Skip to main content
Log in

Organic-Molecule-Based Fluorescent Chemosensor for Nerve Agents and Organophosphorus Pesticides

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Organophosphorus (OP) compounds are typically a broad class of compounds that possess various uses such as insecticides, pesticides, etc. One of the most evil utilizations of these compounds is as chemical warfare agents, which pose a greater threat than biological weapons because of their ease of access. OP compounds are highly toxic compounds that cause irreversible inhibition of enzyme acetylcholinesterase, which is essential for hydrolysis of neurotransmitter acetylcholine, leading to series of neurological disorders and even death. Due to the extensive use of these organophosphorus compounds in agriculture, there is an increase in the environmental burden of these toxic chemicals, with severe environmental consequences. Hence, the rapid and sensitive, selective, real-time detection of OP compounds is very much required in terms of environmental protection, health, and survival. Several techniques have been developed over a few decades to easily detect them, but still, numerous challenges and problems remain to be solved. Major advancement has been observed in the development of sensors using the spectroscopic technique over recent years because of the advantages offered over other techniques, which we focus on in the presented review.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42

Similar content being viewed by others

References

  1. Marrs TC (1993) Organophosphate poisoning. Pharmacol Therap 58(1):51–66

    Article  CAS  Google Scholar 

  2. Thakur A, Patil P, Sharma A, Flora SJS (2020) Advances in the development of reactivators for the treatment of organophosphorus inhibited cholinesterase. Curr Org Chem 24(24):2845–2864. https://doi.org/10.2174/1385272824999201020203544

    Article  CAS  Google Scholar 

  3. Sidell F, Borak J (1992) Chapter chemical warfare agents introduction decontamination. Ann Emerg Med 21:611–625

    Article  Google Scholar 

  4. Wadia RS, Sadagopan C, Amin RB (1974) Neurological manifestations of organophosphorous insecticide poisoning. J Neurol Neurosurg Psychiatry 37:841–847

    Article  CAS  Google Scholar 

  5. Czajka M, Matysiak-Kucharek M, Jodłowska-Jędrych B, Sawicki K, Fal B, Drop B, Kruszewski M, Kapka-Skrzypczak L (2019) Organophosphorus pesticides can influence the development of obesity and type 2 diabetes with concomitant metabolic changes. Environ Res 178:108685. https://doi.org/10.1016/j.envres.2019.108685

    Article  CAS  Google Scholar 

  6. Jokanovi M (2009) Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Toxicol Lett 190:107–115. https://doi.org/10.1016/j.toxlet.2009.07.025

    Article  CAS  Google Scholar 

  7. Tougu V (2005) Acetylcholinesterase: mechanism of catalysis and inhibition. Curr Med Chem Nerv Syst Agents 1:155–170. https://doi.org/10.2174/1568015013358536

    Article  Google Scholar 

  8. Silman I, Sussman JL (2005) Acetylcholinesterase: “classical” and “non-classical” functions and pharmacology. Curr Opin Pharmacol 5:293–302. https://doi.org/10.1016/j.coph.2005.01.014

    Article  CAS  Google Scholar 

  9. Chauhan S, Chauhan S, D’Cruz R, Faruqi S, Singh KK, Varma S, Singh M, Karthik V (2008) Chemical warfare agents. Environ Toxicol Pharmacol 26:113–122. https://doi.org/10.1016/j.etap.2008.03.003

    Article  CAS  Google Scholar 

  10. Soltaninejad K, Shadnia S (2014) History of the use and epidemiology of organophosphorus poisoning. Springer, pp 25–43. https://doi.org/10.1007/978-1-4471-5625-3

    Book  Google Scholar 

  11. Costanzi S, Machado JH, Mitchell M (2018) Nerve agents: what they are, how they work, how to counter them. ACS Chem Neurosci 9:873–885. https://doi.org/10.1021/acschemneuro.8b00148

    Article  CAS  Google Scholar 

  12. Koblentz GD (2019) Chemical-weapon use in Syria: atrocities, attribution, and accountability. Nonprolif Rev 26:575–598. https://doi.org/10.1080/10736700.2019.1718336

    Article  Google Scholar 

  13. Shih TM, Kan RK, McDonough JH (2005) In vivo cholinesterase inhibitory specificity of organophosphorus nerve agents. Chem Biol Interact 157–158:293–303. https://doi.org/10.1016/j.cbi.2005.10.042

    Article  CAS  Google Scholar 

  14. Kenyon IR, Gutschmidt K, Cosivi O (2005) Legal aspects and international assistance related to the deliberate use of chemicals to cause harm. Toxicology 214:249–255. https://doi.org/10.1016/j.tox.2005.06.017

    Article  CAS  Google Scholar 

  15. Haines DD, Fox SC (2014) Acute and long-term impact of chemical weapons: lessons from the Iran-Iraq War. Forensic Sci Rev 26(2):97–114

    CAS  Google Scholar 

  16. Profile C (1997) Definitive evidence for the acute sarin poisoning diagnosis in the Tokyo subway. Toxicol Appl Pharmacol 203:198–203

    Google Scholar 

  17. Rosman Y, Eisenkraft A, Milk N, Shiyovich A, Ophir N, Shrot S, Kreiss Y, Kassirer M (2014) Lessons learned from the Syrian sarin attack: evaluation of a clinical syndrome through social media. Ann Intern Med 160(9):644–648

    Article  Google Scholar 

  18. Kim K, Tsay OG, Atwood DA, Churchill DG (2011) Destruction and detection of chemical warfare agents. Chem Rev 111:5345–5403. https://doi.org/10.1021/cr100193y

    Article  CAS  Google Scholar 

  19. Li X, Cui H, Zeng Z (2018) A simple colorimetric and fluorescent sensor to detect organophosphate pesticides based on adenosine triphosphate-modified gold nanoparticles. Sensors 18(12), 4302 (Switzerland). https://doi.org/10.3390/s18124302

    Article  Google Scholar 

  20. Déjous C, Rebière D, Pistré J, Tiret C, Planade R (1995) A surface acoustic wave gas sensor: detection of organophosphorus compounds. Sens Actuators B Chem 24:58–61. https://doi.org/10.1016/0925-4005(95)85012-0

    Article  Google Scholar 

  21. Orbulescu J, Constantine CA, Rastogi VK, Shah SS, Defrank JJ, Leblanc RM (2006) Detection of organophosphorus compounds by covalently immobilized organophosphorus hydrolase. Anal Chem 78:7016–7021

    Article  CAS  Google Scholar 

  22. Marx S, Zaltsman A (2003) Molecular imprinting of sol gel polymers for the detection of paraoxon in water. Int J Environ Anal Chem 83:671–680. https://doi.org/10.1080/0306731021000015029

    Article  CAS  Google Scholar 

  23. Hou X, Zheng X, Zhang C, Ma X (2014) Ultrasound-assisted dispersive liquid–liquid microextraction based on the solidification of a floating organic droplet followed by gas chromatography for the determination of eight pyrethroid pesticides in tea samples. J Chromatogr B 969:123–127. https://doi.org/10.1016/j.jchromb.2014.08.010

    Article  CAS  Google Scholar 

  24. Jafari MT, Saraji M, Sherafatmand H (2014) Polypyrrole/montmorillonite nanocomposite as a new solid phase microextraction fiber combined with gas chromatography—corona discharge ion mobility spectrometry for the simultaneous determination of diazinon and fenthion organophosphorus pesticide. Anal Chim Acta 814:69–78. https://doi.org/10.1016/j.aca.2014.01.037

    Article  CAS  Google Scholar 

  25. Zhao X, Kong W, Wei J, Yang M (2014) Gas chromatography with flame photometric detection of 31 organophosphorus pesticide residues in Alpinia oxyphylla dried fruits. Food Chem 162:270–276. https://doi.org/10.1016/j.foodchem.2014.04.060

    Article  CAS  Google Scholar 

  26. Black RM, Clarke RJ, Read RW, Reid MTJ (1994) Application of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to the analysis of chemical warfare samples, found to contain residues of the nerve agent sarin, sulphur mustard and their degradation products. J Chromatogr A 662:301–321. https://doi.org/10.1016/0021-9673(94)80518-0

    Article  CAS  Google Scholar 

  27. Rodrigues ET, Pardal MÂ, Salgueiro-González N, Muniategui-Lorenzo S, Alpendurada MF (2016) A single-step pesticide extraction and clean-up multi-residue analytical method by selective pressurized liquid extraction followed by on-line solid phase extraction and ultra-high-performance liquid chromatography-tandem mass spectrometry for complex matrices. J Chromatogr A. https://doi.org/10.1016/j.chroma.2016.05.036

    Article  Google Scholar 

  28. Synaridou MS, Sakkas VA, Stalikas CD, Albanis TA (2014) Evaluation of magnetic nanoparticles to serve as solid-phase extraction sorbents for the determination of endocrine disruptors in milk samples by gas chromatography mass spectrometry. J Chromatogr A. https://doi.org/10.1016/j.chroma.2014.04.092

    Article  Google Scholar 

  29. Zhong Q, Shen L, Liu J, Yu D, Li S, Yao J, Zhan S, Huang T, Hashi Y, Kawano S, Liu Z, Zhou T (2016) Pre-column dilution large volume injection performance liquid chromatography-tandem mass spectrometry for the analysis of multi-class pesticides in cabbages. J Chromatogr A 1442:53–61. https://doi.org/10.1016/j.chroma.2016.03.010

    Article  CAS  Google Scholar 

  30. Giordano B, Collins G (2007) Synthetic methods applied to the detection of chemical warfare nerve agents. Curr Org Chem 11:255–265. https://doi.org/10.2174/138527207779940883

    Article  CAS  Google Scholar 

  31. Liu T, Cao P, Geng J, Li J, Wang M (2013) Determination of triazine herbicides in milk by cloud point extraction and high-performance liquid chromatography. Food Chem. https://doi.org/10.1016/j.foodchem.2013.07.062

    Article  Google Scholar 

  32. Watanabe E, Baba K (2015) Highly sensitive quantification of pyrethroid insecticide etofenprox in vegetables with high-performance liquid chromatography and fluorescence detection. J Chromatogr A 1385:35–41. https://doi.org/10.1016/j.chroma.2015.01.056

    Article  Google Scholar 

  33. Yang M, Xi X, Wu X, Lu R, Zhou W, Zhang S, Gao H (2015) Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography for the fast determination of four fungicides in water samples. J Chromatogr A. https://doi.org/10.1016/j.chroma.2015.01.016

    Article  Google Scholar 

  34. Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD (2017) Fluorescent chemosensors: the past, present and future. Chem Soc Rev 46:7105–7123. https://doi.org/10.1039/c7cs00240h

    Article  CAS  Google Scholar 

  35. Coto PB, Serrano-Andrés L, Gustavsson T, Fujiwara T, Lim EC (2011) Intramolecular charge transfer and dual fluorescence of 4-(dimethylamino) benzonitrile: ultrafast branching followed by a two-fold decay mechanism. Phys Chem Chem Phys 13(33):15182–15188. https://doi.org/10.1039/C1CP21089K

    Article  CAS  Google Scholar 

  36. Kavarnos GJ (1990) Fundamental concepts of photoinduced electron transfer. In: Mattay J (ed) Photoinduced electron transfer I. Springer, Berlin, Heidelberg, pp 21–58

    Chapter  Google Scholar 

  37. Valeur B, Berberan-Santos MN (2012) Molecular fluorescence. Mol Fluoresc. https://doi.org/10.1002/9783527650002

    Article  Google Scholar 

  38. De Silva AP, Moody TS, Wright GD (2009) Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools. Analyst 134:2385–2393. https://doi.org/10.1039/b912527m

    Article  CAS  Google Scholar 

  39. Qin T, Huang Y, Zhu K, Wang J, Pan C, Liu B, Wang L (2019) A flavonoid-based fluorescent test strip for sensitive and selective detection of a gaseous nerve agent simulant. Anal Chim Acta 1076:125–130. https://doi.org/10.1016/j.aca.2019.05.025

    Article  CAS  Google Scholar 

  40. Chen Y, Lam JW, Kwok RT, Liu B, Tang BZ (2019) Aggregation-induced emission: fundamental understanding and future developments. Mater Horiz 6(3):428–433

    Article  CAS  Google Scholar 

  41. Van Houten KA, Heath DC, Pilato RS (1998) Rapid luminescent detection of phosphate esters in solution and the gas phase using (dppe)Pt{S2C2(2-pyridyl)(CH2CH2OH)}. J Am Chem Soc 120:12359–12360. https://doi.org/10.1021/ja982365d

    Article  Google Scholar 

  42. Zhang SW, Swager TM (2003) Fluorescent detection of chemical warfare agents: functional group specific ratiometric chemosensors. J Am Chem Soc 125:3420–3421. https://doi.org/10.1021/ja029265z

    Article  CAS  Google Scholar 

  43. Dale TJ, Rebek J (2006) Fluorescent sensors for organophosphorus nerve agent mimics. J Am Chem Soc 128:4500–4501. https://doi.org/10.1021/ja057449i

    Article  CAS  Google Scholar 

  44. Walton I, Davis M, Munro L, Catalano VJ, Cragg PJ, Huggins MT, Wallace KJ (2012) A fluorescent dipyrrinone oxime for the detection of pesticides and other organophosphates. Org Lett 14:2686–2689. https://doi.org/10.1021/ol300799f

    Article  CAS  Google Scholar 

  45. Wallace KJ, Fagbemi RI, Folmer-Andersen FJ, Morey J, Lynth VM, Anslyn EV (2006) Detection of chemical warfare simulants by phosphorylation of a coumarin oximate. Chem Commun 37:3886–3888

    Article  Google Scholar 

  46. Lee JY, Lee YH, Byun YG (2012) Detection of chemical warfare nerve agents via a Beckmann fragmentation of aldoxime. Phosphorus Sulfur Silicon Relat Elem 187:641–649. https://doi.org/10.1080/10426507.2011.636110

    Article  CAS  Google Scholar 

  47. Cai YC, Li C, Song QH (2017) Selective and visual detection of a nerve agent mimic by phosphorylation and protonation of quinolin oximes. J Mater Chem C 5:7337–7343. https://doi.org/10.1039/c7tc02617j

    Article  CAS  Google Scholar 

  48. Dale TJ, Rebek J (2009) Hydroxy oximes as organophosphorus nerve agent sensors. Angew Chem 121(42):7990–7992. https://doi.org/10.1002/anie.200902820

    Article  CAS  Google Scholar 

  49. Han S, Xue Z, Wang Z, Wen TB (2010) Visual and fluorogenic detection of a nerve agent simulant via a Lossen rearrangement of rhodamine-hydroxamate. Chem Commun 46:8413–8415. https://doi.org/10.1039/c0cc02881a

    Article  CAS  Google Scholar 

  50. Wu X, Wu Z, Han S (2011) Chromogenic and fluorogenic detection of a nerve agent simulant with a rhodamine-deoxylactam based sensor. Chem Commun 47:11468–11470. https://doi.org/10.1039/c1cc15250e

    Article  CAS  Google Scholar 

  51. Wu Z, Wu X, Yang Y, Wen T, Han S (2012)A rhodamine-deoxylactam based sensor for chromo-fluorogenic detection of nerve agent simulant. Bioorg Med Chem Lett 22:6358–6361. https://doi.org/10.1016/j.bmcl.2012.08.077

    Article  CAS  Google Scholar 

  52. Hu XX, Su YT, Ma YW, Zhan XQ, Zheng H, Jiang YB (2015) A near infrared colorimetric and fluorometric probe for organophosphorus nerve agent mimics by intramolecular amidation. Chem Commun 51:15118–15121. https://doi.org/10.1039/c5cc04630k

    Article  CAS  Google Scholar 

  53. Ali SS, Gangopadhyay A, Maiti K, Mondal S, Pramanik AK, Guria UN, Uddin MR, Mandal S, Mandal D, Mahapatra AK (2017) A chromogenic and ratiometric fluorogenic probe for rapid detection of a nerve agent simulant DCP based on a hybrid hydroxynaphthalene-hemicyanine dye. Org Biomol Chem 15:5959–5967. https://doi.org/10.1039/c7ob01252g

    Article  CAS  Google Scholar 

  54. Zhou X, Zeng Y, Liyan C, Wu X, Yoon J (2016) A fluorescent sensor for dual-channel discrimination between phosgene and a nerve-gas mimic. Angew Chem Int Ed 55:4729–4733. https://doi.org/10.1002/anie.201601346

    Article  CAS  Google Scholar 

  55. Zeng L, Zeng H, Jiang L, Wang S, Hou J, Yoon J (2019) A single fluorescent chemosensor for simultaneous discriminative detection of gaseous phosgene and a nerve agent mimic. Anal Chem 91:12070–12076. https://doi.org/10.1021/acs.analchem.9b03230

    Article  CAS  Google Scholar 

  56. Kumar V, Rana H (2015) Chromogenic and fluorogenic detection and discrimination of nerve agents Tabun and Vx. Chem Commun 51:16490–16493. https://doi.org/10.1039/c5cc06580a

    Article  CAS  Google Scholar 

  57. Jang YJ, Tsay OG, Murale DP, Jeong JA, Segev A, Churchill DG (2014) Novel and selective detection of Tabun mimics. Chem Commun 50:7531–7534. https://doi.org/10.1039/c4cc02689f

    Article  CAS  Google Scholar 

  58. Kim T, Maity SB, Bouffard J, Kim Y, Kim T, Maity SB, Bouffard J, Kim Y (2016) Molecular rotors for the detection of chemical warfare agent simulants. Anal Chem. https://doi.org/10.1021/acs.analchem.6b02516

    Article  Google Scholar 

  59. Lu Z, Fan W, Shi X, Black CA, Fan C, Wang F (2018) A highly specific BODIPY-based fluorescent probe for the detection of nerve-agent simulants. Sens Actuators B Chem 255:176–182. https://doi.org/10.1016/j.snb.2017.08.019

    Article  CAS  Google Scholar 

  60. Barba-Bon A, Costero AM, Gil S, Harriman A, Sancenõn F (2014) Highly selective detection of nerve-agent simulants with BODIPY dyes. Chem A Eur J 20:6339–6347. https://doi.org/10.1002/chem.201304475

    Article  CAS  Google Scholar 

  61. Royo S, Costero AM, Parra M, Gil S, Martínez-Máñez R, Sancenõn F (2011) Chromogenic, specific detection of the nerve-agent mimic DCNP (a tabun mimic). Chem A Eur J 17:6931–6934. https://doi.org/10.1002/chem.201100602

    Article  CAS  Google Scholar 

  62. Yao J, Fu Y, Xu W, Fan T, Gao Y (2016) Concise and efficient fluorescent probe via an intromolecular charge transfer for the chemical warfare agent mimic diethylchlorophosphate vapor detection. Anal Chem. https://doi.org/10.1021/acs.analchem.5b04777

    Article  Google Scholar 

  63. Cai YC, Li C, Song QH (2017) Fluorescent chemosensors with varying degrees of intramolecular charge transfer for detection of a nerve agent mimic in solutions and in vapor. ACS Sens 2(6):834–841

    Article  CAS  Google Scholar 

  64. Kundu S, Saha S, Sahoo P (2019) Rapid and selective visual detection of DCNP (nerve gas mimic) in sea water and soil with a simple paper strip. Results Chem 1:100014. https://doi.org/10.1016/j.rechem.2019.100014

    Article  Google Scholar 

  65. Jung Y, Kim D (2019) A selective fluorescence turn-on probe for the detection of DCNP (nerve agent tabun simulant). Materials (Basel). https://doi.org/10.3390/ma12182943

    Article  Google Scholar 

  66. Qu F, Zhou X, Xu J, Li H, Xie G (2009) Luminescence switching of CdTe quantum dots in presence of p-sulfonatocalix[4]arene to detect pesticides in aqueous solution. Talanta 78:1359–1363. https://doi.org/10.1016/j.talanta.2009.02.013

    Article  CAS  Google Scholar 

  67. Jenkins AL, Uy OM, Murray GM (1997) Polymer based lanthanide luminescent sensors for the detection of nerve agents. Anal Commun 34(8):221–224. https://doi.org/10.1039/A704220E

    Article  CAS  Google Scholar 

  68. Jenkins AL, Uy OM, Murray GM (1999) Polymer-based lanthanide luminescent sensor for detection of the hydrolysis product of the nerve agent Soman in water. Anal Chem 71:373–378

    Article  CAS  Google Scholar 

  69. Knapton D, Burnworth M, Rowan SJ, Weder C (2006) fluorescent organometallic sensors for the detection of chemical-warfare-agent mimics. Angew Chem 118:5825–5829. https://doi.org/10.1002/anie.200601634

    Article  CAS  Google Scholar 

  70. Fu Y, Yu J, Wang K, Liu H, Yu Y, Liu A, Cheng J (2018) Simple and efficient chromophoric-fluorogenic probes for diethylchlorophosphate vapor. ACS Sens 3(8):1445–1450. https://doi.org/10.1021/acssensors.8b00313

    Article  CAS  Google Scholar 

  71. Jiang H, Wu P, Zhang Y, Jiao Z, Xu W, Zhang X, Cheng J (2017) Hyperbranched polymer based fluorescent probes for ppt level nerve agent simulant vapor detection. Anal Methods 9(11):1748–1754. https://doi.org/10.1039/C6AY03427F

    Article  CAS  Google Scholar 

  72. Hu X, Wang F, Peng Q, Hu J, Peng H, Li L, Zheng B, Du J, Xiao D (2019) Construction of a luminescent sensor based on a lanthanide complex for the highly efficient detection of methyl parathion. RSC Adv 9:13048–13053. https://doi.org/10.1039/c9ra01748h

    Article  CAS  Google Scholar 

  73. Wang M, Su K, Cao J, She Y, Abd El-Aty AM, Hacımüftüoğlu A, Wang J, Yan M, Hong S, Lao S, Wang Y (2019) “Off-On” non-enzymatic sensor for malathion detection based on fluorescence resonance energy transfer between β-cyclodextrin@Ag and fluorescent probe. Talanta 192:295–300. https://doi.org/10.1016/j.talanta.2018.09.060

    Article  CAS  Google Scholar 

  74. Cui Z, Han C, Li H (2011) Dual-signal fenamithion probe by combining fluorescence with colorimetry based on Rhodamine B modified silver nanoparticles. Analyst 136:1351–1356. https://doi.org/10.1039/c0an00617c

    Article  CAS  Google Scholar 

  75. Ibrahim IA, Abbas AM, Darwish HM (2017) Fluorescence sensing of dichlorvos pesticide by the luminescent Tb(III)-3-ally-salicylohydrazide probe. Luminescence 32:1541–1546. https://doi.org/10.1002/bio.3357

    Article  CAS  Google Scholar 

  76. Singh J, Parkash J, Kaur V, Singh R (2019) Zn2+ conjugated Schiff base organic nanoparticles for selective quantification and degradation of diethyl chlorophosphate in aqueous media: application to green vegetables. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2019.126923

    Article  Google Scholar 

  77. Azab HA, Khairy GM, Kamel RM (2015) Time-resolved fluorescence sensing of pesticides chlorpyrifos, crotoxyphos and endosulfan by the luminescent Eu(III)-8-allyl-3-carboxycoumarin probe. Spectrochim Acta Part A Mol Biomol Spectrosc 15:10. https://doi.org/10.1016/j.saa.2015.03.098

    Article  CAS  Google Scholar 

  78. Luo Q, Lai J, Qiu P, Wang X (2018) An ultrasensitive fluorescent sensor for organophosphorus pesticides detection based on RB-Ag/Au bimetallic nanoparticles. Sens Actuators B Chem 263:517–523. https://doi.org/10.1016/j.snb.2018.02.101

    Article  CAS  Google Scholar 

  79. Xu X, Guo Y, Wang X, Li W, Qi P, Wang Z, Wang X, Gunasekaran S, Wang Q (2018) Sensitive detection of pesticides by a highly luminescent metal-organic framework. Sens Actuators B Chem 260:339–345. https://doi.org/10.1016/j.snb.2018.01.075

    Article  CAS  Google Scholar 

  80. Raj P, Singh A, Kaur K, Aree T, Singh A, Singh N (2016) Fluorescent chemosensors for selective and sensitive detection of phosmet/chlorpyrifos with octahedral Ni2+ complexes. Inorg Chem 55:4874–4883. https://doi.org/10.1021/acs.inorgchem.6b00332

    Article  CAS  Google Scholar 

  81. Delattre F, Cazier F, Cazier F, Tine A (2009) Use a fluorescent molecular sensor for the detection of pesticides and herbicides in water. Curr Anal Chem 5(1):48–52

    Article  CAS  Google Scholar 

  82. Hou J, Dong G, Tian Z, Lu J, Wang Q, Ai S, Wang M (2016) A sensitive fluorescent sensor for selective determination of dichlorvos based on the recovered fluorescence of carbon dots-Cu(II) system. Food Chem 202:81–87. https://doi.org/10.1016/j.foodchem.2015.11.134

    Article  CAS  Google Scholar 

  83. Tao CL, Chen B, Liu XG, Zhou LJ, Zhu XL, Cao J, Tang BZ (2017) A highly luminescent entangled metal–organic framework based on pyridine-substituted tetraphenylethene for efficient pesticide detection. Chem Comm 53(72):9975–9978. https://doi.org/10.1039/C7CC05031C

    Article  CAS  Google Scholar 

  84. Zhang B, Yan J, Shang Y, Wang Z (2018) Synthesis of fluorescent micro-and mesoporous polyaminals for detection of toxic pesticides. Macromolecules 51(5):1769–1776. https://doi.org/10.1021/acs.macromol.7b02669

    Article  CAS  Google Scholar 

  85. Han T, Wang G (2019) Peroxidase-like activity of acetylcholine-based colorimetric detection of acetylcholinesterase activity and an organophosphorus inhibitor. J Mater Chem B 7(16):2613–2618. https://doi.org/10.1039/C8TB02616E

    Article  CAS  Google Scholar 

  86. Sharma P, Kumar M, Bhalla V (2020) “Metal-free” fluorescent supramolecular assemblies for distinct detection of organophosphate/organochlorine pesticides. ACS Omega. https://doi.org/10.1021/acsomega.0c02315

    Article  Google Scholar 

Download references

Acknowledgements

Muskan and Ashima are thankful to the Department of Pharmaceutical, Ministry of Chemicals and fertilizers for providing fellowship. NIPER-R/Communication/124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abha Sharma.

Ethics declarations

Conflict of Interest

There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gori, M., Thakur, A., Sharma, A. et al. Organic-Molecule-Based Fluorescent Chemosensor for Nerve Agents and Organophosphorus Pesticides. Top Curr Chem (Z) 379, 33 (2021). https://doi.org/10.1007/s41061-021-00345-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-021-00345-7

Keywords

Navigation