Skip to main content
Log in

Established and Emerging Producers of PHA: Redefining the Possibility

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The polyhydroxyalkanoate was discovered almost around a century ago. Still, all the efforts to replace the traditional non-biodegradable plastic with much more environmentally friendly alternative are not enough. While the petroleum-based plastic is like a parasite, taking over the planet rapidly and without any feasible cure, its perennial presence has made the ocean a floating island of life-threatening debris and has flooded the landfills with toxic towering mountains. It demands for an immediate solution; most resembling answer would be the polyhydroxyalkanoates. The production cost is yet one of the significant challenges that various corporate is facing to replace the petroleum-based plastic. To deal with the economic constrain better strain, better practices, and a better market can be adopted for superior results. It demands for systems for polyhydroxyalkanoate production namely bacteria, yeast, microalgae, and transgenic plants. Solely strains affect more than 40% of overall production cost, playing a significant role in both upstream and downstream processes. The highly modifiable nature of the biopolymer provides the opportunity to replace the petroleum plastic in almost all sectors from food packaging to medical industry. The review will highlight the recent advancements and techno-economic analysis of current commercial models of polyhydroxyalkanoate production. Bio-compatibility and the biodegradability perks to be utilized highly efficient in the medical applications gives ample reason to tilt the scale in the favor of the polyhydroxyalkanoate as the new conventional and sustainable plastic.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PHA:

Polyhydroxyalkanoate

PHB:

Polyhydroxybutyrate

PHV:

Polyhydroxyvelarate

PHHx:

Polyhydroxyhexanoate

PHD:

Polyhydroxydecanoate

PHO:

Polyhydroxyoctanoate

PHTD:

Polyhydroxytetradecanoate

PLA:

Polylactic acid

STR:

Stirring tank reactor

CDM:

Cell dried mass

BOD:

Biochemical oxygen demand

COD:

Chemical oxygen demand

Scl-PHA:

Small chain length polyhydroxyalkanoate

Mcl-PHA:

Medium chain length polyhydroxyalkanoate

Lcl-PHA:

Long chain length polyhydroxyalkanoate

RBS:

Ribosome binding site

LPS:

Lipopolysaccharide

HPH:

High pressure homogenization

References

  1. Lebreton, L., & Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal. Palgrave Communications, 5(1), 1–11.

    Article  Google Scholar 

  2. Parker, L. (2020). National Geography. Retrieved March 29, 2021, from https://www.nationalgeographic.com/science/2020/07/plastic-trash-in-seas-will-nearly-triple-by-2040-if-nothing-done/.

  3. Unenvironment. (n.d.). Retrieved March 29, 2021, from https://www.unenvironment.org/interactive/beat-plastic-pollution/.

  4. Zheng, J., & Suh, S. (2019). Strategies to reduce the global carbon footprint of plastics. Nature Climate Change, 9(5), 374–378.

    Article  Google Scholar 

  5. Bhatia, S. K., Otari, S. V, Jeon, J.-M., Gurav, R., Choi, Y.-K., Bhatia, R. K., … Yoon, J.-J. (2021). Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective. Bioresource Technology, 124733.

  6. Park, S. L., Cho, J. Y., Choi, T.-R., Song, H.-S., Bhatia, S. K., Gurav, R., … Hwang, S. Y. (2021). Improvement of polyhydroxybutyrate (PHB) plate-based screening method for PHB degrading bacteria using cell-grown amorphous PHB and recovered by sodium dodecyl sulfate (SDS). International Journal of Biological Macromolecules, 177, 413–421.

  7. Singh, A. K., Srivastava, J. K., Chandel, A. K., Sharma, L., Mallick, N., & Singh, S. P. (2019). Biomedical applications of microbially engineered polyhydroxyalkanoates: An insight into recent advances, bottlenecks, and solutions. Applied microbiology and biotechnology, 103(5), 2007–2032.

    Article  CAS  PubMed  Google Scholar 

  8. Koller, M., Maršálek, L., de Sousa Dias, M. M., & Braunegg, G. (2017). Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New biotechnology, 37, 24–38.

    Article  CAS  PubMed  Google Scholar 

  9. Aljuraifani, A. A., Berekaa, M. M., & Ghazwani, A. A. (2019). Bacterial biopolymer (polyhydroxyalkanoate) production from low-cost sustainable sources. MicrobiologyOpen, 8(6), e00755. https://doi.org/10.1002/mbo3.755

    Article  CAS  PubMed  Google Scholar 

  10. Sharma, V., Sehgal, R., & Gupta, R. (2021). Polyhydroxyalkanoate (PHA): Properties and modifications. Polymer, 212, 123161.

  11. Lettner, M., Schöggl, J.-P., & Stern, T. (2017). Factors influencing the market diffusion of bio-based plastics: Results of four comparative scenario analyses. Journal of Cleaner Production, 157, 289–298.

    Article  Google Scholar 

  12. Barry, C., Budhlall, B., & Nagarajan, R. (2016). Undergraduate Modules for Bio-Based Plastics: Educational modules focused on bio-based polymers resulted in good learning outcomes for undergraduate students. Plastics Engineering, 72(3), 30–34.

    Article  Google Scholar 

  13. Hong, J.-W., Song, H.-S., Moon, Y.-M., Hong, Y.-G., Bhatia, S. K., Jung, H.-R., … Choi, Y.-K. (2019). Polyhydroxybutyrate production in halophilic marine bacteria Vibrio proteolyticus isolated from the Korean peninsula. Bioprocess and Biosystems Engineering, 42(4), 603–610.

  14. Park, Y.-L., Song, H.-S., Choi, T.-R., Lee, S. M., Park, S. L., Lee, H. S., … Park, K. (2021). Revealing of sugar utilization systems in Halomonas sp. YLGW01 and application for poly (3-hydroxybutyrate) production with low-cost medium and easy recovery. International Journal of Biological Macromolecules, 167, 151–159.

  15. Jung, H.-R., Yang, S.-Y., Moon, Y.-M., Choi, T.-R., Song, H.-S., Bhatia, S. K., … Yang, Y.-H. (2019). Construction of efficient platform Escherichia coli strains for polyhydroxyalkanoate production by engineering branched pathway. Polymers, 11(3), 509.

  16. Bhatia, S. K., Wadhwa, P., Bhatia, R. K., Patel, S. K. S., & Yang, Y.-H. (2019). Strategy for biosynthesis of polyhydroxyalkonates polymers/copolymers and their application in drug delivery. In Biotechnological Applications of Polyhydroxyalkanoates (pp. 13–34). Springer.

  17. Bhatia, S. K., Yoon, J.-J., Kim, H.-J., Hong, J. W., Hong, Y. G., Song, H.-S., … Yang, Y.-H. (2018). Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding. Bioresource Technology, 257, 92–101.

  18. Bhatia, S. K., Shim, Y.-H., Jeon, J.-M., Brigham, C. J., Kim, Y.-H., Kim, H.-J., … Yi, D.-H. (2015). Starch based polyhydroxybutyrate production in engineered Escherichia coli. Bioprocess and Biosystems Engineering, 38(8), 1479–1484.

  19. Seo, H.-M., Kim, J.-H., Jeon, J.-M., Song, H.-S., Bhatia, S. K., Sathiyanarayanan, G., … Kim, H. J. (2016). In situ immobilization of lysine decarboxylase on a biopolymer by fusion with phasin: Immobilization of CadA on intracellular PHA. Process Biochemistry, 51(10), 1413–1419.

  20. Bhatia, S. K., Wadhwa, P., Hong, J. W., Hong, Y. G., Jeon, J.-M., Lee, E. S., & Yang, Y.-H. (2019). Lipase mediated functionalization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with ascorbic acid into an antioxidant active biomaterial. International journal of biological macromolecules, 123, 117–123.

    Article  CAS  PubMed  Google Scholar 

  21. Jung, H.-R., Choi, T.-R., Han, Y. H., Park, Y.-L., Park, J. Y., Song, H.-S., … Park, H. (2020). Production of blue-colored polyhydroxybutyrate (PHB) by one-pot production and coextraction of indigo and PHB from recombinant Escherichia coli. Dyes and Pigments, 173, 107889.

  22. Bhatia, S. K., Kim, J.-H., Kim, M.-S., Kim, J., Hong, J. W., Hong, Y. G., … Ahn, J. (2018). Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha. Bioprocess and Biosystems Engineering, 41(2), 229–235.

  23. Favaro, L., Basaglia, M., & Casella, S. (2019). Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: A review. Biofuels, Bioproducts and Biorefining, 13(1), 208–227.

    Article  CAS  Google Scholar 

  24. Meng, D.-C., Shen, R., Yao, H., Chen, J.-C., Wu, Q., & Chen, G.-Q. (2014). Engineering the diversity of polyesters. Current opinion in biotechnology, 29, 24–33.

    Article  CAS  PubMed  Google Scholar 

  25. Jung, H.-R., Jeon, J.-M., Yi, D.-H., Song, H.-S., Yang, S.-Y., Choi, T.-R., … Brigham, C. J. (2019). Poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolymer production from volatile fatty acids using engineered Ralstonia eutropha. International Journal of Biological Macromolecules, 138, 370–378.

  26. Koller, M. (2018). A review on established and emerging fermentation schemes for microbial production of Polyhydroxyalkanoate (PHA) biopolyesters. Fermentation, 4(2), 30.

    Article  CAS  Google Scholar 

  27. Zhila, N., & Shishatskaya, E. (2018). Properties of PHA bi-, ter-, and quarter-polymers containing 4-hydroxybutyrate monomer units. International journal of biological macromolecules, 111, 1019–1026.

    Article  CAS  PubMed  Google Scholar 

  28. Pernicova, I., Novackova, I., Sedlacek, P., Kourilova, X., Kalina, M., Kovalcik, A., … Hrubanova, K. (2020). Introducing the newly isolated bacterium Aneurinibacillus sp. H1 as an auspicious thermophilic producer of various polyhydroxyalkanoates (PHA) copolymers–1. Isolation and Characterization of the Bacterium. Polymers, 12(6), 1235.

  29. Muneer, F., Rasul, I., Azeem, F., Siddique, M. H., Zubair, M., & Nadeem, H. (2020). Microbial polyhydroxyalkanoates (PHAs): Efficient replacement of synthetic polymers. Journal of Polymers and the Environment, 28, 2301–2323.

    Article  CAS  Google Scholar 

  30. Wang, L., Liu, Q., Wu, X., Huang, Y., Wise, M. J., Liu, Z., … Wang, C. (2019). Bioinformatics analysis of metabolism pathways of archaeal energy reserves. Scientific Reports, 9(1), 1–12.

  31. Thomas, T., Elain, A., Bazire, A., & Bruzaud, S. (2019). Complete genome sequence of the halophilic PHA-producing bacterium Halomonas sp. SF2003: insights into its biotechnological potential. World Journal of Microbiology and Biotechnology, 35(3), 1–14.

  32. Jendrossek, D. (2009). Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). Journal of bacteriology, 191(10), 3195–3202.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Galán, B., Dinjaski, N., Maestro, B., De Eugenio, L. I., Escapa, I. F., Sanz, J. M., … Prieto, M. A. (2011). Nucleoid‐associated PhaF phasin drives intracellular location and segregation of polyhydroxyalkanoate granules in Pseudomonas putida KT2442. Molecular Microbiology, 79(2), 402–418.

  34. Pfeiffer, D., & Jendrossek, D. (2014). PhaM is the physiological activator of poly (3-hydroxybutyrate)(PHB) synthase (PhaC1) in Ralstonia eutropha. Applied and environmental microbiology, 80(2), 555–563.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Sagong, H.-Y., Son, H. F., Choi, S. Y., Lee, S. Y., & Kim, K.-J. (2018). Structural insights into polyhydroxyalkanoates biosynthesis. Trends in Biochemical Sciences, 43(10), 790–805.

    Article  CAS  PubMed  Google Scholar 

  36. de Almeida, A., Catone, M. V., Rhodius, V. A., Gross, C. A., & Pettinari, M. J. (2011). Unexpected stress-reducing effect of PhaP, a poly (3-hydroxybutyrate) granule-associated protein Escherichia coli. Applied and Environmental Microbiology, 77(18), 6622–6629.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Pieper-Fürst, U., Madkour, M. H., Mayer, F., & Steinbüchel, A. (1995). Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules. Journal of Bacteriology, 177(9), 2513–2523.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Handrick, R., Reinhardt, S., Schultheiss, D., Reichart, T., Schüler, D., Jendrossek, V., & Jendrossek, D. (2004). Unraveling the function of the Rhodospirillum rubrum activator of polyhydroxybutyrate (PHB) degradation: The activator is a PHB-granule-bound protein (phasin). Journal of Bacteriology, 186(8), 2466–2475.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kobayashi, T., Shiraki, M., Abe, T., Sugiyama, A., & Saito, T. (2003). Purification and properties of an intracellular 3-hydroxybutyrate-oligomer hydrolase (PhaZ2) in Ralstonia eutropha H16 and its identification as a novel intracellular poly (3-hydroxybutyrate) depolymerase. Journal of Bacteriology, 185(12), 3485–3490.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Luengo, J. M., Garcı́a, B., Sandoval, A., Naharro, G., & Olivera, E. R. (2003). Bioplastics from microorganisms. Current opinion in microbiology, 6(3), 251–260.

    Article  CAS  PubMed  Google Scholar 

  41. Mohapatra, S., Pattnaik, S., Maity, S., Sharma, S., Akhtar, J., Pati, S., … Varma, A. (2020). Comparative analysis of PHAs production by Bacillus megaterium OUAT 016 under submerged and solid-state fermentation. Saudi Journal of Biological Sciences, 27(5), 1242–1250.

  42. Cui, B., Huang, S., Xu, F., Zhang, R., & Zhang, Y. (2015). Improved productivity of poly (3-hydroxybutyrate)(PHB) in thermophilic Chelatococcus daeguensis TAD1 using glycerol as the growth substrate in a fed-batch culture. Applied Microbiology and Biotechnology, 99(14), 6009–6019.

    Article  CAS  PubMed  Google Scholar 

  43. Gahlawat, G., & Srivastava, A. K. (2017). Enhancing the production of polyhydroxyalkanoate biopolymer by Azohydromonas australica using a simple empty and fill bioreactor cultivation strategy. Chemical and Biochemical Engineering Quarterly, 31(4), 479–485.

    Article  Google Scholar 

  44. Haas, C., El-Najjar, T., Virgolini, N., Smerilli, M., & Neureiter, M. (2017). High cell-density production of poly (3-hydroxybutyrate) in a membrane bioreactor. New Biotechnology, 37, 117–122.

    Article  CAS  PubMed  Google Scholar 

  45. Penloglou, G., Vasileiadou, A., Chatzidoukas, C., & Kiparissides, C. (2017). Model-based intensification of a fed-batch microbial process for the maximization of polyhydroxybutyrate (PHB) production rate. Bioprocess and Biosystems Engineering, 40(8), 1247–1260.

    Article  CAS  PubMed  Google Scholar 

  46. Singh, S., Sithole, B., Lekha, P., Permaul, K., & Govinden, R. (2021). Optimization of cultivation medium and cyclic fed-batch fermentation strategy for enhanced polyhydroxyalkanoate production by Bacillus thuringiensis using a glucose-rich hydrolyzate. Bioresources and Bioprocessing, 8(1), 1–17.

    Article  Google Scholar 

  47. Hairudin, N. H. B. M., Ganesan, S., & Sudesh, K. (2021). Revalorization of adsorbed residual oil in spent bleaching clay as a sole carbon source for polyhydroxyalkanoate (PHA) accumulation in Cupriavidus necator Re2058/pCB113. Polymer Journal, 53(1), 169–178.

    Article  CAS  Google Scholar 

  48. Heinrich, D., Raberg, M., Fricke, P., Kenny, S. T., Morales-Gamez, L., Babu, R. P., … Steinbüchel, A. (2016). Synthesis gas (Syngas)-derived medium-chain-length polyhydroxyalkanoate synthesis in engineered Rhodospirillum rubrum. Applied and Environmental Microbiology, 82(20), 6132–6140.

  49. Atlić, A., Koller, M., Scherzer, D., Kutschera, C., Grillo-Fernandes, E., Horvat, P., … Braunegg, G. (2011). Continuous production of poly ([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Applied Microbiology and Biotechnology, 91(2), 295–304.

  50. Sangkharak, K., & Prasertsan, P. (2013). The production of polyhydroxyalkanoate by Bacillus licheniformis using sequential mutagenesis and optimization. Biotechnology and Bioprocess Engineering, 18(2), 272–279.

    Article  CAS  Google Scholar 

  51. Kim, H. S., Oh, Y. H., Jang, Y.-A., Kang, K. H., David, Y., Yu, J. H., … Joo, J. C. (2016). Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly (3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Microbial Cell Factories, 15(1), 1–13.

  52. Li, M., & Wilkins, M. R. (2020). Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. International Journal of Biological Macromolecules, 156, 691–703.

    Article  CAS  PubMed  Google Scholar 

  53. Alsafadi, D., & Al-Mashaqbeh, O. (2017). A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnology, 34, 47–53.

    Article  CAS  PubMed  Google Scholar 

  54. Kanjanachumpol, P., Kulpreecha, S., Tolieng, V., & Thongchul, N. (2013). Enhancing polyhydroxybutyrate production from high cell density fed-batch fermentation of Bacillus megaterium BA-019. Bioprocess and Biosystems Engineering, 36(10), 1463–1474.

    Article  CAS  PubMed  Google Scholar 

  55. Kahar, P., Tsuge, T., Taguchi, K., & Doi, Y. (2004). High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polymer Degradation and Stability, 83(1), 79–86.

    Article  CAS  Google Scholar 

  56. Bhubalan, K., Lee, W.-H., Loo, C.-Y., Yamamoto, T., Tsuge, T., Doi, Y., & Sudesh, K. (2008). Controlled biosynthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors. Polymer Degradation and Stability, 93(1), 17–23.

    Article  CAS  Google Scholar 

  57. Mothes, G., Schnorpfeil, C., & Ackermann, J. (2007). Production of PHB from crude glycerol. Engineering in Life Sciences, 7(5), 475–479.

    Article  CAS  Google Scholar 

  58. Ibrahim, M. H. A., & Steinbüchel, A. (2010). Zobellella denitrificans strain MW1, a newly isolated bacterium suitable for poly (3-hydroxybutyrate) production from glycerol. Journal of Applied Microbiology, 108(1), 214–225.

    Article  CAS  PubMed  Google Scholar 

  59. Nikel, P. I., Pettinari, M. J., Galvagno, M. A., & Méndez, B. S. (2006). Poly (3-hydroxybutyrate) synthesis by recombinant Escherichia coli arcA mutants in microaerobiosis. Applied and Environmental Microbiology, 72(4), 2614–2620.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Haas, R., Jin, B., & Zepf, F. T. (2008). Production of poly (3-hydroxybutyrate) from waste potato starch. Bioscience, Biotechnology, and Biochemistry, 72(1), 253–256.

    Article  CAS  PubMed  Google Scholar 

  61. Schmid, M., Raschbauer, M., Song, H., Bauer, C., & Neureiter, M. (2021). Effects of nutrient and oxygen limitation, salinity and type of salt on the accumulation of poly (3-hydroxybutyrate) in Bacillus megaterium uyuni S29 with sucrose as a carbon source. New Biotechnology, 61, 137–144.

    Article  CAS  PubMed  Google Scholar 

  62. Nguyen, D. T. N., Lee, O. K., Lim, C., Lee, J., Na, J.-G., & Lee, E. Y. (2020). Metabolic engineering of type II methanotroph, Methylosinus trichosporium OB3b, for production of 3-hydroxypropionic acid from methane via a malonyl-CoA reductase-dependent pathway. Metabolic Engineering, 59, 142–150.

    Article  CAS  PubMed  Google Scholar 

  63. Cha, D., Ha, H. S., & Lee, S. K. (2020). Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid. Bioresource Technology, 309, 123332.

    Article  CAS  PubMed  Google Scholar 

  64. Al-Kaddo, K. B., Mohamad, F., Murugan, P., Tan, J. S., Sudesh, K., & Samian, M. R. (2020). Production of P (3HB-co-4HB) copolymer with high 4HB molar fraction by Burkholderia contaminans Kad1 PHA synthase. Biochemical Engineering Journal, 153, 107394.

    Article  CAS  Google Scholar 

  65. Park, S. J., Lee, T. W., Lim, S.-C., Kim, T. W., Lee, H., Kim, M. K., … Lee, S. Y. (2012). Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 93(1), 273–283.

  66. Sangkharak, K., Paichid, N., Yunu, T., & Prasertsan, P. (2020). Enhancing the degradation of mixed polycyclic aromatic hydrocarbon and medium-chain-length polyhydroxyalkanoate production by mixed bacterial cultures using modified repeated batch fermentation. Journal of applied microbiology, 129(3), 554–564.

    Article  CAS  PubMed  Google Scholar 

  67. Tan, H. T., Chek, M. F., Lakshmanan, M., Foong, C. P., Hakoshima, T., & Sudesh, K. (2020). Evaluation of BP-M-CPF4 polyhydroxyalkanoate (PHA) synthase on the production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil using Cupriavidus necator transformants. International journal of biological macromolecules, 159, 250–257.

    Article  CAS  PubMed  Google Scholar 

  68. Espejo Alfonso, E. S. (2020). Evaluation of different methods of extracting polyhydroxyoctanoate (PHO) produced from pseudomonas putida KT2440. Uniandes.

  69. Bustamante, D., Tortajada, M., Ramon, D., & Rojas, A. (2019). Camelina oil as a promising substrate for mcl-PHA production in Pseudomonas sp. cultures. Applied Food Biotechnology, 6(1), 61–70.

    CAS  Google Scholar 

  70. Mizuno, S., Hiroe, A., Fukui, T., Abe, H., & Tsuge, T. (2017). Fractionation and thermal characteristics of biosynthesized polyhydoxyalkanoates bearing aromatic groups as side chains. Polymer Journal, 49(7), 557–565.

    Article  CAS  Google Scholar 

  71. Wang, H., Li, X., & Chen, G.-Q. (2009). Production and characterization of homopolymer polyhydroxyheptanoate (P3HHp) by a fadBA knockout mutant Pseudomonas putida KTOY06 derived from P. putida KT2442. Process Biochemistry, 44(1), 106–111.

    Article  CAS  Google Scholar 

  72. Choi, T.-R., Jeon, J.-M., Bhatia, S. K., Gurav, R., Han, Y. H., Park, Y. L., … Yoon, J.-J. (2020). Production of low molecular weight P (3HB-co-3HV) by butyrateacetoacetate CoA-transferase (cftAB) in Escherichia coli. Biotechnology and Bioprocess Engineering, 25(2), 279–286.

  73. Turco, R., Santagata, G., Corrado, I., Pezzella, C., & Di Serio, M. (2021). In vivo and post-synthesis strategies to enhance the properties of PHB-based materials: A review. Frontiers in Bioengineering and Biotechnology, 8, 1454.

    Article  Google Scholar 

  74. Bhatia, S. K., Gurav, R., Choi, T.-R., Jung, H.-R., Yang, S.-Y., Song, H.-S., … Yang, Y.-H. (2019). Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) production from engineered Ralstonia eutropha using synthetic and anaerobically digested food waste derived volatile fatty acids. International Journal of Biological Macromolecules, 133, 1–10.

  75. Bhatia, S. K., Yi, D., Kim, H., Jeon, J., Kim, Y., Sathiyanarayanan, G., … Park, K. (2015). Overexpression of succinyl‐CoA synthase for poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) production in engineered Escherichia coli BL 21 (DE 3). Journal of Applied Microbiology, 119(3), 724–735.

  76. Sathiyanarayanan, G., Bhatia, S. K., Song, H.-S., Jeon, J.-M., Kim, J., Lee, Y. K., … Yang, Y.-H. (2017). Production and characterization of medium-chain-length polyhydroxyalkanoate copolymer from Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620. International Journal of Biological Macromolecules, 97, 710–720.

  77. Basnett, P., Lukasiewicz, B., Marcello, E., Gura, H. K., Knowles, J. C., & Roy, I. (2017). Production of a novel medium chain length poly (3-hydroxyalkanoate) using unprocessed biodiesel waste and its evaluation as a tissue engineering scaffold. Microbial Biotechnology, 10(6), 1384–1399.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Zhou, K., Qiao, K., Edgar, S., & Stephanopoulos, G. (2015). Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nature Biotechnology, 33(4), 377–383.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Bhatia, S. K., Bhatia, R. K., Choi, Y.-K., Kan, E., Kim, Y.-G., & Yang, Y.-H. (2018). Biotechnological potential of microbial consortia and future perspectives. Critical Reviews in Biotechnology, 38(8), 1209–1229.

    Article  CAS  PubMed  Google Scholar 

  80. Löwe, H., Hobmeier, K., Moos, M., Kremling, A., & Pflüger-Grau, K. (2017). Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB. Biotechnology for Biofuels, 10(1), 1–11.

    Article  CAS  Google Scholar 

  81. Murugan, P., Han, L., Gan, C.-Y., Maurer, F. H. J., & Sudesh, K. (2016). A new biological recovery approach for PHA using mealworm, Tenebrio molitor. Journal of Biotechnology, 239, 98–105.

    Article  CAS  PubMed  Google Scholar 

  82. Mannina, G., Presti, D., Montiel-Jarillo, G., Carrera, J., & Suárez-Ojeda, M. E. (2020). Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review. Bioresource Technology, 297, 122478.

  83. Chen, X., Yu, L., Qiao, G., & Chen, G.-Q. (2018). Reprogramming Halomonas for industrial production of chemicals. Journal of Industrial Microbiology and Biotechnology, 45(7), 545–554.

    Article  CAS  PubMed  Google Scholar 

  84. Li, M., Chen, X., Che, X., Zhang, H., Wu, L.-P., Du, H., & Chen, G.-Q. (2019). Engineering Pseudomonas entomophila for synthesis of copolymers with defined fractions of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates. Metabolic Engineering, 52, 253–262.

    Article  CAS  PubMed  Google Scholar 

  85. Li, T., Ye, J., Shen, R., Zong, Y., Zhao, X., Lou, C., & Chen, G.-Q. (2016). Semirational approach for ultrahigh poly (3-hydroxybutyrate) accumulation in Escherichia coli by combining one-step library construction and high-throughput screening. ACS Synthetic Biology, 5(11), 1308–1317.

    Article  CAS  PubMed  Google Scholar 

  86. Lv, L., Ren, Y.-L., Chen, J.-C., Wu, Q., & Chen, G.-Q. (2015). Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: Controllable P (3HB-co-4HB) biosynthesis. Metabolic Engineering, 29, 160–168.

    Article  CAS  PubMed  Google Scholar 

  87. Luo, Z., Wu, Y., Li, Z., & Loh, X. J. (2019). Recent progress in polyhydroxyalkanoates-based copolymers for biomedical applications. Biotechnology Journal, 14(12), 1900283.

    Article  CAS  Google Scholar 

  88. Dobrogojski, J., Spychalski, M., Luciński, R., & Borek, S. (2018). Transgenic plants as a source of polyhydroxyalkanoates. Acta Physiologiae Plantarum, 40(9), 1–17.

    Article  CAS  Google Scholar 

  89. Li, Z., Yang, J., & Loh, X. J. (2016). Polyhydroxyalkanoates: Opening doors for a sustainable future. NPG Asia Materials, 8(4), e265–e265.

    Article  CAS  Google Scholar 

  90. Singh, A. K., Sharma, L., Mallick, N., & Mala, J. (2017). Progress and challenges in producing polyhydroxyalkanoate biopolymers from cyanobacteria. Journal of Applied Phycology, 29(3), 1213–1232. https://doi.org/10.1007/s10811-016-1006-1

    Article  CAS  Google Scholar 

  91. Grigore, M. E., Grigorescu, R. M., Iancu, L., Ion, R.-M., Zaharia, C., & Andrei, E. R. (2019). Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: A review. Journal of Biomaterials Science, Polymer Edition, 30(9), 695–712.

    Article  CAS  Google Scholar 

  92. Cerrone, F., Choudhari, S. K., Davis, R., Cysneiros, D., O’Flaherty, V., Duane, G., … Babu, R. P. (2014). Medium chain length polyhydroxyalkanoate (mcl-PHA) production from volatile fatty acids derived from the anaerobic digestion of grass. Applied Microbiology and Biotechnology, 98(2), 611–620.

  93. Gopi, S., Kontopoulou, M., Ramsay, B. A., & Ramsay, J. A. (2018). Manipulating the structure of medium-chain-length polyhydroxyalkanoate (MCL-PHA) to enhance thermal properties and crystallization kinetics. International journal of biological macromolecules, 119, 1248–1255.

    Article  CAS  PubMed  Google Scholar 

  94. Anjum, A., Zuber, M., Zia, K. M., Noreen, A., Anjum, M. N., & Tabasum, S. (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. International journal of biological macromolecules, 89, 161–174.

    Article  CAS  PubMed  Google Scholar 

  95. Sharma, L., Srivastava, J. K., & Singh, A. K. (2016). Biodegradable polyhydroxyalkanoate thermoplastics substituting xenobiotic plastics: A way forward for sustainable environment. In Plant responses to xenobiotics (pp. 317–346). Springer.

  96. Utsunomia, C., Ren, Q., & Zinn, M. (2020). Poly (4-hydroxybutyrate): Current state and perspectives. Frontiers in Bioengineering and Biotechnology, 8, 257.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Sookprasert, P., & Hinchiranan, N. (2017). Morphology, mechanical and thermal properties of poly (lactic acid)(PLA)/natural rubber (NR) blends compatibilized by NR-graft-PLA. Journal of Materials Research, 32(4), 708–800.

    Article  CAS  Google Scholar 

  98. Mitra, R., Xu, T., Xiang, H., & Han, J. (2020). Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microbial Cell Factories, 19, 1–30.

    Article  Google Scholar 

  99. Wang, C., Venditti, R. A., & Zhang, K. (2015). Tailor-made functional surfaces based on cellulose-derived materials. Applied Microbiology and Biotechnology, 99(14), 5791–5799.

    Article  CAS  PubMed  Google Scholar 

  100. Kai, D., & Loh, X. J. (2014). Polyhydroxyalkanoates: Chemical modifications toward biomedical applications. ACS Sustainable Chemistry & Engineering, 2(2), 106–119.

    Article  CAS  Google Scholar 

  101. Torres, M. G., Muñoz, S. V., Rosales, S. G. S., del Pilar Carreón-Castro, M., Muñoz, R. A. E., González, R. O., … Talavera, R. R. (2015). Radiation-induced graft polymerization of chitosan onto poly (3-hydroxybutyrate). Carbohydrate Polymers, 133, 482–492.

  102. Nguyen, S., & Marchessault, R. H. (2006). Graft copolymers of methyl methacrylate and poly ([R]-3-hydroxybutyrate) macromonomers as candidates for inclusion in acrylic bone cement formulations: Compression testing. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 77(1), 5–12.

    Google Scholar 

  103. Iqbal, H. M. N., Kyazze, G., Tron, T., & Keshavarz, T. (2014). A preliminary study on the development and characterisation of enzymatically grafted P (3HB)-ethyl cellulose based novel composites. Cellulose, 21(5), 3613–3621.

    Article  CAS  Google Scholar 

  104. Kim, D.-Y., Kim, H.-W., Chung, M.-G., & Rhee, Y.-H. (2007). Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. Journal of Microbiology, 45(2), 87–97.

    PubMed  Google Scholar 

  105. Park, Y.-L., Bhatia, S. K., Gurav, R., Choi, T.-R., Kim, H. J., Song, H.-S., … Park, S. L. (2020). Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies. International Journal of Biological Macromolecules, 154, 929–936.

  106. López-Cuellar, M. R., Alba-Flores, J., Rodríguez, J. N. G., & Pérez-Guevara, F. (2011). Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. International Journal of Biological Macromolecules, 48(1), 74–80.

    Article  CAS  PubMed  Google Scholar 

  107. Kaparapu, J. (2018). Polyhydroxyalkanoate (PHA) Production by genetically engineered microalgae: A review. Journal on New Biological Reports, 7, 68–73.

    Google Scholar 

  108. Scheel, R. A., Ho, T., Kageyama, Y., Masisak, J., McKenney, S., Lundgren, B. R., & Nomura, C. T. (2021). Optimizing a fed-batch high-density fermentation process for medium chain-length poly (3-hydroxyalkanoates) in Escherichia coli. Frontiers in Bioengineering and Biotechnology, 9, 134.

    Article  Google Scholar 

  109. Xu, F., Huang, S., Liu, Y., Zhang, Y., & Chen, S. (2014). Comparative study on the production of poly (3-hydroxybutyrate) by thermophilic Chelatococcus daeguensis TAD1: A good candidate for large-scale production. Applied Microbiology and Biotechnology, 98(9), 3965–3974.

    Article  CAS  PubMed  Google Scholar 

  110. Ghosh, S., Gnaim, R., Greiserman, S., Fadeev, L., Gozin, M., & Golberg, A. (2019). Macroalgal biomass subcritical hydrolysates for the production of polyhydroxyalkanoate (PHA) by Haloferax mediterranei. Bioresource Technology, 271, 166–173.

    Article  CAS  PubMed  Google Scholar 

  111. Taran, M., & Amirkhani, H. (2010). Strategies of poly (3-hydroxybutyrate) synthesis by Haloarcula sp. IRU1 utilizing glucose as carbon source: optimization of culture conditions by Taguchi methodology. International Journal of Biological Macromolecules, 47(5), 632–634.

    Article  CAS  PubMed  Google Scholar 

  112. Danis, O., Ogan, A., Tatlican, P., Attar, A., Cakmakci, E., Mertoglu, B., & Birbir, M. (2015). Preparation of poly (3-hydroxybutyrate-co-hydroxyvalerate) films from halophilic archaea and their potential use in drug delivery. Extremophiles, 19(2), 515–524.

    Article  CAS  PubMed  Google Scholar 

  113. Karray, F., Ben Abdallah, M., Baccar, N., Zaghden, H., & Sayadi, S. (2021). Production of poly (3-Hydroxybutyrate) by Haloarcula, Halorubrum, and Natrinema Haloarchaeal genera using starch as a carbon source. Archaea, 2021.

  114. Samantaray, S., & Mallick, N. (2012). Production and characterization of poly-β-hydroxybutyrate (PHB) polymer from Aulosira fertilissima. Journal of Applied Phycology, 24(4), 803–814.

    Article  CAS  Google Scholar 

  115. Bhati, R., & Mallick, N. (2015). Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production by the diazotrophic cyanobacterium Nostoc muscorum Agardh: Process optimization and polymer characterization. Algal Research, 7, 78–85.

    Article  Google Scholar 

  116. Rahman, A., Putman, R. J., Inan, K., Sal, F. A., Sathish, A., Smith, T., … Miller, C. D. (2015). Polyhydroxybutyrate production using a wastewater microalgae based media. Algal Research, 8, 95–98.https://doi.org/10.1016/j.algal.2015.01.009.

  117. Mendhulkar, V. D., & Shetye, L. A. (2017). Synthesis of biodegradable polymer polyhydroxyalkanoate (PHA) in cyanobacteria Synechococcus elongates under mixotrophic nitrogen-and phosphate-mediated stress conditions. Industrial Biotechnology, 13(2), 85–93.

    Article  CAS  Google Scholar 

  118. Chakravarty, P., Mhaisalkar, V., & Chakrabarti, T. (2010). Study on poly-hydroxyalkanoate (PHA) production in pilot scale continuous mode wastewater treatment system. Bioresource Technology, 101(8), 2896–2899.

    Article  CAS  PubMed  Google Scholar 

  119. Samantaray, S., & Mallick, N. (2015). Impact of various stress conditions on poly-β-hydroxybutyrate (PHB) accumulation in Aulosira fertilissima CCC 444. Current Biotechnology, 4(3), 366–372.

    Article  CAS  Google Scholar 

  120. Kavitha, G., Kurinjimalar, C., Sivakumar, K., Kaarthik, M., Aravind, R., Palani, P., & Rengasamy, R. (2016). Optimization of polyhydroxybutyrate production utilizing waste water as nutrient source by Botryococcus braunii Kütz using response surface methodology. International Journal of Biological Macromolecules, 93, 534–542.

    Article  CAS  PubMed  Google Scholar 

  121. Coelho, V. C., da Silva, C. K., Terra, A. L., Costa, J. A. V., & de Morais, M. G. (2015). Polyhydroxybutyrate production by Spirulina sp. LEB 18 grown under different nutrient concentrations. African Journal of Microbiology Research, 9(24), 1586–1594.

    Article  CAS  Google Scholar 

  122. Gomes Gradíssimo, D., Pereira Xavier, L., & Valadares Santos, A. (2020). Cyanobacterial polyhydroxyalkanoates: A sustainable alternative in circular economy. Molecules, 25(18), 4331.

    Article  PubMed Central  CAS  Google Scholar 

  123. Khetkorn, W., Incharoensakdi, A., Lindblad, P., & Jantaro, S. (2016). Enhancement of poly-3-hydroxybutyrate production in Synechocystis sp. PCC 6803 by overexpression of its native biosynthetic genes. Bioresource Technology, 214, 761–768.

    Article  CAS  PubMed  Google Scholar 

  124. de Jesus, C. S., da Silva Uebel, L., Costa, S. S., Miranda, A. L., de Morais, E. G., de Morais, M. G., … Druzian, J. I. (2018). Outdoor pilot-scale cultivation of Spirulina sp. LEB-18 in different geographic locations for evaluating its growth and chemical composition. Bioresource Technology, 256, 86–94.

  125. Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 1–21.

    Article  Google Scholar 

  126. Das, S. K., Sathish, A., & Stanley, J. (2018). Production of biofuel and bioplastic from Chlorella pyrenoidosa. Materials Today: Proceedings, 5(8), 16774–16781.

    CAS  Google Scholar 

  127. Gao, C., Qi, Q., Madzak, C., & Lin, C. S. K. (2015). Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica. Journal of Industrial Microbiology and Biotechnology, 42(9), 1255–1262.

    Article  CAS  PubMed  Google Scholar 

  128. Hammer, S. K., & Avalos, J. L. (2017). Harnessing yeast organelles for metabolic engineering. Nature chemical biology, 13(8), 823.

    Article  CAS  PubMed  Google Scholar 

  129. Zhang, B., Carlson, R., & Srienc, F. (2006). Engineering the monomer composition of polyhydroxyalkanoates synthesized in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 72(1), 536–543.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Haddouche, R., Poirier, Y., Delessert, S., Sabirova, J., Pagot, Y., Neuvéglise, C., & Nicaud, J.-M. (2011). Engineering polyhydroxyalkanoate content and monomer composition in the oleaginous yeast Yarrowia lipolytica by modifying the ß-oxidation multifunctional protein. Applied Microbiology and Biotechnology, 91(5), 1327–1340.

    Article  CAS  PubMed  Google Scholar 

  131. Lajus, S., Dusséaux, S., Verbeke, J., Rigouin, C., Guo, Z., Fatarova, M., … Nicaud, J.-M. (2020). Engineering the yeast Yarrowia lipolytica for production of polylactic acid homopolymer. Frontiers in Bioengineering and Biotechnology, 8.

  132. Somleva, M. N., Peoples, O. P., & Snell, K. D. (2013). PHA bioplastics, biochemicals, and energy from crops. Plant Biotechnology Journal, 11(2), 233–252.

    Article  CAS  PubMed  Google Scholar 

  133. Malik, M. R., Yang, W., Patterson, N., Tang, J., Wellinghoff, R. L., Preuss, M. L., … Jez, J. M. (2015). Production of high levels of poly‐3‐hydroxybutyrate in plastids of C amelina sativa seeds. Plant Biotechnology Journal, 13(5), 675–688.

  134. Jung, H.-R., Lee, J.-H., Moon, Y.-M., Choi, T.-R., Yang, S.-Y., Song, H.-S., … Gurav, R. (2019). Increased tolerance to furfural by introduction of polyhydroxybutyrate synthetic genes to Escherichia coli. Journal of Microbiology and Biotechnology, 29(5), 776–784.

  135. Kosseva, M. R., & Rusbandi, E. (2018). Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. International Journal of Biological Macromolecules, 107, 762–778.

    Article  CAS  PubMed  Google Scholar 

  136. Johnston, B., Jiang, G., Hill, D., Adamus, G., Kwiecień, I., Zięba, M., … Radecka, I. (2017). The molecular level characterization of biodegradable polymers originated from polyethylene using non-oxygenated polyethylene wax as a carbon source for polyhydroxyalkanoate production. Bioengineering, 4(3), 73.

  137. Ashby, R. D., Solaiman, D. K. Y., Nuñez, A., Strahan, G. D., & Johnston, D. B. (2018). Burkholderia sacchari DSM 17165: A source of compositionally-tunable block-copolymeric short-chain poly (hydroxyalkanoates) from xylose and levulinic acid. Bioresource Technology, 253, 333–342.

    Article  CAS  PubMed  Google Scholar 

  138. Koller, M., Hesse, P., Fasl, H., Stelzer, F., & Braunegg, G. (2017). Study on the effect of levulinic acid on whey-based biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Hydrogenophaga pseudoflava. Applied Food Biotechnology, 4(2), 65–78.

    CAS  Google Scholar 

  139. De Sousa, M., Dias, M., Koller, M., Puppi, D., Morelli, A., Chiellini, F., & Braunegg, G. (2017). Fed-batch synthesis of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-4-hydroxybutyrate) from sucrose and 4-hydroxybutyrate precursors by Burkholderia sacchari strain DSM 17165. Bioengineering, 4(2), 36.

    Google Scholar 

  140. Raposo, R. S., de Almeida, M. C. M. D., da Fonseca, M. M. R., & Cesário, M. T. (2017). Feeding strategies for tuning poly (3-hydroxybutyrate-co-4-hydroxybutyrate) monomeric composition and productivity using Burkholderia sacchari. International Journal of Biological macromolecules, 105, 825–833.

    Article  CAS  PubMed  Google Scholar 

  141. Chen, G.-Q., & Hajnal, I. (2015). The ‘PHAome.’ Trends in Biotechnology, 33(10), 559–564.

    Article  CAS  PubMed  Google Scholar 

  142. Hokamura, A., Yunoue, Y., Goto, S., & Matsusaki, H. (2017). Biosynthesis of polyhydroxyalkanoate from steamed soybean wastewater by a recombinant strain of Pseudomonas sp. 61–3. Bioengineering, 4(3), 68.

    Article  PubMed Central  CAS  Google Scholar 

  143. Getachew, A., & Woldesenbet, F. (2016). Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Research Notes, 9(1), 1–9.

    Article  CAS  Google Scholar 

  144. Narayanan, M., Kumarasamy, S., Ranganathan, M., Kandasamy, S., Kandasamy, G., Gnanavel, K., & Mamtha, K. (2020). Production and characterization of polyhydroxyalkanoates synthesized by E. coli Isolated from sludge soil. Materials Today: Proceedings.

  145. Taniguchi, I., Kagotani, K., & Kimura, Y. (2003). Microbial production of poly (hydroxyalkanoate) s from waste edible oils. Green Chemistry, 5(5), 545–548.

    Article  CAS  Google Scholar 

  146. Suhazsini, P., Keshav, R., Narayanan, S., Chaudhuri, A., & Radha, P. (2020). A study on the synthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Bacillus megaterium utilizing cheese whey permeate. Journal of Polymers and the Environment, 28(5), 1390–1405.

    Article  CAS  Google Scholar 

  147. Jiang, Y., Marang, L., Kleerebezem, R., Muyzer, G., & van Loosdrecht, M. C. M. (2011). Polyhydroxybutyrate production from lactate using a mixed microbial culture. Biotechnology and Bioengineering, 108(9), 2022–2035.

    Article  CAS  PubMed  Google Scholar 

  148. Koller, M., Hesse, P., Bona, R., Kutschera, C., Atlić, A., & Braunegg, G. (2007). Potential of various archae-and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromolecular Bioscience, 7(2), 218–226.

    Article  CAS  PubMed  Google Scholar 

  149. Bhubalan, K., Rathi, D.-N., Abe, H., Iwata, T., & Sudesh, K. (2010). Improved synthesis of P (3HB-co-3HV-co-3HHx) terpolymers by mutant Cupriavidus necator using the PHA synthase gene of Chromobacterium sp. USM2 with high affinity towards 3HV. Polymer Degradation and Stability, 95(8), 1436–1442.

    Article  CAS  Google Scholar 

  150. Obruca, S., Snajdar, O., Svoboda, Z., & Marova, I. (2013). Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil. World Journal of Microbiology and Biotechnology, 29(12), 2417–2428.

    Article  CAS  PubMed  Google Scholar 

  151. Park, S. J., Jang, Y., Noh, W., Oh, Y. H., Lee, H., David, Y., … Choi, S. Y. (2015). Metabolic engineering of Ralstonia eutropha for the production of polyhydroxyalkanoates from sucrose. Biotechnology and Bioengineering, 112(3), 638–643.

  152. Mifune, J., Nakamura, S., & Fukui, T. (2010). Engineering of pha operon on Cupriavidus necator chromosome for efficient biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from vegetable oil. Polymer Degradation and Stability, 95(8), 1305–1312.

    Article  CAS  Google Scholar 

  153. Saranya, V., & Shenbagarathai, R. (2011). Production and characterization of PHA from recombinant E. coli harbouring phaC1 gene of indigenous Pseudomonas sp. LDC-5 using molasses. Brazilian Journal of Microbiology, 42(3), 1109–1118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Wong, H. H., & Lee, S. Y. (1998). Poly-(3-hydroxybutyrate) production from whey by high-density cultivation of recombinant Escherichia coli. Applied Microbiology and Biotechnology, 50(1), 30–33.

    Article  CAS  PubMed  Google Scholar 

  155. Chen, B., Wan, C., Mehmood, M. A., Chang, J.-S., Bai, F., & Zhao, X. (2017). Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–a review. Bioresource Technology, 244, 1198–1206.

    Article  CAS  PubMed  Google Scholar 

  156. Silva, F., Campanari, S., Matteo, S., Valentino, F., Majone, M., & Villano, M. (2017). Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by mixed microbial cultures. New Biotechnology, 37, 90–98.

    Article  CAS  PubMed  Google Scholar 

  157. Dash, A., Mohanty, S., & Samantaray, D. P. (2020). Effect of carbon/nitrogen ratio on polyhydroxyalkanoates production by Bacillus species under submerged fermentation. Journal of Environmental Biology, 41(1), 118–124.

    Article  CAS  Google Scholar 

  158. Singhon, P., & Monshupanee, T. (2018). Effect of Osmotic Stress, Nitrogen Deficiency or Phosphorus Deficiency on Biomass and Polyhydroxybutyrate Production in some Selected Cyanobacteria.

  159. Monroy, I., & Buitrón, G. (2020). Production of polyhydroxybutyrate by pure and mixed cultures of purple non-sulfur bacteria: A review. Journal of Biotechnology.

  160. Pérez, R., Cantera, S., Bordel, S., García-Encina, P. A., & Muñoz, R. (2019). The effect of temperature during culture enrichment on methanotrophic polyhydroxyalkanoate production. International Biodeterioration & Biodegradation, 140, 144–151.

    Article  CAS  Google Scholar 

  161. Choonut, A., Prasertsan, P., Klomklao, S., & Sangkharak, K. (2020). Study on mcl-PHA production by novel thermotolerant gram-positive isolate. Journal of Polymers and the Environment, 28, 2410–2421.

    Article  CAS  Google Scholar 

  162. Demiriz, B. Ö., Kars, G., Yücel, M., Eroğlu, İ, & Gündüz, U. (2019). Hydrogen and poly-β-hydroxybutyric acid production at various acetate concentrations using Rhodobacter capsulatus DSM 1710. International Journal of Hydrogen Energy, 44(32), 17269–17277.

    Article  CAS  Google Scholar 

  163. Guerra-Blanco, P., Cortes, O., Poznyak, T., Chairez, I., & García-Peña, E. I. (2018). Polyhydroxyalkanoates (PHA) production by photoheterotrophic microbial consortia: Effect of culture conditions over microbial population and biopolymer yield and composition. European Polymer Journal, 98, 94–104.

    Article  CAS  Google Scholar 

  164. Lee, W.-H., Loo, C.-Y., Nomura, C. T., & Sudesh, K. (2008). Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresource Technology, 99(15), 6844–6851.

    Article  CAS  PubMed  Google Scholar 

  165. Karthikeyan, O. P., & Mehariya, S. (2021). Polyhydroxyalkanoates from extremophiles: A review. Bioresource Technology, 124653.

  166. Hu, S., McDonald, A. G., & Coats, E. R. (2013). Characterization of polyhydroxybutyrate biosynthesized from crude glycerol waste using mixed microbial consortia. Journal of Applied Polymer Science, 129(3), 1314–1321.

    Article  CAS  Google Scholar 

  167. Koller, M., Niebelschütz, H., & Braunegg, G. (2013). Strategies for recovery and purification of poly [(R)-3-hydroxyalkanoates](PHA) biopolyesters from surrounding biomass. Engineering in Life Sciences, 13(6), 549–562.

    Article  CAS  Google Scholar 

  168. Barham, P. J., & Selwood, A. (1983, July 5). Extraction of poly (β-hydroxybutyric acid). Google Patents.

  169. Berezina, N. (2013). Novel approach for productivity enhancement of polyhydroxyalkanoates (PHA) production by Cupriavidus necator DSM 545. New Biotechnology, 30(2), 192–195.

    Article  CAS  PubMed  Google Scholar 

  170. Lafferty, R. M., & Heinzle, E. (1979, July 18). Cyclic carbonic acid esters as solvents for poly-(β-hydroxybutyric acid. Google Patents.

  171. Holmes, P. A., & Lim, G. B. (1990). Separation Process,” US Patent 4,910,145.

  172. Lafferty, R. M., & Heinzle, E. (1978, July 18). Cyclic carbonic acid esters as solvents for poly-(β-hydroxybutyric acid. Google Patents.

  173. Marudkla, J., Patjawit, A., Chuensangjun, C., & Sirisansaneeyakul, S. (2018). Optimization of poly (3-hydroxybutyrate) extraction from Cupriavidus necator DSM 545 using sodium dodecyl sulfate and sodium hypochlorite. Agriculture and Natural Resources, 52(3), 266–273.

    Article  Google Scholar 

  174. Koller, M. (2020). Established and advanced approaches for recovery of microbial polyhydroxyalkanoate (PHA) biopolyesters from surrounding microbial biomass. The EuroBiotech Journal, 4(3), 113–126.

    Article  Google Scholar 

  175. Samorì, C., Basaglia, M., Casella, S., Favaro, L., Galletti, P., Giorgini, L., … Tagliavini, E. (2015). Dimethyl carbonate and switchable anionic surfactants: two effective tools for the extraction of polyhydroxyalkanoates from microbial biomass. Green Chemistry, 17(2), 1047–1056.

  176. Kim, M., Cho, K.-S., Ryu, H. W., Lee, E. G., & Chang, Y. K. (2003). Recovery of poly (3-hydroxybutyrate) from high cell density culture of Ralstonia eutropha by direct addition of sodium dodecyl sulfate. Biotechnology Letters, 25(1), 55–59.

    Article  CAS  PubMed  Google Scholar 

  177. Tamer, I. M., Moo-Young, M., & Chisti, Y. (1998). Disruption of Alcaligenes latus for recovery of poly (β-hydroxybutyric acid): Comparison of high-pressure homogenization, bead milling, and chemically induced lysis. Industrial & Engineering Chemistry Research, 37(5), 1807–1814.

    Article  CAS  Google Scholar 

  178. Tamer, I. M., & Moo-Young, M. (1998). Optimization of poly (β-hydroxybutyric acid) recovery from Alcaligenes latus: Combined mechanical and chemical treatments. Bioprocess Engineering, 19(6), 459–468.

    CAS  Google Scholar 

  179. Ong, S. Y., Zainab-L, I., Pyary, S., & Sudesh, K. (2018). A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals. Applied Microbiology and Biotechnology, 102(5), 2117–2127.

    Article  CAS  PubMed  Google Scholar 

  180. Kunasundari, B., Murugaiyah, V., Kaur, G., Maurer, F. H. J., & Sudesh, K. (2013). Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously. PLoS One, 8(10), e78528.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  181. Fadzil, F. I. B. M., & Tsuge, T. (2017). Bioproduction of polyhydroxyalkanoate from plant oils. Microbial Applications, 2, 231–260.

    Article  Google Scholar 

  182. PR News Wire. (2020). Retrieved March 29, 2021, from www.prnewswire.com/news-releases/global-bioplastics-market-report-2020-production-capacities-market-demand-and-trends-2019-2025-301151022.html.

  183. Zembouai, I., Kaci, M., Bruzaud, S., Benhamida, A., Corre, Y.-M., & Grohens, Y. (2013). A study of morphological, thermal, rheological and barrier properties of Poly (3-hydroxybutyrate-Co-3-Hydroxyvalerate)/polylactide blends prepared by melt mixing. Polymer Testing, 32(5), 842–851.

    Article  CAS  Google Scholar 

  184. Keskin, G., Kızıl, G., Bechelany, M., Pochat-Bohatier, C., & Öner, M. (2017). Potential of polyhydroxyalkanoate (PHA) polymers family as substitutes of petroleum based polymers for packaging applications and solutions brought by their composites to form barrier materials. Pure and Applied Chemistry, 89(12), 1841–1848.

    Article  CAS  Google Scholar 

  185. Martínez-Abad, A., González-Ausejo, J., Lagarón, J. M., & Cabedo, L. (2016). Biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/thermoplastic polyurethane blends with improved mechanical and barrier performance. Polymer Degradation and Stability, 132, 52–61. https://doi.org/10.1016/j.polymdegradstab.2016.03.039

    Article  CAS  Google Scholar 

  186. Öner, M., Çöl, A. A., Pochat-Bohatier, C., & Bechelany, M. (2016). Effect of incorporation of boron nitride nanoparticles on the oxygen barrier and thermal properties of poly (3-hydroxybutyrate-co-hydroxyvalerate). Rsc Advances, 6(93), 90973–90981.

    Article  CAS  Google Scholar 

  187. Farmahini-Farahani, M., Khan, A., Lu, P., Bedane, A. H., Eic, M., & Xiao, H. (2017). Surface morphological analysis and water vapor barrier properties of modified Cloisite 30B/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) composites. Applied Clay Science, 135, 27–34.

    Article  CAS  Google Scholar 

  188. Andrews, M. (2014). MirelTM PHA polymeric modifiers & additives. In Proceeding from AddCom 2014 conference, Novotel Barcelona, Spain, October (pp. 21–22).

  189. May, A. T. S. (2018). Analysis of bacterial diversity and polyhydroxyalkanoate synthase genes associated with some marine sponges. Universiti Malaysia Terengganu.

  190. Li, X., Chang, H., Luo, H., Wang, Z., Zheng, G., Lu, X., … Liang, J. (2015). Poly (3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) scaffolds coated with PhaP‐RGD fusion protein promotes the proliferation and chondrogenic differentiation of human umbilical cord mesenchymal stem cells in vitro. Journal of Biomedical Materials Research Part A, 103(3), 1169–1175.

  191. Das, S., Dowding, J. M., Klump, K. E., McGinnis, J. F., Self, W., & Seal, S. (2013). Cerium oxide nanoparticles: Applications and prospects in nanomedicine. Nanomedicine, 8(9), 1483–1508.

    Article  CAS  PubMed  Google Scholar 

  192. Pacheco, D. P., Amaral, M. H., Reis, R. L., Marques, A. P., & Correlo, V. M. (2015). Development of an injectable PHBV microparticles-GG hydrogel hybrid system for regenerative medicine. International Journal of Pharmaceutics, 478(1), 398–408.

    Article  CAS  PubMed  Google Scholar 

  193. Chen, G., & Wang, Y. (2013). Medical applications of biopolyesters polyhydroxyalkanoates. Chinese Journal of Polymer Science, 31(5), 719–736.

    Article  CAS  Google Scholar 

  194. Williams, J. K., Yoo, J. J., & Atala, A. (2019). Regenerative medicine approaches for tissue engineered heart valves. Principles of regenerative medicine, 1041–1058.

  195. Koller, M. (2018). Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules, 23(2), 362.

    Article  PubMed Central  CAS  Google Scholar 

  196. Nigmatullin, R., Thomas, P., Lukasiewicz, B., Puthussery, H., & Roy, I. (2015). Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery. Journal of Chemical Technology & Biotechnology, 90(7), 1209–1221.

    Article  CAS  Google Scholar 

  197. Masood, F., Chen, P., Yasin, T., Hasan, F., Ahmad, B., & Hameed, A. (2013). Synthesis of poly-(3-hydroxybutyrate-co-12 mol% 3-hydroxyvalerate) by Bacillus cereus FB11: Its characterization and application as a drug carrier. Journal of Materials Science: Materials in Medicine, 24(8), 1927–1937.

    CAS  PubMed  Google Scholar 

  198. Shrivastav, A., Kim, H.-Y., & Kim, Y.-R. (2013). Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. BioMed Research International, 2013.

  199. Peng, Q., Zhang, Z.-R., Gong, T., Chen, G.-Q., & Sun, X. (2012). A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles. Biomaterials, 33(5), 1583–1588.

    Article  CAS  PubMed  Google Scholar 

  200. Peng, Q., Sun, X., Gong, T., Wu, C.-Y., Zhang, T., Tan, J., & Zhang, Z.-R. (2013). Injectable and biodegradable thermosensitive hydrogels loaded with PHBHHx nanoparticles for the sustained and controlled release of insulin. Acta Biomaterialia, 9(2), 5063–5069.

    Article  CAS  PubMed  Google Scholar 

  201. Heathman, T. R. J., Webb, W. R., Han, J., Dan, Z., Chen, G. Q., Forsyth, N. R., … Sun, X. (2014). Controlled production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)(PHBHHx) nanoparticles for targeted and sustained drug delivery. Journal of Pharmaceutical Sciences, 103(8), 2498–2508.

  202. Pourmollaabbassi, B., Karbasi, S., & Hashemibeni, B. (2016). Evaluate the growth and adhesion of osteoblast cells on nanocomposite scaffold of hydroxyapatite/titania coated with poly hydroxybutyrate. Advanced Biomedical Research, 5.

  203. Nishizuka, T., Kurahashi, T., Hara, T., Hirata, H., & Kasuga, T. (2014). Novel intramedullary-fixation technique for long bone fragility fractures using bioresorbable materials. PLoS One, 9(8), e104603.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  204. Kalia, V. C., Patel, S. K. S., Shanmugam, R., & Lee, J.-K. (2021). Polyhydroxyalkanoates: Trends and advances toward biotechnological applications. Bioresource Technology, 124737.

  205. Fernández-Dacosta, C., Posada, J. A., Kleerebezem, R., Cuellar, M. C., & Ramirez, A. (2015). Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: Techno-economic analysis and ex-ante environmental assessment. Bioresource technology, 185, 368–377.

    Article  PubMed  CAS  Google Scholar 

  206. Colombo, B., Favini, F., Scaglia, B., Sciarria, T. P., D’Imporzano, G., Pognani, M., … Adani, F. (2017). Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture. Biotechnology for Biofuels, 10(1), 1–15.

  207. Pena-Jurado, E., Perez-Vega, S., Pérez-Reyes, I., Gutiérrez-Méndez, N., Vazquez-Castillo, J., & Salmerón, I. (2019). Production of poly (3-hydroxybutyrate) from a dairy industry wastewater using Bacillus subtilis EPAH18: Bioprocess development and simulation. Biochemical Engineering Journal, 151, 107324.

    Article  CAS  Google Scholar 

  208. Nieder-Heitmann, M., Haigh, K., & Görgens, J. F. (2019). Process design and economic evaluation of integrated, multi-product biorefineries for the co-production of bio-energy, succinic acid, and polyhydroxybutyrate (PHB) from sugarcane bagasse and trash lignocelluloses. Biofuels, Bioproducts and Biorefining, 13(3), 599–617.

    Article  CAS  Google Scholar 

  209. Leblanc, R. (2021). The Balances MB. Retrieved March 29, 2021, from www.thebalancesmb.com/how-long-does-it-take-garbage-to-decompose-2878033#.

  210. Koller, M., & Braunegg, G. (2018). Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. The EuroBiotech Journal, 2(2), 89–103.

    Article  Google Scholar 

  211. Dutta, S., Iris, K. M., Tsang, D. C. W., Ng, Y. H., Ok, Y. S., Sherwood, J., & Clark, J. H. (2019). Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review. Chemical Engineering Journal, 372, 992–1006.

    Article  CAS  Google Scholar 

  212. Chen, S. S., Maneerung, T., Tsang, D. C. W., Ok, Y. S., & Wang, C.-H. (2017). Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chemical Engineering Journal, 328, 246–273.

    Article  CAS  Google Scholar 

  213. Jiang, X.-R., & Chen, G.-Q. (2016). Morphology engineering of bacteria for bio-production. Biotechnology Advances, 34(4), 435–440.

    Article  CAS  PubMed  Google Scholar 

  214. Kumar, M., Rathour, R., Singh, R., Sun, Y., Pandey, A., Gnansounou, E., … Thakur, I. S. (2020). Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects. Journal of Cleaner Production, 121500.

Download references

Funding

This study is funded by Prof. Prem Kumar Khosla, Hon’ble Chancellor, Shoolini University of Biotechnology and Management Sciences, Solan, and Foundation for Life Sciences and Business Management (FLSBM), Solan.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Shivam Bhola, Kanika Arora, and Pradeep Kumar; formal analysis: Saurabh Kulshrestha, Sanjeet Mehariya, Ravi Kant Bhatia, Parneet Kaur, and Pradeep Kumar; data curation: Ravi Kant Bhatia, Pradeep Kumar, and Saurabh Kulshrestha; writing—original draft preparation: Shivam Bhola, Kanika Arora, and Pradeep Kumar; writing—review and editing: Shivam Bhola, Pradeep Kumar, and Sanjeet Mehariya. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Pradeep Kumar.

Ethics declarations

Ethics Approval

This article does not have any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent for Publication

All the authors mutually agreed that the work should be published in the Applied Biochemistry and Biotechnology.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhola, S., Arora, K., Kulshrestha, S. et al. Established and Emerging Producers of PHA: Redefining the Possibility. Appl Biochem Biotechnol 193, 3812–3854 (2021). https://doi.org/10.1007/s12010-021-03626-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03626-5

Keywords

Navigation