Skip to main content
Log in

Evolution of the Lithospheric Mantle beneath the Nakyn Kimberlite Field: Evidence from Garnets in the Peridotite Xenoliths of the Nyurba and Botuoba Pipes

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents data on garnets from serpentinized peridotite xenoliths in the Nyurba and Botuoba kimberlite pipes of the Nakyn kimberlite field. The major and trace-element compositions of the garnets were analyzed to determine their compositional specifics and genesis. Based on the REE content and chondrite-normalized distribution patterns, the garnets are divided into two types with sinusoidal ((Sm/Er)n > 1) and normal ((Sm/Er)n < 1) REE distribution patterns. In terms of the Y, Zr, Ti, and Eu relations, and the shape of REE distribution pattern, all the garnets correspond to garnets of metasomatized peridotites, except for one sample falling into the field of depleted garnets of harzburgite–dunite paragenesis. The geochemical characteristics of the garnets record two types of metasomatic agents: carbonatite/fluid for type 1 garnets and silicate/melt for type 2 garnets. The carbonatite metasomatic agent produced harzburgitic garnet and its further transformation into lherzolitic garnet. Silicate metasomatism, which led to the formation of the REE pattern of type 2 garnets, likely overprinted two different types of garnets and, respectively, gave two evolutionary trends. These are depleted residual garnets and type 1 garnets previously subjected to carbonatite metasomatism. The low Y and Th contents in combination with the low Ti/Eu ratios in garnets suggest a moderate reworking of lithospheric peridotites by silicate melts, which is consistent with the high diamond grade of the Nakyn kimberlite field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. M. Agashev, “Geochemistry of garnet megacrysts from the Mir kimberlite pipe (Yakutia) and the nature of protokimberlite melts,” Dokl. Earth Sci. 486 (5), 675–678 (2019).

    Article  Google Scholar 

  2. A. M. Agashev, Yu. Orikhashi, T. Watanabe, N. P. Pokhilenko, and V. P. Serenko, “Isotope-geochemical characteristics of kimberlites of the Siberian Platform: the problem of their origin,” Geol. Geofiz. 41 (1), 90–99 (2000).

    Google Scholar 

  3. A. Agashev, T. Watanabe, D. Bydaev, N. Pokhilenko, A. Fomin, K. Maehara, and J. Maeda, “Geochemistry of kimberlites from the Nakyn field, Siberia: evidence for unique source composition,” Geology. 29 (3), 267–270 (2001).

    Article  Google Scholar 

  4. A. M. Agashev, N. P. Pokhilenko, A. V. Tolstov, V. G. Polyanichko, V. G. Mal’kovets, and N. V. Sobolev, “New age data on kimberlites from the Yakutian diamondiferous province,” Dokl. Earth Sci. 399 (1), 1142–1145 (2004).

    Google Scholar 

  5. A. M. Agashev, N. P. Pokhilenko, Yu. V. Cherepanova, and A. V. Golovin, “Geochemical evolution of rocks at the base of the lithospheric mantle: evidence from study of xenoliths of deformed peridotites from kimberlite of the Udachnaya Pipe,” Dokl. Earth Sci. 432 (4), 746–749 (2010).

    Article  Google Scholar 

  6. A. Agashev, D. Ionov, N. Pokhilenko, A. Golovin, Y. Cherepanova, and I. Sharygin, “Metasomatism in lithospheric mantle roots: constraints from whole–rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya,” Lithos 160, 201–215 (2013).

    Article  Google Scholar 

  7. A. M. Agashev, I. V. Serov, A. V. Tolstov, E. V. Shchukina, A. L. Ragozin, and N. P. Pokhilenko, “New genetic classification of garnets of lithospheric mantle,” Efficiency of Prospecting Works for Diamond: Prediction–Resource, Methodical, and Innovation–Ways of its Icrease (NIGP AL Alrosa, Mirny, 2018a), pp. 39–341 [in Russian].

  8. A. M. Agashev, S. I. Nakai, I. V. Serov, A. V. Tolstov, K. V. Garanin, and O. E. Kovalchuk, “Geochemistry and origin of the Mirny field kimberlites, Siberia,” Mineral. Petrol. 112 (2), 597–608 (2018b).

    Article  Google Scholar 

  9. A. M. Agashev, M. V. Chervyakovskaya, I. V. Serov, A. V. Tolstov, E. V. Agasheva, and S. L. Votyakov, “Source rejuvenation vs. re–heating: constraints on Siberian kimberlite origin from U/Pb and Lu/Hf isotope compositions and geochemistry of mantle zircons,” Lithos. 364–365, 105508 (2020).

    Article  Google Scholar 

  10. T. Andersen and E.-R. Neumann, “Fluid inclusions in mantle xenoliths,” Lithos. 55 (1), 301–320 (2001).

    Article  Google Scholar 

  11. N. Arndt, N. Coltice, H. Helmstaedt, and M. Gregoire, “Origin of Archean subcontinental lithospheric mantle: some petrological constraints,” Lithos 109 (1–2), 61–71 (2009).

    Article  Google Scholar 

  12. Y. V. Bataleva, Y. N. Palyanov, A. G. Sokol, Y. M. Borzdov, and G. A. Palyanova, “Conditions for the origin of oxidized carbonate–silicate melts: Implications for mantle metasomatism and diamond formation,” Lithos 128–131, 113–125 (2012).

    Article  Google Scholar 

  13. D. R. Bell, M. Gregoire, T. Grove, N. Chatterjee, R. Carlson, and P. Buseck, “Silica and volatile-element metasomatism of Archean mantle: a xenolith–scale example from the Kaapvaal Craton,” Contrib. Mineral. Petrol. 150 (3), 251 (2005).

    Article  Google Scholar 

  14. Y. Bussweiler, D. G. Pearson, T. Stachel, and B. A. Kjarsgaard, “Cr–rich megacrysts of clinopyroxene and garnet from Lac de Gras kimberlites, Slave Craton, Canada-implications for the origin of clinopyroxene and garnet in cratonic lherzolites,” Mineral. Petrol. 112 (2), 583–596 (2018).

    Article  Google Scholar 

  15. D. Carswell “Mantle derived lherzolite nodules associated with kimberlite, carbonatite and basalt magmatism: a review,” Lithos. 13(2), 121–138 (1980).

    Article  Google Scholar 

  16. A. A. Chepurov, S. W. Faryad, A. M. Agashev, L. Strnad, R. Jedlicka, A. I. Turkin, M. Mihaljevic, and V. V. Lin, “Experimental crystallization of a subcalcic Cr-rich pyrope in the presence of REE-bearing carbonatite,” Chem. Geol. 509, 103–114 (2019).

    Article  Google Scholar 

  17. L. S. Doucet, A. H. Peslier, D. A. Ionov, A. D. Brandon, A. V. Golovin, and I. V. Ashchepkov, “High water contents in the Siberian cratonic mantle: an FTIR study of Udachnaya peridotite xenoliths,” AGUFM, T23A–2563 (2013).

  18. D. W. Eaton, F. Darbyshire, R. L. Evans, H. Grütter, A. G. Jones, and X. Yuan, “The elusive lithosphere–asthenosphere boundary (LAB) beneath cratons,” Lithos 109 (1), 1–22 (2009).

    Article  Google Scholar 

  19. M. Grégoire, D. Bell, and A. Le Roex, “Garnet lherzolites from the Kaapvaal Craton (South Africa): trace element evidence for a metasomatic history,” J. Petrol. 44 (4), 629–657 (2003).

    Article  Google Scholar 

  20. M. Grégoire, S. Jégo, R. Maury, M. Polvé, B. Payot, R. Tamayo. Jr., and G. Yumul, Jr., “Metasomatic interactions between slab–derived melts and depleted mantle: Insights from xenoliths within Monglo adakite (Luzon arc, Philippines),” Lithos 103 (3–4), 415–430 (2008).

    Article  Google Scholar 

  21. W. Griffin, N. Fisher, J. Friedman, C. Ryan, and S. O’Reilly, “Cr-pyrope garnets in the lithospheric mantle. I. Compositional systematics and relations to tectonic setting,” J. Petrol. 40 (5), 679–704 (1999a).

    Article  Google Scholar 

  22. W. L. Griffin, S. R. Shee, C. G. Ryan, T. T. Win, and B. A. Wyatt, “Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa,” Contrib. Mineral. Petrol. 134 (2), 232–250 (1999b).

    Article  Google Scholar 

  23. B. Harte, “Mantle peridotites and processes–the kimberlite sample,” Continental Basalts and Mantle Xenoliths, Ed. by C. Hawkesworth and M. J. Norry (Shiva, Nantwich, 1983), pp. 46–91.

    Google Scholar 

  24. C. Hawkesworth, A. Erlank, P. Kempton, and F. Waters, “Mantle metasomatism: isotope and trace–element trends in xenoliths from Kimberley, South Africa,” Chem. Geol. 85(1–2), 19–34 (1990).

    Article  Google Scholar 

  25. K. Hidas, T. Guzmics, C. Szabó, I. Kovács, R. J. Bodnar, Z. Zajacz, Z. Nédli, L. Vaccari, and A. Perucchi, “Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid inclusions in mantle peridotite xenoliths from the Carpathian–Pannonian region (central Hungary),” Chem. Geol. 274 (1–2), 1–18 (2010).

    Article  Google Scholar 

  26. K. Hoal, B. Hoal, A. Erlank, and N. Shimizu, “Metasomatism of the mantle lithosphere recorded by rare earth elements in garnets,” Earth Planet. Sci. Lett. 126 (4), 303–313 (1994).

    Article  Google Scholar 

  27. G. H. Howarth, P. H. Barry, J. F. Pernet–Fisher, I. P. Baziotis, N. P. Pokhilenko, L. N. Pokhilenko, R. J. Bodnar, L. A. Taylor, and A. M. Agashev, “Superplume metasomatism: evidence from Siberian mantle xenoliths,” Lithos 184, 209–224 (2014).

    Article  Google Scholar 

  28. D. A. Ionov, L. S. Doucet, and I. V. Ashchepkov, “Composition of the lithospheric mantle in the Siberian craton: new constraints from fresh peridotites in the Udachnaya–East kimberlite,” J. Petrol. 51 (11), 2177–2210 (2010).

    Article  Google Scholar 

  29. D. A. Ionov, F. Bigot, and R. Braga, “The provenance of the lithospheric mantle in continental collision zones: petrology and geochemistry of peridotites in the Ulten–Nonsberg Zone (Eastern Alps),” J. Petrol. 58 (7), 1451–1472 (2017).

    Article  Google Scholar 

  30. D. A. Ionov, L. S. Doucet, P. A. P. von Strandmann, A. V. Golovin, A. V. Korsakov, “Links between deformation, chemical enrichments and Li–isotope compositions in the lithospheric mantle of the central Siberian craton,” Chem. Geol. 475, 105–121 (2017).

    Article  Google Scholar 

  31. A. V. Kargin, L. V. Sazonova, A. A. Nosova, N. M. Lebedeva, V. V. Tretyachenko, and A. Abersteiner, “Cr–rich clinopyroxene megacrysts from the Grib kimberlite, Arkhangelsk province, Russia: relation to clinopyroxene–phlogopite xenoliths and evidence for mantle metasomatism by kimberlite melts,” Lithos 292–293, 34–48 (2017).

    Article  Google Scholar 

  32. A. I. Kiselev, V. V. Yarmolyuk, A. V. Ivanov, and K. N. Egorov, “Middle Paleozoic basaltic and kimberlitic magmatism in the northwestern shoulder of the Vilyui Rift, Siberia: relations in space and time,” Russ. Geol. Geophys. 55 (2), 144–152 (2014).

    Article  Google Scholar 

  33. O. Klein–BenDavid, E. S. Izraeli, E. Hauri, and O. Navon, “Mantle fluid evolution—a tale of one diamond,” Lithos 77 (1–4), 243–253 (2004).

    Article  Google Scholar 

  34. K. M. Konstantinov, A. A. Yakovlev, T. A. Antonova, I. K. Konstantinov, Sh. Z. Ibragimov, and E. V. Artemova, “Petro- and paleomagnetic characteristics of the structural–material complexes of the diamond mining of the Nyurbinskaya pipe (Middle Markha district, West Yakutia),” Geodynam. Tectophys. 8 (1), 135–169 (2017).

    Article  Google Scholar 

  35. J. M. Koornneef, M. U. Gress, I. L. Chinn, H. A. Jelsma, J. W. Harris, and G. R. Davies, “Archaean and Proterozoic diamond growth from contrasting styles of large–scale magmatism,” Nat. Commun. 8 (1), 1–8 (2017).

    Article  Google Scholar 

  36. M. Kopylova, J. Russell, and H. Cookenboo, “Petrology of peridotite and pyroxenite xenoliths from the Jericho kimberlite: implications for the thermal state of the mantle beneath the Slave craton, northern Canada,” J. Petrol. 40 (1), 79–104 (1999).

    Article  Google Scholar 

  37. M. Kopylova, J. Russell, C. Stanley, and H. Cookenboo, “Garnet from Cr–and Ca–saturated mantle: implications for diamond exploration,” J. Geochem. Explor. 68 (3), 183–199(2000).

    Article  Google Scholar 

  38. M. Y. Koreshkova, H. Downes, L. K. Levsky, and N. V. Vladykin, “Petrology and geochemistry of granulite xenoliths from Udachnaya and Komsomolskaya kimberlite pipes, Siberia,” J. Petrol. 52, 1857–1885 (2011).

    Article  Google Scholar 

  39. V. P. Kornilova, A. S. Fomin, and A. M. Zaitsev, “New type of diamondiferous kimberlite rocks at the Siberian Platform,” Regional. Geol. Metallogen. 13–14, 105–117 (2001).

    Google Scholar 

  40. Yu. G. Lavrent’ev, N. S. Karmanov, and L. V. Usova, “Electron probe microanalysis of minerals: mcroanalyzer or scanning electron microscope?” Russ. Geol. Geophys. 56 (8), 1154–1161 (2015).

    Article  Google Scholar 

  41. I. D. MacGregor, “The reaction 4 enstatite + spinel = forsterit e+ pyrope,” Carnegie Inst Wash Ybk. 63, 156–157 (1964).

    Google Scholar 

  42. I. D. Macgregor, “The effect of CaO, Cr2O3, Fe2O3 and Al2O3 on the stability of spinel and garnet peridotites,” Phys. Earth Planet. Int. 3, 372–377 (1970).

    Article  Google Scholar 

  43. V. Malkovets, D. Zedgenizov, W. Griffin, A. Dak, S. O’Reilly, N. Pokhilenko, and S. Mityukhin, “Diamondiferous microxenoliths and xenocrysts from the Nyurbinskaya kimberlite pipe, Yakutia,” 9th International Kimberlite Conference Extended Abstract, No. 9IKC–A–00224 (2008).

  44. W. F. McDonough and S.-S. Sun, “The composition of the Earth,” Chem. Geol. 120 (3–4), 223–253 (1995).

    Article  Google Scholar 

  45. R. H. Mitchell, A. Giuliani, and H. O’Brien, “What is a kimberlite? Petrology and mineralogy of hypabyssal kimberlites,” Elements 15(6), 381–386 (2019).

    Article  Google Scholar 

  46. D. G. Pearson, D. Canil, and S. B. Shirey, “Mantle samples included in volcanic rocks: xenoliths and diamonds,” In Treatise on Geochemistry, Ed. by R. W. Carlson (Elsevier, 2003), pp. 171–275.

    Google Scholar 

  47. D. G. Pearson, J. Woodhead, and P. E. Janney, “Kimberlites as geochemical probes of Earth’s mantle,” Elements 15 (6), 387–392 (2019).

    Article  Google Scholar 

  48. N. P. Pokhilenko, N. V. Sobolev, S. D. Chernyi, and Yu. T. Yanygin, “Pyropes and chromites from kimberlites in the Nakyn Field (Yakutia) and Snipe Lake district (Slave River Region, Canada): evidence for anomalous structure of the lithosphere,” Dokl. Earth Sci. 372 (3), 638–642 (2000).

    Google Scholar 

  49. N. P. Pokhilenko, A. M. Agashev, K. D. Litasov, and L. N. Pokhilenko, “Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite–kimberlite magmatism,” Russ. Geol. Geophys. 56 (1–2), 280–295 (2015).

    Article  Google Scholar 

  50. A. Rohrbach and M. W. Schmidt, “Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling,” Nature 472 (7342), 209–212 (2011).

    Article  Google Scholar 

  51. O. M. Rosen, L. K. Levskii, D. Z. Zhuravlev, A. Ya. Rotman, Z. V. Spetsius, A. F. Makeev, N. N. Zinchuk, A. V. Manakov, and V. P. Serenko, “Paleoproterozoic accretion in the northeast Siberian Craton: isotopic dating of the Anabar collision system,” Stratigraphy. Geol. Correlation 14 (6), 581–601 (2006).

    Article  Google Scholar 

  52. R. L. Rudnick and A. A. Nyblade, “The thickness and heat production of Archean lithosphere: constraints from xenolith thermobarometry and surface heat flow,” In Mantle Petrology: Field Observations and High Pressure Experimentation: a Tribute to Francis R.(Joe) Boyd, Ed. by Y. Fei, C. M. Bertka, and B. O. Mysen, Geochem. Soc. Spec. Publ. 6, 3–12 (1999).

  53. V. Shatsky, A. Ragozin, D. Zedgenizov, and S. Mityukhin, “Evidence for multistage evolution in a xenolith of diamond–bearing eclogite from the Udachnaya kimberlite pipe,” Lithos 105 (3–4), 289–300 (2008).

    Article  Google Scholar 

  54. E. V. Shchukina. A. M. Agashev, S. I. Kostrovitskii, and N. P. Pokhilenko, “Metasomatic events in the lithospheric mantle beneath the V. Grib kimberlite pipe (Arkhangelsk diamondiferous province, Russia),” Russ. Geol. Geophys. 56 (12), 1701–1716 (2015).

    Article  Google Scholar 

  55. E. V. Shchukina, A. M. Agashev, and N. P. Pokhilenko, “Metasomatic origin of garnet xenocrysts from the V. Grib kimberlite pipe, Arkhangelsk region, NW Russia,” Geosci. Front. 8 (4), 641–651 (2017).

    Article  Google Scholar 

  56. E. V. Shchukina, A. M. Agashev, and V. S. Shchukin, “Diamond-bearing root beneath the northern East European Platform (Arkhangelsk Region, Russia): evidence from Cr–pyrope trace–element geochemistry,” Minerals 9 (5), 261 (2019).

    Article  Google Scholar 

  57. N. V. Sobolev, Mantle Inclusions in Kimberlites and Problem of Upper Mantle Composition (Nauka, Novosibirsk, 1974) [in Russian].

    Google Scholar 

  58. N. V. Sobolev, Y.G. Lavrent’ev, N. P. Pokhilenko, and L. V. Usova, “Chrome–rich garnets from the kimberlites of Yakutia and their parageneses,” Contrib. Mineral. Petrol. 40 (1), 39–52 (1973).

    Article  Google Scholar 

  59. Z. V. Spetsius, A. S. Ivanov, and S. I. Mityukhin, “Diamondiferous xenoliths and megacrysts from the Nyurbinskaya kimberlite pipe (Nakynsky Field, Yakutia),” Dokl. Earth Sci. 408 (6), 779–783 (2006).

    Article  Google Scholar 

  60. Z. V. Spetsius, L. A. Taylor, J. W. Valley, M. T. Deangelis, M. Spicuzza, A. S. Ivanov, and V. I. Banzeruk, “Diamondiferous xenoliths from crustal subduction: garnet oxygen isotopes from the Nyurbinskaya pipe, Yakutia,” Eur. J. Mineral. 20 (3), 375–385 (2008).

    Article  Google Scholar 

  61. T. Stachel and J. W. Harris, “The origin of cratonic diamonds–constraints from mineral inclusions,” Ore Geol. Rev. 34 (1–2), 5–32 (2008).

    Article  Google Scholar 

  62. T. Stachel, S. Aulbach, G. P. Brey, J. W. Harris, I. Leost, R. Tappert, K. F. Viljoen, “The trace element composition of silicate inclusions in diamonds: a review,” Lithos. 77 (1–4), 1–19 (2004).

    Article  Google Scholar 

  63. J. Sun, C. Liu, S. Tappe, S. I. Kostrovitsky, F. Wu, D. Yakovlev, Y. Yang, and J. Yang, “Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights fromin situ U–Pb and Sr–Nd perovskite isotope analysis,” Earth Planet. Sci. Lett. 404, 283–295 (2014).

    Article  Google Scholar 

  64. L. A. Taylor and M. Anand, “Diamonds: time capsules from the Siberian mantle,” Chem. Erde–Geochemistry. 64 (1), 1–74 (2004).

    Article  Google Scholar 

  65. A. V. Tolstov, V. A. Minin, L. G. Kuznetsov, and A. N. Razumov, “A new body of highly diamonidiferous kimberltes in the Nakyn field of the Yakutian kimberlite province,” Russ. Geol. Geophys. 50 (3), 162–173 (2009).

    Article  Google Scholar 

  66. E. Tomlinson, A. Jones, and J. Harris, “Co–existing fluid and silicate inclusions in mantle diamond,” Earth Planet. Sci. Lett. 250 (3–4), 581–59 (2006).

    Article  Google Scholar 

  67. M. D. Tomshin, A. S. Fomin, V. P. Kornilova, S. D. Chernyi, and Yu. T. Yanygin, “Magmatic rocks of the Nakyn kimberlite field, Yakutian province,” Russ. Geol. Geophys. 39(12), 1693–1703 (1998).

    Google Scholar 

  68. A. I. Turkin and N. V. Sobolev, “Pyrope–knorringite garnets: overview of experimental data and natural parageneses,” Russ. Geol. Geophys. 50 (12), 1169–1182 (2009).

    Article  Google Scholar 

  69. D. A. Zedgenizov, S. Yu. Skuzovatov, W. L. Griffin, A. L. Ragozin, and V. V. Kalinina, “Diamond-forming HDFs tracking episodic mantle metasomatism beneath Nyurbinskaya kimberlite pipe (Siberian craton),” Contrib. Mineral. Petrol. 175 (11), 1–21 (2020).

    Article  Google Scholar 

Download references

Funding

Sampling, sample preparation procedure, petrographic description, and analysis of trace element composition were financially supported by the Russian Science Foundation (16-17-10067). The determination of garnet composition was supported by the Russian Foundation for Basic Research (18-05-70064). All authors took part in the interpretation of results and preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Ragozin.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragozin, A.L., Agashev, A.M., Zedgenizov, D.A. et al. Evolution of the Lithospheric Mantle beneath the Nakyn Kimberlite Field: Evidence from Garnets in the Peridotite Xenoliths of the Nyurba and Botuoba Pipes. Geochem. Int. 59, 743–756 (2021). https://doi.org/10.1134/S0016702921080061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921080061

Keywords:

Navigation