Skip to main content
Log in

Elucidating the Mechanism Behind Sodium-Coupled Neurotransmitter Transporters by Reconstitution

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sodium-coupled neurotransmitter transporters play a fundamental role in the termination of synaptic neurotransmission, which makes them a major drug target. The reconstitution of these secondary active transporters into liposomes has shed light on their molecular transport mechanisms. From the earliest days of the reconstitution technique up to today’s single-molecule studies, insights from live functioning transporters have been indispensable for our understanding of their physiological impact. The two classes of sodium-coupled neurotransmitter transporters, the neurotransmitter: sodium symporters and the excitatory amino acid transporters, have vastly different molecular structures, but complementary proteoliposome studies have sought to unravel their ion-dependence and transport kinetics. Furthermore, reconstitution experiments have been used on both protein classes to investigate the role of e.g. the lipid environment, of posttranslational modifications, and of specific amino acid residues in transport. Techniques that allow the detection of transport at a single-vesicle resolution have been developed, and single-molecule studies have started to reveal single transporter kinetics, which will expand our understanding of how transport across the membrane is facilitated at protein level. Here, we review a selection of the results and applications where the reconstitution of the two classes of neurotransmitter transporters has been instrumental.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Figure modified from [4] with permission. b Structure of LeuT in outward-occluded conformation with Na+ (purple) and substrate bound (PDB 2A65) and the inward-facing conformation after release of Na+ and substrate (PDB 3TT3). The bundle domain is shown in orange (TM 1 + 2) and blue (TM 6 + 7). c Membrane topology of GltPh monomer. Figure from [20] with permission. d GltPh in the outward facing conformation and the inward-facing conformation with Na+ (purple) and substrate bound. The transport domain is shown in blue and the scaffold domain is shown in wheat. Hairpin loop 1 and 2 are shown in green and red, respectively. Figure from [20] with permission

Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kanner BI, Zomot E (2008) Sodium-coupled neurotransmitter transporters. Chem Rev 108:1654–1668

    CAS  PubMed  Google Scholar 

  2. Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, Strømgaard K, Gether U (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63:585–640

    CAS  PubMed  Google Scholar 

  3. Saier MH Jr, Tran CV, Barabote RD (2006) TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34:D181–D186

    CAS  PubMed  Google Scholar 

  4. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. Nature 437:215–223

    CAS  PubMed  Google Scholar 

  5. Loland CJ (2015) The use of LeuT as a model in elucidating binding sites for substrates and inhibitors in neurotransmitter transporters. Biochim Biophys Acta 1850:500–510

    CAS  PubMed  Google Scholar 

  6. Coleman JA, Green EM, Gouaux E (2016) X-ray structures and mechanism of the human serotonin transporter. Nature 532:334–339

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang KH, Penmatsa A, Gouaux E (2015) Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521:322–327

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gotfryd K, Boesen T, Mortensen JS, Khelashvili G, Quick M, Terry DS, Missel JW, LeVine MV, Gourdon P, Blanchard SC, Javitch JA, Weinstein H, Loland CJ, Nissen P, Gether U (2020) X-ray structure of LeuT in an inward-facing occluded conformation reveals mechanism of substrate release. Nat Commun 11:1005

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Billesbølle CB, Mortensen JS, Sohail A, Schmidt SG, Shi L, Sitte HH, Gether U, Loland CJ (2016) Transition metal ion FRET uncovers K + regulation of a neurotransmitter/sodium symporter. Nat Commun 7:12755

    PubMed  PubMed Central  Google Scholar 

  10. Khelashvili G, Schmidt SG, Shi L, Javitch JA, Gether U, Loland CJ, Weinstein H (2016) Conformational dynamics on the extracellular side of LeuT controlled by Na+ and K+ ions and the protonation state of Glu290. J Biol Chem 291:19786–19799

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Malinauskaite L, Quick M, Reinhard L, Lyons JA, Yano H, Javitch JA, Nissen P (2014) A mechanism for intracellular release of Na+ by neurotransmitter/sodium symporters. Nat Struct Mol Biol 21:1006–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rudnick G, Sandtner W (2019) Serotonin transport in the 21st century. J Gen Physiol 151:1248–1264

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nelson PJ, Rudnick G (1979) Coupling between platelet 5-hydroxytryptamine and potassium transport. J Biol Chem 254:10084–10089

    CAS  PubMed  Google Scholar 

  14. Alleva C, Kovalev K, Astashkin R, Berndt MI, Baeken C, Balandin T, Gordeliy V, Fahlke C, Machtens JP (2020) Na(+)-dependent gate dynamics and electrostatic attraction ensure substrate coupling in glutamate transporters. Sci Adv 6:eaba9854

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ji Y, Postis VLG, Wang Y, Bartlam M, Goldman A (2016) Transport mechanism of a glutamate transporter homologue GltPh. Biochem Soc Trans 44:898–904

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Guskov A, Jensen S, Faustino I, Marrink SJ, Slotboom DJ (2016) Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue GltTk. Nat Commun 7(1). https://doi.org/10.1038/ncomms13420

  17. Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    CAS  PubMed  Google Scholar 

  18. Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    CAS  PubMed  Google Scholar 

  19. Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211:969–970

    CAS  PubMed  Google Scholar 

  20. Drew D, Boudker O (2016) Shared molecular mechanisms of membrane transporters. Annu Rev Biochem 85:543–572

    CAS  PubMed  Google Scholar 

  21. Racker E (1972) Reconstitution of a calcium pump with phospholipids and a purified Ca++—adenosine triphosphatase from sacroplasmic reticulum. J Biol Chem 247:8198–8200

    CAS  PubMed  Google Scholar 

  22. Kaback HR (1990) Lac permease of Escherichia coli: on the path of the proton. Philos Trans R Soc Lond B Biol Sci 326:425–436

    CAS  PubMed  Google Scholar 

  23. Kaback HR (2021) It’s better to be lucky than smart. Ann Rev Biochem 90:1–29

    CAS  PubMed  Google Scholar 

  24. Banerjee RK, Datta AG (1983) Proteoliposome as the model for the study of membrane-bound enzymes and transport proteins. Mol Cell Biochem 50:3–15

    CAS  PubMed  Google Scholar 

  25. Rigaud J-L, Lévy D (2003) Reconstitution of membrane proteins into liposomes. Methods in enzymology. Academic Press, Cambridge, pp 65–86

    Google Scholar 

  26. Geertsma ER, Nik Mahmood NA, Schuurman-Wolters GK, Poolman B (2008) Membrane reconstitution of ABC transporters and assays of translocator function. Nat Protoc 3:256–266

    CAS  PubMed  Google Scholar 

  27. Goudsmits JMH, Slotboom DJ, van Oijen AM (2017) Single-molecule visualization of conformational changes and substrate transport in the vitamin B12 ABC importer BtuCD-F. Nat Commun 8:1652

    PubMed  PubMed Central  Google Scholar 

  28. Schaffner W, Weissmann C (1973) A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem 56:502–514

    CAS  PubMed  Google Scholar 

  29. Tepper HL, Voth GA (2006) Mechanisms of passive ion permeation through lipid bilayers: insights from simulations. J Phys Chem B 110:21327–21337

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Seigneuret M, Rigaud JL (1986) Analysis of passive and light-driven ion movements in large bacteriorhodopsin liposomes reconstituted by reverse-phase evaporation. 2. Influence of passive permeability and back-pressure effects upon light-induced proton uptake. Biochemistry 25:6723–6730

    CAS  Google Scholar 

  31. Fitzgerald GA, Terry DS, Warren AL, Quick M, Javitch JA, Blanchard SC (2019) Quantifying secondary transport at single-molecule resolution. Nature 575:528–534

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Quick M, Tomasevic J, Wright EM (2003) Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles. Biochemistry 42:9147–9152

    CAS  PubMed  Google Scholar 

  33. McIlwain BC, Vandenberg RJ, Ryan RM (2015) Transport rates of a glutamate transporter homologue are influenced by the lipid bilayer. J Biol Chem 290:9780–9788

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ryan RM, Compton EL, Mindell JA (2009) Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii. J Biol Chem 284:17540–17548

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Plenge P, Shi L, Beuming T, Te J, Newman AH, Weinstein H, Gether U, Loland CJ (2012) Steric hindrance mutagenesis in the conserved extracellular vestibule impedes allosteric binding of antidepressants to the serotonin transporter. J Biol Chem 287:39316–39326

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Loland CJ, Desai RI, Zou MF, Cao J, Grundt P, Gerstbrein K, Sitte HH, Newman AH, Katz JL, Gether U (2008) Relationship between conformational changes in the dopamine transporter and cocaine-like subjective effects of uptake inhibitors. Mol Pharmacol 73:813–823

    CAS  PubMed  Google Scholar 

  37. Javitch JA (1998) Probing structure of neurotransmitter transporters by substituted-cysteine accessibility method. Methods Enzymol 296:331–346

    CAS  PubMed  Google Scholar 

  38. Ferrer J, Javitch JA (1998) Cocaine alters the accessibility of endogenous cysteines in putative extracellular and intracellular loops of the human dopamine transporter. Proc Natl Acad Sci USA 95:9238–9243

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Trinco G, Arkhipova V, Garaeva AA, Hutter CAJ, Seeger MA, Guskov A, Slotboom DJ (2021) Kinetic mechanism of Na(+)-coupled aspartate transport catalyzed by Glt(Tk). Commun Biol 4:751

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Quick M, Abramyan AM, Wiriyasermkul P, Weinstein H, Shi L, Javitch JA (2018) The LeuT-fold neurotransmitter:sodium symporter MhsT has two substrate sites. Proc Natl Acad Sci USA 115:E7924–E7931

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fitzgerald GA, Mulligan C, Mindell JA (2017) A general method for determining secondary active transporter substrate stoichiometry. Elife. https://doi.org/10.7554/eLife.21016.001

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shlosman I, Marinelli F, Faraldo-Gomez JD, Mindell JA (2018) The prokaryotic Na(+)/Ca(2+) exchanger NCX_Mj transports Na(+) and Ca(2+) in a 3:1 stoichiometry. J Gen Physiol 150:51–65

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kisselev PA, Smettan G, Kissel MA, Elbe B, Zirwer D, Gast K, Ruckpaul K, Akhrem AA (1984) Reconstitution of the liver microsomal monooxygenase system in liposomes from dimyristoylphosphatidylcholine. Biomed Biochim Acta 43:281–293

    CAS  PubMed  Google Scholar 

  44. Hallett FR, Watton J, Krygsman P (1991) Vesicle sizing: number distributions by dynamic light scattering. Biophys J 59:357–362

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mazurenko I, Hatzakis NS, Jeuken LJC (2019) Single liposome measurements for the study of proton-pumping membrane enzymes using electrochemistry and fluorescent microscopy. J Vis Exp 144:e58896

    Google Scholar 

  46. Bhatia VK, Madsen KL, Bolinger PY, Kunding A, Hedegard P, Gether U, Stamou D (2009) Amphipathic motifs in BAR domains are essential for membrane curvature sensing. EMBO J 28:3303–3314

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bartels K, Lasitza-Male T, Hofmann H, Löw C (2021) Single-molecule FRET of membrane transport proteins. ChemBioChem. https://doi.org/10.1002/cbic.202100261

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ciftci D, Huysmans GHM, Wang X, He C, Terry D, Zhou Z, Fitzgerald G, Blanchard SC, Boudker O (2021) FRET-based microscopy assay to measure activity of membrane amino acid transporters with single-transporter resolution. Bio Protoc 11:e3970

    CAS  PubMed  Google Scholar 

  49. Kanner BI (1978) Solubilisation and reconstitution of the gamma-aminobutyric acid transporter from rat brain. FEBS Lett 89:47–50

    CAS  PubMed  Google Scholar 

  50. Keynan S, Kanner BI (1988) Gamma-aminobutyric acid transport in reconstituted preparations from rat brain: coupled sodium and chloride fluxes. Biochemistry 27:12–17

    CAS  PubMed  Google Scholar 

  51. Shouffani A, Kanner BI (1990) Cholesterol is required for the reconstruction of the sodium- and chloride-coupled, gamma-aminobutyric acid transporter from rat brain. J Biol Chem 265:6002–6008

    CAS  PubMed  Google Scholar 

  52. Penmatsa A, Wang KH, Gouaux E (2013) X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503:85–90

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Canul-Tec JC, Assal R, Cirri E, Legrand P, Brier S, Chamot-Rooke J, Reyes N (2017) Structure and allosteric inhibition of excitatory amino acid transporter 1. Nature 544:446–451

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Quick M, Javitch JA (2007) Monitoring the function of membrane transport proteins in detergent-solubilized form. Proc Natl Acad Sci USA 104:3603–3608

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lopez-Corcuera B, Kanner BI, Aragon C (1989) Reconstitution and partial purification of the sodium and chloride-coupled glycine transporter from rat spinal cord. Biochim Biophys Acta 983:247–252

    CAS  PubMed  Google Scholar 

  56. Nunez E, Aragon C (1994) Structural analysis and functional role of the carbohydrate component of glycine transporter. J Biol Chem 269:16920–16924

    CAS  PubMed  Google Scholar 

  57. Martínez-Maza R, Poyatos I, López-Corcuera B, Nú E, Giménez C, Zafra F, Aragón C (2001) The role of N-glycosylation in transport to the plasma membrane and sorting of the neuronal glycine transporter GLYT2. J Biol Chem 276:2168–2173

    PubMed  Google Scholar 

  58. Dayan-Alon O, Kanner BI (2019) Internal gate mutants of the GABA transporter GAT1 are capable of substrate exchange. Neuropharmacology 161:107534

    CAS  PubMed  Google Scholar 

  59. Zomot E, Bendahan A, Quick M, Zhao Y, Javitch JA, Kanner BI (2007) Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature 449:726–730

    CAS  PubMed  Google Scholar 

  60. Zhao Y, Quick M, Shi L, Mehler EL, Weinstein H, Javitch JA (2010) Substrate-dependent proton antiport in neurotransmitter:sodium symporters. Nat Chem Biol 6:109–116

    CAS  PubMed  Google Scholar 

  61. Erreger K, Grewer C, Javitch JA, Galli A (2008) Currents in response to rapid concentration jumps of amphetamine uncover novel aspects of human dopamine transporter function. J Neurosci 28:976–989

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hasenhuetl PS, Freissmuth M, Sandtner W (2016) Electrogenic binding of intracellular cations defines a kinetic decision point in the transport cycle of the human serotonin transporter. J Biol Chem 291:25864–25876

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Koepsell H, Korn K, Ferguson D, Menuhr H, Ollig D, Haase W (1984) Reconstitution and partial purification of several Na + cotransport systems from renal brush-border membranes. Properties of the L-glutamate transporter in proteoliposomes. J Biol Chem 259:6548–6558

    CAS  PubMed  Google Scholar 

  64. Gordon AM, Kanner BI (1988) Partial purification of the sodium- and potassium-coupled L-glutamate transport glycoprotein from rat brain. Biochim Biophys Acta 944:90–96

    CAS  PubMed  Google Scholar 

  65. Pines G, Zhang Y, Kanner BI (1995) Glutamate 404 is involved in the substrate discrimination of GLT-1, a (Na++ K+-coupled) glutamate transporter from rat brain. J Biol Chem 270:17093–17097

    CAS  PubMed  Google Scholar 

  66. Zhang Y, Pines G, Kanner BI (1994) Histidine 326 is critical for the function of GLT-1, a (Na++ K+)-coupled glutamate transporter from rat brain. J Biol Chem 269:19573–19577

    CAS  PubMed  Google Scholar 

  67. Gaillard I, Slotboom D-J, Knol J, Lolkema JS, Konings WN (1996) Purification and reconstitution of the glutamate carrier GltT of the thermophilic bacterium Bacillus stearothermophilus. Biochemistry 35:6150–6156

    CAS  PubMed  Google Scholar 

  68. Teichman S, Qu S, Kanner BI (2009) The equivalent of a thallium binding residue from an archeal homolog controls cation interactions in brain glutamate transporters. Proc Natl Acad Sci USA 106:14297–14302

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Groeneveld M, Slotboom DJ (2010) Na(+):aspartate coupling stoichiometry in the glutamate transporter homologue Glt(Ph). Biochemistry 49:3511–3513

    CAS  PubMed  Google Scholar 

  70. Ryan RM, Mindell JA (2007) The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nat Struct Mol Biol 14:365–371

    CAS  PubMed  Google Scholar 

  71. Machtens JP, Kortzak D, Lansche C, Leinenweber A, Kilian P, Begemann B, Zachariae U, Ewers D, de Groot BL, Briones R, Fahlke C (2015) Mechanisms of anion conduction by coupled glutamate transporters. Cell 160:542–553

    CAS  PubMed  Google Scholar 

  72. Chen I, Pant S, Wu Q, Cater RJ, Sobti M, Vandenberg RJ, Stewart AG, Tajkhorshid E, Font J, Ryan RM (2021) Glutamate transporters have a chloride channel with two hydrophobic gates. Nature 591:327–331

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Akyuz N, Georgieva ER, Zhou Z, Stolzenberg S, Cuendet MA, Khelashvili G, Altman RB, Terry DS, Freed JH, Weinstein H, Boudker O, Blanchard SC (2015) Transport domain unlocking sets the uptake rate of an aspartate transporter. Nature 518:68–73

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Huysmans GHM, Ciftci D, Wang X, Blanchard SC, Boudker O (2021) The high-energy transition state of the glutamate transporter homologue GltPh. Embo J 40:e105415

    CAS  PubMed  Google Scholar 

  75. Ciftci D, Huysmans GHM, Wang X, He C, Terry D, Zhou Z, Fitzgerald G, Blanchard SC, Boudker O (2020) Single-molecule transport kinetics of a glutamate transporter homolog shows static disorder. Sci Adv 6:eaaz1949

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Qiu B, Matthies D, Fortea E, Yu Z, Boudker O (2021) Cryo-EM structures of excitatory amino acid transporter 3 visualize coupled substrate, sodium, and proton binding and transport. Sci Adv 7:eabf5814

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ruan Y, Miyagi A, Wang X, Chami M, Boudker O, Scheuring S (2017) Direct visualization of glutamate transporter elevator mechanism by high-speed AFM. Proc Natl Acad Sci USA 114:1584–1588

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Matin TR, Heath GR, Huysmans GHM, Boudker O, Scheuring S (2020) Millisecond dynamics of an unlabeled amino acid transporter. Nat Commun 11:5016

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ramamoorthy S, Cool DR, Leibach FH, Mahesh VB, Ganapathy V (1992) Reconstitution of the human placental 5-hydroxytryptamine transporter in a catalytically active form after detergent solubilization. Biochem J 286(Pt 1):89–95

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tarrant HM, Williams DC (1995) Reconstitution of the rat brain serotonin transporter. Biochem Soc Trans 23:40S-40S

    CAS  PubMed  Google Scholar 

  81. Möller IR, Slivacka M, Nielsen AK, Rasmussen SGF, Gether U, Loland CJ, Rand KD (2019) Conformational dynamics of the human serotonin transporter during substrate and drug binding. Nat Commun 10:1687

    PubMed  PubMed Central  Google Scholar 

  82. Navratna V, Tosh DK, Jacobson KA, Gouaux E (2018) Thermostabilization and purification of the human dopamine transporter (hDAT) in an inhibitor and allosteric ligand bound conformation. PLoS One 13:e0200085

    PubMed  PubMed Central  Google Scholar 

  83. Wang X, Boudker O (2020) Large domain movements through the lipid bilayer mediate substrate release and inhibition of glutamate transporters. Elife 9:e58417

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Laursen L, Severinsen K, Kristensen KB, Periole X, Overby M, Müller HK, Schiøtt B, Sinning S (2018) Cholesterol binding to a conserved site modulates the conformation, pharmacology, and transport kinetics of the human serotonin transporter. J Biol Chem 293:3510–3523

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Rahbek-Clemmensen T, Lycas MD, Erlendsson S, Eriksen J, Apuschkin M, Vilhardt F, Jørgensen TN, Hansen FH, Gether U (2017) Super-resolution microscopy reveals functional organization of dopamine transporters into cholesterol and neuronal activity-dependent nanodomains. Nat Commun 8:740

    PubMed  PubMed Central  Google Scholar 

  86. Setyawati I, Stanek WK, Majsnerowska M, Swier L, Pardon E, Steyaert J, Guskov A, Slotboom DJ (2020) In vitro reconstitution of dynamically interacting integral membrane subunits of energy-coupling factor transporters. Elife 9:e64389

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Daniel Philip Middleton for proofreading the manuscript.

Funding

The work was supported in part by the Lundbeck Foundation (Grant Nos. R344-2020-1020 to C.J.L. and R266-2017-4331 and R276-2018-792 to U.G.), the Independent Research Fund Denmark – Medical Sciences (Grant Nos. 7016-00272 A to C.J.L. and 7016-00325B to U.G.), the Novo Nordic Foundation (Grant No. NNF19OC0058496 to C.J.L.) and the Carlsberg Foundation (Grant No. CF20-0345 to C.J.L.)

Author information

Authors and Affiliations

Authors

Contributions

All authors conceptualized the idea. SGS and CJL drafted the manuscript. All authors revised the manuscript.

Corresponding author

Correspondence to Claus J. Loland.

Ethics declarations

Conflict of interest

The authors declare no conflicts or competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In Honor of Baruch Kanner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, S.G., Gether, U. & Loland, C.J. Elucidating the Mechanism Behind Sodium-Coupled Neurotransmitter Transporters by Reconstitution. Neurochem Res 47, 127–137 (2022). https://doi.org/10.1007/s11064-021-03413-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03413-y

Keywords

Navigation