Skip to main content
Log in

In Silico Study of the Structure and Ligand Preference of Pyruvate Kinases from Cyanobacterium Synechocystis sp. PCC 6803

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Finding reliable cheap sources for producing chemicals and materials is always challenging. During recent decades, photosynthetic organisms such as cyanobacteria, which used CO2 as a carbon source for making products, have attracted a great deal of attention. Among cyanobacteria, Synechocystis sp. PCC 6803 has been considered as a model strain and has some desirable features that make it suitable for use as an industrial strain. Pyruvate kinase (PK) catalyzes the transformation of phosphoenolpyruvate (PEP) to pyruvate in the last step of glycolysis that is an essential enzyme to produce adenosine triphosphate (ATP) in all organisms. Therefore, it plays a critical role in regulating cell metabolism. However, active and allosteric sites of PK and allosteric mechanisms governing PK activity are poorly understood in many bacteria. This study was aimed to provide more insight into PKs of Synechocystis sp. PCC 6803, using in silico methods. The results indicated that predicted structures of PKs from Synechocystis sp. PCC 6803 are reliable and can be considered for further studies. Molecular docking studies suggested that for predicted structures of sll0587 and sll1275, respectively, there are three and two possible active or allosteric sites. Furthermore, molecular interaction analysis of modeled structures proposes that sll0587 is strongly inhibited by ATP and when ATP concentration is low, this isoenzyme is active.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Lü, J., Sheahan, C., & Fu, P. (2011). Metabolic engineering of algae for fourth generation biofuels production. Energy & Environmental Science, 4, 2451–2466.

    Article  Google Scholar 

  2. Singh, V., Chaudhary, D. K., Mani, I., & Dhar, P. K. (2016). Recent advances and challenges of the use of cyanobacteria towards the production of biofuels. Renewable and Sustainable Energy Reviews, 60, 1–10.

    Article  Google Scholar 

  3. Liu, X., Miao, R., Lindberg, P., & Lindblad, P. (2019). Modular engineering for efficient photosynthetic biosynthesis of 1-butanol from CO 2 in cyanobacteria. Energy & Environmental Science, 12, 2765–2777.

    Article  Google Scholar 

  4. Zavřel, T., Sinetova, M. A., Búzová, D., Literáková, P., & Červený, J. (2015). Characterization of a model cyanobacterium Synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor. Engineering in Life Sciences, 15, 122–132.

    Article  Google Scholar 

  5. Liu, X., Sheng, J., & Curtiss, R., III. (2011). Fatty acid production in genetically modified cyanobacteria. Proceedings of the National Academy of Sciences, 108, 6899–6904.

    Article  CAS  Google Scholar 

  6. Zhong, W., Cui, L., Goh, B. C., Cai, Q., Ho, P., Chionh, Y. H., Yuan, M., El Sahili, A., Fothergill-Gilmore, L. A., & Walkinshaw, M. D. (2017). Allosteric pyruvate kinase-based “logic gate” synergistically senses energy and sugar levels in Mycobacterium tuberculosis. Nature Communications, 8, 1–14.

    Article  Google Scholar 

  7. Jetten, M. S., Gubler, M. E., Lee, S. H., & Sinskey, A. J. (1994). Structural and functional analysis of pyruvate kinase from Corynebacterium glutamicum. Applied and Environmental Microbiology, 60, 2501–2507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guerrero-Mendiola, C., García-Trejo, J. J., Encalada, R., Saavedra, E., & Ramirez-Silva, L. (2017). The contribution of two isozymes to the pyruvate kinase activity of Vibrio cholerae: One K+-dependent constitutively active and another K+-independent with essential allosteric activation. Plos One, 12, e0178673.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Angermayr, S. A., Van der Woude, A. D., Correddu, D., Vreugdenhil, A., Verrone, V., & Hellingwerf, K. J. (2014). Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnology for Biofuels, 7, 99.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kumari, P., Idrees, D., Rath, P. P., Vijayan, R., & Gourinath, S. (2020). Biochemical and biophysical characterization of the smallest pyruvate kinase from Entamoeba histolytica. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1868, 140296.

    Article  CAS  Google Scholar 

  11. Rajala, R. V. (2020). Aerobic glycolysis in the retina: Functional roles of pyruvate kinase isoforms. Frontiers in Cell and Developmental Biology, 8, 266.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rajala, A., Soni, K., & Rajala, R. V. (2020). Metabolic and non-metabolic roles of pyruvate kinase M2 isoform in diabetic retinopathy. Scientific Reports, 10, 1–12.

    Article  Google Scholar 

  13. Gao, Z., Zhao, H., Li, Z., Tan, X., & Lu, X. (2012). Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy & Environmental Science, 5, 9857–9865.

    Article  CAS  Google Scholar 

  14. Ke, Y.-Y., Singh, V. K., Coumar, M. S., Hsu, Y. C., Wang, W.-C., Song, J.-S., Chen, C.-H., Lin, W.-H., Wu, S.-H., & Hsu, J. T. (2015). Homology modeling of DFG-in FMS-like tyrosine kinase 3 (FLT3) and structure-based virtual screening for inhibitor identification. Scientific Reports, 5, 11702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Temel, S. G., Ergoren, M. C., Manara, E., Paolacci, S., Tuncel, G., Gul, S., & Bertelli, M. (2020). Unique combination and in silico modeling of biallelic POLR3A variants as a cause of Wiedemann–Rautenstrauch syndrome. European Journal of Human Genetics, 28, 1675–1680.

  16. Haghighi, O., & Moradi, M. (2020). In silico study of the structure and ligand interactions of alcohol dehydrogenase from cyanobacterium Synechocystis sp. PCC 6803 as a key enzyme for biofuel production. Applied Biochemistry and Biotechnology, 192, 1346–1367.

    Article  CAS  PubMed  Google Scholar 

  17. Nabati, F., Moradi, M., & Mohabatkar, H. (2020). In silico analyzing the molecular interactions of plant-derived inhibitors against E6AP, p53, and c-Myc binding sites of HPV type 16 E6 oncoprotein. Molecular Biology Research Communications, 9, 71.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gharbavi, M., Johari, B., Rismani, E., Mousazadeh, N., Taromchi, A. H., & Sharafi, A. (2020). NANOG decoy oligodeoxynucleotide–encapsulated niosomes nanocarriers: A promising approach to suppress the metastatic properties of U87 human glioblastoma multiforme cells. ACS Chemical Neuroscience, 11, 4499–4515.

    Article  CAS  PubMed  Google Scholar 

  19. Ahmadi, K., Farasat, A., Rostamian, M., Johari, B., & Madanchi, H. (2021). Enfuvirtide, an HIV-1 fusion inhibitor peptide, can act as a potent SARS-CoV-2 fusion inhibitor: An in silico drug repurposing study. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2021.1871958.

  20. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  21. Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R., Potter, S. C., & Finn, R. D. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47, W636–W641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54, 5.6. 1-5.6. 37.

    Article  Google Scholar 

  23. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.

    Article  CAS  Google Scholar 

  24. Studer, G., Rempfer, C., Waterhouse, A. M., Gumienny, R., Haas, J., & Schwede, T. (2020). QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics, 36, 1765–1771.

    Article  CAS  PubMed  Google Scholar 

  25. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997).  [20] VERIFY3D: assessment of protein models with three-dimensional profiles. Methods in enzymology, 277, 396–404.

  27. Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science, 27, 129–134.

    Article  CAS  PubMed  Google Scholar 

  28. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.

    Article  CAS  PubMed  Google Scholar 

  29. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yao, L., Shabestary, K., Björk, S. M., Asplund-Samuelsson, J., Joensson, H. N., Jahn, M., & Hudson, E. P. (2020). Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes. Nature Communications, 11, 1–13.

    Article  Google Scholar 

  33. Kanno, M., Carroll, A. L., & Atsumi, S. (2017). Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria. Nature Communications, 8, 1–11.

    Article  Google Scholar 

  34. Ponce, E., Flores, N., Martinez, A., Valle, F., & Bolívar, F. (1995). Cloning of the two pyruvate kinase isoenzyme structural genes from Escherichia coli: The relative roles of these enzymes in pyruvate biosynthesis. Journal of Bacteriology, 177, 5719–5722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J., & Schwede, T. (2009). Protein structure homology modeling using SWISS-MODEL workspace. Nature Protocols, 4, 1–13.

    Article  CAS  PubMed  Google Scholar 

  36. Rost, B. (1999). Twilight zone of protein sequence alignments. Protein Engineering, 12, 85–94.

    Article  CAS  PubMed  Google Scholar 

  37. Zoraghi, R., Worrall, L., See, R. H., Strangman, W., Popplewell, W. L., Gong, H., Samaai, T., Swayze, R. D., Kaur, S., & Vuckovic, M. (2011). Methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase as a target for bis-indole alkaloids with antibacterial activities. Journal of Biological Chemistry, 286, 44716–44725.

    Article  CAS  Google Scholar 

  38. Suzuki, K., Ito, S., Shimizu-Ibuka, A., & Sakai, H. (2008). Crystal structure of pyruvate kinase from Geobacillus stearothermophilus. Journal of Biochemistry, 144, 305–312.

    Article  CAS  PubMed  Google Scholar 

  39. Maloy, S., & Hughes, K. (2013). Brenner’s Encyclopedia of Genetics (2nd ed). Academic Press, Elsevier Science.

Download references

Acknowledgements

I wish to thank all my friends at the University of Isfahan and NIGEB for their support.

Author information

Authors and Affiliations

Authors

Contributions

OH performed all parts of the manuscript.

Corresponding author

Correspondence to Omid Haghighi.

Ethics declarations

Conflict of Interest

The author declares no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighi, O. In Silico Study of the Structure and Ligand Preference of Pyruvate Kinases from Cyanobacterium Synechocystis sp. PCC 6803. Appl Biochem Biotechnol 193, 3651–3671 (2021). https://doi.org/10.1007/s12010-021-03630-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03630-9

Keywords

Navigation