristem. Curr. Opin. Plant Biol. 29, 163–168 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Daum, G., Medzihradszky, A., Suzaki, T. & Lohmann, J. U. A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc. Natl Acad. Sci. USA 111, 14619–14624 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fletcher, J. C., Brand, U., Running, M. P., Simon, R. & Meyerowitz, E. M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283, 1911–1914 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Mayer, K. F. et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 805–815 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Yadav, R. K. et al. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Gene Dev. 25, 2025–2030 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brand, U., Fletcher, J. C., Hobe, M., Meyerowitz, E. M. & Simon, R. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289, 617–619 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Schoof, H. et al. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635–644 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Laufs, P., Grandjean, O., Jonak, C., Kieu, K. & Traas, J. Cellular parameters of the shoot apical meristem in Arabidopsis. Plant Cell 10, 1375–1390 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hamant, O. et al. Developmental patterning by mechanical signals in Arabidopsis. Science 322, 1650–1655 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Uyttewaal, M. et al. Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149, 439–451 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Lee, D. A., Knight, M. M., Campbell, J. J. & Bader, D. L. Stem cell mechanobiology. J. Cell. Biochem. 112, 1–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Nava, M. M., Raimondi, M. T. & Pietrabissa, R. Controlling self-renewal and differentiation of stem cells via mechanical cues. J. Biomed. Biotechnol. 2012, 797410 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Reilly, G. C. & Engler, A. J. Intrinsic extracellular matrix properties regulate stem cell differentiation. J. Biomech. 43, 55–62 (2010).

    Article  PubMed  Google Scholar 

  18. Stolberg, S. & McCloskey, K. E. Can shear stress direct stem cell fate? Biotechnol. Prog. 25, 10–19 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Reddy, G. V. & Meyerowitz, E. M. Stem-cell homeostasis and growth dynamics can be uncoupled in the Arabidopsis shoot apex. Science 310, 663–667 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Przemeck, G. K., Mattsson, J., Hardtke, C. S., Sung, Z. R. & Berleth, T. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200, 229–237 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Schlereth, A. et al. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464, 913–916 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, Z. et al. Hormonal control of the shoot stem-cell niche. Nature 465, 1089–1092 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Maizel, A. et al. The floral regulator LEAFY evolves by substitutions in the DNA binding domain. Science 308, 260–263 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Schmid, M. et al. A gene expression map of Arabidopsis thaliana development. Nat. Genet. 37, 501–506 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Gustafson-Brown, C., Savidge, B. & Yanofsky, M. F. Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76, 131–143 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Simon, R., Igeno, M. I. & Coupland, G. Activation of floral meristem identity genes in Arabidopsis. Nature 384, 59–62 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Blazquez, M. A. & Weigel, D. Integration of floral inductive signals in Arabidopsis. Nature 404, 889–892 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Sessions, A., Yanofsky, M. F. & Weigel, D. Cell–cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science 289, 779–782 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Wellmer, F., Riechmann, J. L., Alves-Ferreira, M. & Meyerowitz, E. M. Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell 16, 1314–1326 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tian, C. et al. A gene expression map of shoot domains reveals regulatory mechanisms. Nat. Commun. 10, 141 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yadav, R. K., Girke, T., Pasala, S., Xie, M. & Reddy, G. V. Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc. Natl Acad. Sci. USA 106, 4941–4946 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yadav, R. K., Tavakkoli, M., Xie, M., Girke, T. & Reddy, G. V. A high-resolution gene expression map of the Arabidopsis shoot meristem stem cell niche. Development 141, 2735–2744 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Leibfried, A. et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438, 1172–1175 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Gordon, S. P., Chickarmane, V. S., Ohno, C. & Meyerowitz, E. M. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc. Natl Acad. Sci. USA 106, 16529–16534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goda, H. et al. The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J. 55, 526–542 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Matsui, A. et al. Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol. 49, 1135–1149 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Alonso, J. M. et al. Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc. Natl Acad. Sci. USA 100, 2992–2997 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, H. & Guo, H. Molecular basis of the ethylene signaling and response pathway in Arabidopsis. J. Plant Growth Regul. 26, 106–117 (2007).

    Article  CAS  Google Scholar 

  39. Wang, Z. P. et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 16, 144 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Tsuchisaka, A. et al. A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 183, 979–1003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhong, S. W. et al. EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proc. Natl Acad. Sci. USA 106, 21431–21436 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gregis, V. et al. Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biol. 14, R56 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bechtold, U. et al. Time-series transcriptomics reveals that AGAMOUS-LIKE22 links primary metabolism to developmental processes in drought-stressed Arabidopsis. Plant Cell 28, 345–366 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hartmann, U. et al. Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J. 21, 351–360 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Kieffer, M. et al. Analysis of the transcription factor WUSCHEL and its functional homologue in Antirrhinum reveals a potential mechanism for their roles in meristem maintenance. Plant Cell 18, 560–573 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Achard, P. et al. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc. Natl Acad. Sci. USA 104, 6484–6489 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, K. L., Li, H. & Ecker, J. R. Ethylene biosynthesis and signaling networks. Plant Cell 14, S131–S151 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jang, S., Torti, S. & Coupland, G. Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. Plant J. 60, 614–625 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Li, D. et al. A repressor complex governs the integration of flowering signals in Arabidopsis. Dev. Cell 15, 110–120 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Zeng, J., Dong, Z., Wu, H., Tian, Z. & Zhao, Z. Redox regulation of plant stem cell fate. EMBO J. 36, 2844–2855 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weigel, D. A. G. J. Arabidopsis: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2002).

  52. Andersen, S. U. et al. Requirement of B2-type cyclin-dependent kinases for meristem integrity in Arabidopsis thaliana. Plant Cell 20, 88–100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schmid, M. et al. Dissection of floral induction pathways using global expression analysis. Development 130, 6001–6012 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, Y. et al. The stem cell niche in leaf axils is established by auxin and cytokinin in Arabidopsis. Plant Cell 26, 2055–2067 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sabatini, S. et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99, 463–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Fiers, M. et al. The 14-amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway. Plant Cell 17, 2542–2553 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Larson, M. G. Analysis of variance. Circulation 117, 115–121 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to Z.Z. from the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB27030105) and the National Natural Science Foundation of China (grant nos. 31870264 and 31570273). We thank Y. Hou for help with identifying the mpclv3 double mutant. We thank J. Lohmann, Z. Ding, D. Yu, C. Li, C. Xiang, C.-K. Wen and G. Coupland for sharing plant materials.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z., J.Z. and Z.T. designed the experiments, analysed the data and wrote the manuscript. Z.D. and Z.T. conducted RNA-seq. L.L. performed the in situ hybridization of WUS, CSD3 and AP1 on WT, clv3 and mpclv3. X.L. and Q.G. analysed the ein3-1eil2eil3 triple mutant and UBQ10::SVP/ein3eil2eil3 plants and performed the PEG treatment and EMSAs. J.Z. conducted all the other experiments.

Corresponding authors

Correspondence to Zhaoxia Tian or Zhong Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–16, unprocessed gels or blots for supplementary figures and legends for Tables 1–6.

Reporting Summary

Supplementary Tables

Table 1: List of SNC-, PZ- and F-specific genes. Table 2: List of the top 500 candidate genes in the SNC. Table 3: Distribution of hormone response genes in profiles according to annotation. Table 4: Distribution of stress response genes in profiles by annotation. Table 5: Gene Ontology term enrichment analysis of profiles for the SNC, PZ and F. Table 6: Oligonucleotides used in this study (5′→3′).

Source data

Source Data Fig. 4

Unprocessed EMSA gels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Li, X., Ge, Q. et al. Endogenous stress-related signal directs shoot stem cell fate in Arabidopsis thaliana. Nat. Plants 7, 1276–1287 (2021). https://doi.org/10.1038/s41477-021-00985-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00985-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing