Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intronic LINE-1 insertion in SLCO1B3 as a highly prevalent cause of rotor syndrome in East Asian population

Abstract

Rotor syndrome is caused by digenic loss-of-function variants in SLCO1B1 and SLCO1B3 but only a few studies have reported co-occurring inactivating variants from both genes. A rotor syndrome-causing long interspersed element-1 (LINE-1) insertion in SLCO1B3 had been reported to be highly prevalent in the Japanese population but there has been no additional report. In spite of its known association with various human diseases, LINE-1 is hard to detect with current sequencing technologies. In this study, we aimed to devise a method to screen the LINE-1 insertion variant and investigate the frequency of this variant in various populations. A chimeric sequence, that was generated by concatenating the reference sequence at the junction and a part of inserted LINE-1 sequence, was searched from 725 raw sequencing data files. In cases containing the chimeric sequence, confirmatory long-range PCR and gap-PCR were performed. In total, 95 (13.1%) of 725 patients were positive for the chimeric sequence, and all were confirmed to have the SLCO1B3 LINE-1 insertion by PCR-based tests. The same chimeric sequence was searched from the 1000 Genomes Project data repository and the carrier frequency was remarkably high in the East Asian populations (10.1%), especially in Southern Han Chinese (18.5%), but almost absent in other populations. This SLCO1B3 LINE-1 insertion should be screened in a population-specific manner under suspicion of Rotor syndrome and the methods proposed in this study would enable this in a simple way.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ostertag EM, Kazazian HH Jr. Biology of mammalian L1 retrotransposons. Annu Rev Genet. 2001;35:501–38.

    Article  CAS  Google Scholar 

  2. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  CAS  Google Scholar 

  3. Scott AF, Schmeckpeper BJ, Abdelrazik M, Comey CT, O’Hara B, Rossiter JP, et al. Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics. 1987;1:113–25.

    Article  CAS  Google Scholar 

  4. Szak ST, Pickeral OK, Makalowski W, Boguski MS, Landsman D, Boeke JD. Molecular archeology of L1 insertions in the human genome. Genome Biol. 2002;3:1–18.

    Article  Google Scholar 

  5. Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, et al. Many human L1 elements are capable of retrotransposition. Nat Genet. 1997;16:37–43.

    Article  CAS  Google Scholar 

  6. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA. 2003;100:5280–5.

    Article  CAS  Google Scholar 

  7. Hancks DC, Kazazian HH Jr. Roles for retrotransposon insertions in human disease. Mob DNA 2016;7:9.

    Article  CAS  Google Scholar 

  8. Zhang X, Zhang R, Yu J. New understanding of the relevant role of LINE-1 retrotransposition in human disease and immune modulation. Front Cell Dev Biol. 2020;8:657.

    Article  Google Scholar 

  9. Rotor AB. Familial non-hemolytic jaundice with direct van den Bergh reaction. Acta Med Philip. 1948;5:37–49.

    Google Scholar 

  10. van de Steeg E, Stránecký V, Hartmannová H, Nosková L, Hřebíček M, Wagenaar E, et al. Complete OATP1B1 and OATP1B3 deficiency causes human rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J Clin Investig. 2012;122:519–28.

    Article  CAS  Google Scholar 

  11. Jirsa M, Knisely A, Schinkel A, Kmoch S. Rotor syndrome. In: GeneReviews®[Internet]. University of Washington, Seattle; 2019.

  12. Kagawa T, Oka A, Kobayashi Y, Hiasa Y, Kitamura T, Sakugawa H, et al. Recessive inheritance of population-specific intronic LINE-1 insertion causes a rotor syndrome phenotype. Hum Mutat. 2015;36:327–32.

    Article  CAS  Google Scholar 

  13. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  CAS  Google Scholar 

  14. Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, et al. The human gene mutation database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet. 2017;136:665–77.

    Article  CAS  Google Scholar 

  15. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92.

    Article  CAS  Google Scholar 

  16. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article  CAS  Google Scholar 

  17. Kim YG, Kim MJ, Lee JS, Lee JA, Song JY, Cho SI, et al. SnackVar: an open-source software for sanger sequencing analysis optimized for clinical use. J Mol Diagn. 2021;23:140–8.

    Article  CAS  Google Scholar 

  18. Steranka JP, Tang Z, Grivainis M, Huang CRL, Payer LM, Rego FOR, et al. Transposon insertion profiling by sequencing (TIPseq) for mapping LINE-1 insertions in the human genome. Mob DNA. 2019;10:8.

    Article  Google Scholar 

  19. Zhou D, Qi S, Zhang W, Wu L, Xu A, Li X, et al. Insertion of LINE-1 retrotransposon inducing exon inversion causes a rotor syndrome phenotype. Front Genet. 2019;10:1399.

    Article  CAS  Google Scholar 

  20. Yamakawa Y, Hamada A, Nakashima R, Yuki M, Hirayama C, Kawaguchi T, et al. Association of genetic polymorphisms in the influx transporter SLCO1B3 and the efflux transporter ABCB1 with imatinib pharmacokinetics in patients with chronic myeloid leukemia. Ther Drug Monit. 2011;33:244–50.

    PubMed  CAS  Google Scholar 

  21. Ren Q, Han X, Ren J, Liu X, Ji L. Influence of the SLCO1B3 gene on sulfonylurea failure in patients with type 2 diabetes in China. Exp Clin Endocrinol Diabetes. 2017;125:449–53.

    Article  CAS  Google Scholar 

  22. Tounsi N, Trabelsi I, Kerkeni E, Grissa MH, Fredj N, Sekma A, et al. ABCB1 and SLCO1B3 gene polymorphisms and their impact on digoxin pharmacokinetics in atrial fibrillation patients among the tunisian population. Pharmacology. 2017;99:250–8.

    Article  CAS  Google Scholar 

  23. Tague LK, Byers DE, Hachem R, Kreisel D, Krupnick AS, Kulkarni HS, et al. Impact of SLCO1B3 polymorphisms on clinical outcomes in lung allograft recipients receiving mycophenolic acid. Pharmacogenomics J. 2020;20:69–79.

    Article  CAS  Google Scholar 

  24. Abe T, Unno M, Onogawa T, Tokui T, Kondo TN, Nakagomi R, et al. LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology. 2001;120:1689–99.

    Article  CAS  Google Scholar 

  25. Smith NF, Acharya MR, Desai N, Figg WD, Sparreboom A. Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol Ther. 2005;4:815–8.

    Article  CAS  Google Scholar 

  26. Lee HH, Leake BF, Teft W, Tirona RG, Kim RB, Ho RH. Contribution of hepatic organic anion-transporting polypeptides to docetaxel uptake and clearance. Mol Cancer Ther. 2015;14:994–1003.

    Article  CAS  Google Scholar 

  27. Lancaster CS, Sprowl JA, Walker AL, Hu S, Gibson AA, Sparreboom A. Modulation of OATP1B-type transporter function alters cellular uptake and disposition of platinum chemotherapeutics. Mol Cancer Ther. 2013;12:1537–44.

    Article  CAS  Google Scholar 

  28. Yamaguchi H, Kobayashi M, Okada M, Takeuchi T, Unno M, Abe T, et al. Rapid screening of antineoplastic candidates for the human organic anion transporter OATP1B3 substrates using fluorescent probes. Cancer Lett. 2008;260:163–9.

    Article  CAS  Google Scholar 

  29. Hu S, Franke RM, Filipski KK, Hu C, Orwick SJ, de Bruijn EA, et al. Interaction of imatinib with human organic ion carriers. Clin Cancer Res. 2008;14:3141–8.

    Article  CAS  Google Scholar 

  30. Sun R, Ying Y, Tang Z, Liu T, Shi F, Li H, et al. The emerging role of the SLCO1B3 protein in cancer resistance. Protein Pept Lett. 2020;27:17–29.

    Article  CAS  Google Scholar 

  31. de Morrée ES, Böttcher R, van Soest RJ, Aghai A, de Ridder CM, Gibson AA, et al. Loss of SLCO1B3 drives taxane resistance in prostate cancer. Br J Cancer. 2016;115:674–81.

    Article  CAS  Google Scholar 

  32. Kagawa T, Adachi Y, Hashimoto N, Mitsui H, Ohashi T, Yoneda M, et al. Loss of organic anion transporting polypeptide 1B3 function causes marked delay in indocyanine green clearance without any clinical symptoms. Hepatology. 2017;65:1065–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon-Woo Seong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

10038_2021_967_MOESM1_ESM.xlsx

Supplemental Table S1. List of individuals and files included from 1000 Genomes Project (File access : ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data, last accessed 10 June, 2021)

Supplementary Table S2. Primers used for amplification and sequencing

10038_2021_967_MOESM3_ESM.xlsx

Supplementary Table S3. BAM file findings and confirmatory PCR results for the detecion of intronic LINE-1 insertion in SLCO1B3 (95 positive cases from SNUH repository data)

Supplementary Table S4. VAF estimation of chimeric sequence-positive samples from 1000 Genomes Project

10038_2021_967_MOESM5_ESM.xlsx

Supplementary Table S5. SLCO1B1 c.1738C>T, p.R580* variant positive individuals in 1000 Genomes Project and their predicted status of SLCO1B3 LINE-1 insertion revealed in this study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Yg., Sung, H., Shin, H.S. et al. Intronic LINE-1 insertion in SLCO1B3 as a highly prevalent cause of rotor syndrome in East Asian population. J Hum Genet 67, 71–77 (2022). https://doi.org/10.1038/s10038-021-00967-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-021-00967-1

This article is cited by

Search

Quick links