Skip to main content
Log in

Experimental Modeling of the Formation of Zoned Magnesian Garnet at Various Starting Ca, Al, and Cr Concentrations Controlled by H2O-Rich Fluid

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

Natural serpentine was experimentally recrystallized in the presence of chromite, corundum, and carbonatite as sources of Cr, Al, and Ca, respectively, at P = 5 GPa and T = 1300°C using a BARS multi-anvil high-pressure apparatus. The experimental products contained synthesized mineral assemblages corresponding to those of natural garnet peridotites. Electron probe microanalysis (EPMA) of the garnet indicates that its grains are clearly zoned, first of all, in Ca distribution. The garnet grains exhibit a zoned distribution of #Ca = 100Ca/(Ca + Mg) of two types: (i) a systematic prograde increase from the cores of the seemingly homogeneous grains to their rims and (ii) a drastic change in Ca# with the transition from the darker to paler domains of the grains. The compositional zoning apparently resulted from quantitative changes in the Ca, Al and Cr quantitative proportions in the crystallization area under the effect of the H2O-rich (H2O/CO2 > 65) fluid. The quantitative ratio of these elements is a key factor at the crystallization of peridotitic garnets typical of different peridotite varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. M. Agashev, D. A. Ionov, N. P. Pokhilenko, A. V. Golovin, Y. Cherepanova, and I. S. Sharygin, “Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya,” Lithos 160–161 (1), 201–215 (2013).

    Article  Google Scholar 

  2. A. M. Agashev, N. P. Pokhilenko, E. Takazawa, J. A. McDonald, M. A. Vavilov, T. Watanabe, and N. V. Sobolev, “Primary melting sequence of a deep (>250 km) lithospheric mantle as recorded in the geochemistry of kimberlite–carbonatite assemblages, Snap Lake dyke system, Canada,” Chem. Geol. 255 (3–4), 317–328 (2008).

    Article  Google Scholar 

  3. J. Akella and G. C. Kennedy, “Melting of gold, silver, and cooper—proposal for a new high–pressure calibration scale,” J. Geophys. Res. 26 (20), 4969–4977 (1971).

    Article  Google Scholar 

  4. L. Anderson Don, Theory of the Earth (Blackwell scientific publications, (1989).

    Google Scholar 

  5. N. T. Arndt, N. Coltice, H. Helmstaedt, and M. Gregoire, “Origin of Archean subcontinental lithospheric mantle: some petrological constraints,” Lithos. 109 (1–2), 61–67 (2009).

    Article  Google Scholar 

  6. D. R. Bell, M. Greґgoire, T. L. Grove, N. Chatterjee, R. W. Carlson, and P. R. Buseck, “Silica and volatile–element metasomatism of Archean mantle: a xenolith–scale example from the Kaapvaal Craton,” Contrib Mineral Petrol. 150 (3), 251–267 (2005).

    Article  Google Scholar 

  7. M. Berkesi, T. Guzmics, C. Szabó, J. Dubessy, R. J. Bodnar, K. Hidas, and K. Ratter, “The role of CO2–rich fluids in trace element transport and metasomatism in the lithospheric mantle beneath the Central Pannonian Basin, Hungary, based on fluid inclusions in mantle xenoliths,” Earth Planet. Sci. Lett. 331–332, 8–20 (2012).

    Article  Google Scholar 

  8. F. R. Boyd and S. A. Mertzman, “Composition and structure of the Kaapvaal lithosphere, southern Africa,” Magmatic Processes: Physicochemical Principles, Ed. by B. O. Mysen (The Geochemical Society Special Publications, University Park, 1987), pp. 13–24.

    Google Scholar 

  9. F. R. Boyd, D. G. Pearson, P. H. Nixon, and S. A. Mertzman, “Low-calcium garnet harzburgites from southern Africa: their relations to craton structure and diamond crystallization,” Contrib. Mineral. Petrol. 113 (3), 352–366 (1993).

    Article  Google Scholar 

  10. S. R. Boyd, C. T. Pillinger, H. J. Milledge, M. J. Mendelssohn, and M. Seal, “C and N isotopic composition and the infrared absorption spectra of coated diamonds: evidence for the regional uniformity of CO2–H2O rich fluids in lithospheric mantle,” Earth Planet Sci Lett. 109 (3–4), 633–644 (1992).

    Article  Google Scholar 

  11. G. P. Brey and D. H. Green, “Solubility of CO2 in olivine melilitite at high pressures and role of CO2 in the earth’s upper mantle,” Contrib. Mineral. Petrol. 55 (2), 217–230 (1976).

    Article  Google Scholar 

  12. G. P. Brey, A. V. Girnis, V. K. Bulatov, H. E. Hofer, A. Gerdes, and A. B. Woodland, “Reduced sediment melting at 7.5–12 GPa: phase relations, geochemical signals and diamond nucleation,” Contrib. Mineral. Petrol. 170 (2), 18 (2015).

    Article  Google Scholar 

  13. H. Bureau, D. J. Frost, N. Bolfan-Casanova, C. Leroy, I. Esteve, and P. Cordier, “Diamond growth in mantle fluids,” Lithos 265 (1), 4–15 (2016).

    Article  Google Scholar 

  14. A. I. Chepurov E. I. Zhimulev, L. V. Agafonov, V. M. Sonin, A. A. Chepurov, and A. A. Tomilenko, “The stability of ortho- and clinopyroxenes, olivine, and garnet in kimberlitic magma,” Russ. Geol. Geophys. 54 (4), 406–415 (2013).

    Article  Google Scholar 

  15. A. A. Chepurov, A. I. Turkin, and J. M. Dereppe, “Interaction of serpentine and chromite as a possible formation mechanism of subcalcic chromium garnet in the upper mantle: an experimental study,” Eur. J. Mineral. 28(2), 329–336 (2016).

    Article  Google Scholar 

  16. A. A. Chepurov, J. M. Dereppe, A. I. Turkin, and V. V. Lin, “From subcalcic pyropes to uvarovites: experimental crystallization of Cr-rich garnets in ultramafic systems with presence of Ca-bearing hydrous fluid,” N. Jb. Miner. Abh. 195 (1), 65–78 (2018).

    Article  Google Scholar 

  17. A. I. Chepurov, A. A. Tomilenko, A. P. Shepanin, and N. V. Sobolev, “Fluid inclusions in diamonds from alluvial deposits of Yakutia,” Dokl. Akad. Nauk 336 (5), 662–665 (1994).

    Google Scholar 

  18. A. I. Chepurov, I. I. Fedorov, and V. M. Sonin, “Experimental studies of diamond formation ay high PT–parameters: implication to model of natural diamond formation,” Geol. Geofiz. 39 (2), 243–244 (1998).

    Google Scholar 

  19. A. I. Chepurov, A. A. Tomilenko, E. I. Zhimulev, V. M. Sonin, A. A. Chepurov, S. V. Kovyazin, T. Yu. Timina, and N. V. Surkov, “The conservation of an aqueous fluid in inclusions in minerals and their interstices at high pressures and temperatures during the decomposition of antigorite,” Russ. Geol. Geophys. 53 (3), 234–246 (2012).

    Article  Google Scholar 

  20. J. B. Dawson and W.E. Stephens, “Statistical classification of garnets from kimberlite and associated xenoliths,” J. Geol. 83 (5), 589–607 (1975).

    Google Scholar 

  21. D. L. Decker, W. A. Basett, L. Merrill, H. T. Hall, and J. D. Barnett, “High-pressure calibration. A critical review,” Physical and Chemical Reference Data. 1 (3), 773–836 (1972).

    Article  Google Scholar 

  22. O. Dvir, T. Pettke, P. Fumagalli, and R. Kessel, “Fluids in the peridotite–water system up to 6 GPa and 800 C: new experimental constrains on dehydration reactions,” Contrib. Mineral. Petrol. 161 (6), 829–844 (2011).

    Article  Google Scholar 

  23. D. H. Eggler, “Discussion of recent papers on carbonated peridotite, bearing on mantle metasomatism and magmatism: an alternative,” Earth Planet. Sci. Lett. 82 (3–4), 398–400 (1987).

    Article  Google Scholar 

  24. D. H. Eggler, “Solubility of major and trace elements in mantle metasomatic fluids: experimental constraints,” Mantle Metasomatism (Academic Press, London, 1987), pp. 21–41.

    Google Scholar 

  25. D. H. Eggler and D. R. Baker, “Reduced volatiles in the system C–O–H; implications to mantle melting, fluid formation, and diamond genesis,” In: High Pressure Research in Geophysics 12. Ed. by S. Akimoto and M. H. Manghnani (Center for Academic Publications of Japan, Tokyo, 1982), pp. 237–250.

    Google Scholar 

  26. J. Fiala, “Pyrope of some garnet peridotites of the Czech massif,” Krystalinikum. 3, 55–74 (1965).

    Google Scholar 

  27. D. H. Green, “The role of oxidation–reduction and C–H–O fluids in determining melting conditions and magma compositions in the upper mantle,” Proc. Indian Acad. Sci. (Earth Planet. Sci.). 99 (1), 153–165 (1990).

  28. W. L. Griffin, S. Y. O’Reilly, C. G. Ryan, O. Gaul, and D. Ionov, “Secular variation in the composition of subcontinental lithospheric mantle,” In Structure and Evolution of the Australian Continent, Geodynam. Ser. 26, Ed. by D. Braun, J. C. Dooley, B. R. Goleby, R. D. van der Hilst, and C. T. Klootwijk (AGU, Washington, 1998), pp. 1–26.

    Google Scholar 

  29. W. L. Griffin, S. R. Shee, C. G. Ryan, T. T. Win, and B. A. Wyatt, “Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa,” Contrib. Mineral. Petrol. 134 (2/3), 232–250 (1999a).

    Article  Google Scholar 

  30. W. L. Griffin, N. I. Fisher, J. Friedman, C. G. Ryan, and S. Y. O’Reilly, “Cr-pyrope garnets in the lithospheric mantle. 1. Compositional systematics and relations to tectonic setting,” J. Petrol. 40 (5), 679–704 (1999b).

    Article  Google Scholar 

  31. W. L. Griffin, S. Y. O’Reilly, and C. G. Ryan, “The composition and origin of subcontinental lithospheric mantle,” In: Mantle Petrology: Field Observations and High Pressure Experimentation: a Tribute to Francis R. (Joe) Boyd, Ed. by Y. Fei, C. M. Bertka, B. O. Mysen Geochem. Soc, Spec. Publ. 6, 13–45 (1999c).

  32. W. L. Griffin, N. I. Fisher, J. H. Friedman, S. Y. O’Reilly, and C. G. Ryan, “Cr-pyrope garnets in the lithospheric mantle 2. Compositional populations and their distribution in time and space,” Geochemistry Geophysics Geosystems (G3) 3 (12), 1073 (2002).

  33. H. S. Grütter, J. J. Gurney, A. H. Menzies, and F. Winter, “An updated classification scheme for mantle–derived garnet, for use by diamond explorers,” Lithos. 77 (1–4), 841–857 (2004).

    Article  Google Scholar 

  34. H. S. Grütter, D. Latti, and A. Menzies, “Cr–saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry,” J. Petrol. 47 (4), 801–820 (2006).

    Article  Google Scholar 

  35. J. J. Gurney, “A correlation between garnets and diamonds in kimberlites,” In Kimberlite Occurrence and Origin: a Basis for Conceptual Models in Exploration, Ed. by J. E. Glover and P. G. Harris (University of Western Australia, Geology Department and Extension Service, 1984), Publ. no. 8, 143–166 (1984).

  36. J. J. Gurney, H. H. Helmstaedt, S. H. Richardson, and S. B. Shirey, “Diamonds through time,” Econ. Geol. 105 (3), 689–712 (2010).

    Article  Google Scholar 

  37. B. Harte, P. A. Winterburn, and J. J. Gurney, “Metasomatic and enrichment phenomena in garnet peridotite facies mantle xenoliths from the Matsoku kimberlite pipe, Lesotho,” In Mantle Metasomatism, Ed. by M. A. Menzies and C. J. Hawkesworth (Academic Press, London, 1987), pp. 145–220.

    Google Scholar 

  38. P. J. A. Hill, M. Kopylova, J. K. Russell, and H. Cookenboo, “Mineralogical controls on garnet composition in the cratonic mantle,” Contrib. Mineral. Petrol. 169 (2), 13 (2015).

    Article  Google Scholar 

  39. T. J. Ivanic, B. Harte, and J. J. Gurney, “Metamorphic re-equilibration and metasomatism of highly chromian, garnet–rich peridotitic xenoliths from South African kimberlites,” Contrib. Mineral. Petrol. 164 (3), 505–520 (2012).

    Article  Google Scholar 

  40. S. E. Kesson and A. E. Ringwood, “Slab – mantle interactions 1. Sheared and refertilised garnet peridotite xenoliths – samples of Wadati–Benioff zones?,” Chem. Geol. 78 (2), 83–96 (1989a).

    Article  Google Scholar 

  41. S. E. Kesson and A. E. Ringwood, “Slab–mantle interactions. 2. The formation of diamonds,” Chem. Geol. 78 (2), 97–118 (1989b).

    Article  Google Scholar 

  42. B. A. Kjarsgaard, N. Januszczak, and J. Stiefenhofer “Diamond exploration and resource evaluation of kimberlites,” Elements 15 (6), 411–416 (2019).

    Article  Google Scholar 

  43. O. Klein-BenDavid, E. S. Izraeli, E. Hauri, and O. Navon, “Mantle fluid evolution – a tale of one diamond,” Lithos 77(1–4), 243–253 (2004).

    Article  Google Scholar 

  44. O. Klein-BenDavid and D. G. Pearson, “Origins of subcalcic garnets and their relation to diamond forming fluids—Case studies from Ekati (NWT–Canada) and Murowa (Zimbabwe),” Geochim. Cosmochim. Acta 73 (3), 837–855 (2009).

    Article  Google Scholar 

  45. O. Klein-BenDavid, D. G. Pearson, G. M. Nowell, C. Ottley, J. C. R. McNeill, and P. Cartigny, “Mixed fluid sources involved in diamond growth constrained by Sr–Nd–Pb–C–N isotopes and trace elements,” Earth Planet. Sci. Lett. 289 (1–2), 123–133 (2004).

    Article  Google Scholar 

  46. M. Kopylova, P. J. A. Hill, J. K. Russell, and H. Cookenboo, “Lherzolitic versus harzburgitic garnet trends: sampling of extended depth versus extended composition. Reply to the comment by Ivanic et al., 2015, Contrib. Mineral. Petrol. 171 (2), 19 (2016).

    Article  Google Scholar 

  47. M. G. Kopylova, G. M. Nowell, D. G. Pearson, and G. Markovic, “Crystallization of megacrysts from protokimberlitic fluids: Geochemical evidence from high-Cr megacrysts in the Jericho kimberlite,” Lithos 112 (S1), 284–295 (2009).

    Article  Google Scholar 

  48. I. Kushiro, Y. Syono, and S. Akimoto “Melting of a peridotite nodule at high pressures and high water pressures,” J. Geophys. Res. 73 (1B), 6023–6029 (1968).

    Article  Google Scholar 

  49. K. D. Litasov and E. Ohtani, “Effect of water on the phase relations in Earth’s mantle and deep water cycle,” Geol. Soc. Am., Spec. Pap., 421 (2007).

  50. I. Yu. Malinovsky and A. M. Doroshev, “Evaluation of P–T conditions of diamond formation with reference to chrome–bearing garnet stability,” Ext. Abstr., 2nd Int. Kimb. Conf., Santa Fe, 1977.

  51. I. Yu. Malinovsky, A. M. Doroshev, and A. A. Godovikov, “Stability of garnets of the pyrope—grossular–knorringite–uvarovite series at 1200°C and 30 kbar,” Experimental Studies on Mineralogy (1972–1973), Ed. by A. A. Godovikov and V. S. Sobolev, (SO AHSSSR, IGiG, Novosibirsk, 1974), pp. 73–77 [in Russian].

  52. V. G. Malkovets, W. L. Griffin, S. Y. O’Reilly, and B. J. Wood, “Diamond, subcalcic garnet, and mantle metasomatism: Kimberlite sampling patterns define the link,” Geology 35 (4), 339–342 (2007).

    Article  Google Scholar 

  53. E. A. Matrosova, A. A. Bendeliani, A. V. Bobrov, A. A. Kargal’tsev, and Y. A. Ignat’ev, “Melting relations in the model pyrolite at 2.5, 3.0, 7.0 GPa and 1400–1800°C: application to the problem of the formation of high-chromium garnets,” Geochem. Int. 57 (9), 988–999 (2019).

    Article  Google Scholar 

  54. M. A. Menzies, N. Rogers, A. Tindle, and C. J. Hawkesworth, “Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenospherelithosphere interaction,” In Mantle Metasomatism, Ed. by M. A. Menzies and C. J. Hawkesworth (Academic Press, London, 1987), pp. 313–361.

    Google Scholar 

  55. K. Mibe, T. Fujii, and A. Yasuda, “Composition of aqueous fluid coexisting with mantle minerals at high pressure and its bearing on the differentiation of the Earth’s mantle,” Geochim. Cosmochim. Acta. 66 (12), 2273–2285 (2002).

    Article  Google Scholar 

  56. A. L. Mitchell, G. A. Gaetani, J. A. O’Leary, and E. H. Hauri, “H2O solubility in basalt at upper mantle conditions,” Contrib. Mineral. Petrol. 172 (10), 85 (2017).

    Article  Google Scholar 

  57. B. Nemeth, K. Torok, I. Kovacs, Cs. Szabo, R. Abart, J. Degi, J. Mihaly, and Cs. Nemeth, “Melting, fluid migration and fluid–rock interactions in the lower crust beneath the Bakony–Balaton Highland volcanic field: a silicate melt and fluid inclusion study,” Mineral. Petrol. 109 (2), 217–234 (2015).

    Article  Google Scholar 

  58. R. C. Newton and C. E. Manning, “Quartz solubility in H2O–NaCl and H2O–CO2 solutions at deep crust–upper mantle pressures and temperatures: 2–15 kbar and 500–900°C,” Geochim. Cosmochim. Acta. 64 (17), 2993–3005 (2000).

    Article  Google Scholar 

  59. S. Y. O’Reilly and W. L. Griffin, “Imaging global chemical and thermal heterogeneity in the subcontinental lithospheric mantle with garnets and xenoliths: geophysical implications,” Tectonophysics 416 (1–4), 289–309 (2006).

    Article  Google Scholar 

  60. N. Yu. Osorgin, Yu. N. Palyanov, N. V. Sobolev, I. P. Khokhryakova, A. I. Chepurov, and N. A. Shugurova, “Inclusions of liquified gases in diamond crystals,” Dokl. Akad. Nauk SSSR 293 (5), 1214–1217 (1987).

    Google Scholar 

  61. D. G. Pearson and N. Wittig, “Formation of Archaean continental lithosphere and its diamonds: the root of the problem,” J. Geol. Soc. 165 (5), 895–914 (2008).

    Article  Google Scholar 

  62. D. G. Pearson, S. B. Shirey, R. W. Carlson, F. R. Boyd, N. P. Pokhilenko, and N. Shimizu, “Re–Os, Sm–Nd, and Rb–Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism,” Geochim. Cosmochim. Acta 59 (5), 959–977 (1995).

    Google Scholar 

  63. L. L. Perchuk, “Fluids in lower crust and upper mantle of the Earth,” Vestn. Mosk. Univ. Ser. 4. Geol., No. 4, 25–35 (2000).

  64. N. P. Pokhilenko, N. V. Sobolev, F. R. Boyd, G. D. Pearson, and N. Shimizu, “Megacrystalline pyrope peridotites in the lithosphere of the Siberian Platform: mineralogy, geochemical features, and problems of origin,” Geol. Geofiz. 34(1), 71–84 (1993).

    Google Scholar 

  65. I. D. Ryabchikov, D. A. Kogarko, and V. I. Kovalenko, “Chemical variations of mantle peridotites as result of different degrees of partial melting of primitive mantle,” Dokl. Akad. Nauk SSSR 295 (1), 185–189 (1987).

    Google Scholar 

  66. D. J. Schulze, “A classification scheme for mantle–derived garnets in kimberlite: a tool for investigating the mantle and exploring for diamonds,” Lithos 71 (2–4), 195–213 (2003).

    Article  Google Scholar 

  67. S. B. Shirey P. Cartigny, D. J. Frost, S. Keshav, F. Nestola, P. Nimis, D. G. Pearson, N. V. Sobolev, and M. J. Walter, “Diamonds and the geology of mantle carbon,” Rev. Mineral. Geochem. 75 (1), 355–421 (2013).

    Google Scholar 

  68. Q. Shu and G. P. Brey, “Ancient mantle metasomatism recorded in subcalcic garnet xenocrysts: Temporal links between mantle metasomatism, diamond growth and crustal tectonomagmatism,” Earth Planet. Sci. Lett. 418, 27–39 (2015).

    Article  Google Scholar 

  69. N. S. Simon, G. J. Irvine, G. R. Davies, D. G. Pearson, and R. W. Carlson, “The origin of garnet and clinopyroxene in “depleted” Kaapvaal peridotites,” Lithos 71 (2–4), 289–322 (2003).

    Article  Google Scholar 

  70. S. C. Simon, R. W. Carlson, D. G. Pearson, and G. R. Davies, “The origin and evolution of the Kaapvaal cratonic lithospheric mantle,” J. Petrol. 48 (3), 589–625 (2007).

    Article  Google Scholar 

  71. N. V. Sobolev, Yu. G. Lavrentieva, L. N. Pospelov, and E. V. Sobolev, “Chromium pyropes from Yakutian diamonds,” Dokl. Akad. Nauk SSSR 189 (1), 162–165 (1969).

    Google Scholar 

  72. N. V. Sobolev, Yu. G. Lavrent’ev, N. P. Pokhilenko, and L. V. Usova, “Chrome-rich garnets from the kimberlites of Yakutia and their parageneses,” Contrib. Mineral. Petrol. 40(1), 39–52 (1973).

    Article  Google Scholar 

  73. N. V. Sobolev, V. S. Shatsky, D. A. Zedgenizov, A. L. Ragozin, and V. N. Reutsky, “Polycrystalline diamond aggregates from the Mir kimberlite pipe, Yakutia: Evidence for mantle metasomatism,” Lithos 265, 257–266 (2016).

    Article  Google Scholar 

  74. N. V. Sobolev, A. A. Tomilenko, T. A. Bul’bak, A. M. Logvinova, “Composition of hydrocarbons in diamonds, garnet, and olivine from diamondiferous peridotites from the Udachnaya Pipe in Yakutia, Russia,” Engineering 5 (3), 471–478 (2019a).

    Article  Google Scholar 

  75. N. V. Sobolev, A. M. Logvinova, A. A. Tomilenko, R. Wirth, T. A. Bul’bak, L. I. Luk’yanova, E. N. Fedorova, V. N. Reutsky, and E. S. Efimova, “Mineral and fluid inclusions in diamonds from the Urals placers, Russia: evidence for solid molecular N2 and hydrocarbons in fluid inclusions,” Geochim. Cosmochim. Acta 266, 197–219 (2019b).

    Article  Google Scholar 

  76. V. S. Sobolev, “Conditions of formation of diamond deposits,” Geol. Geofiz., No. 1, 7–22 (1960).

  77. V. S. Sobolev and N V. Sobolev, “On chromium and Cr–bearing minerals in deep-seated xenoliths of kimberlite pipes,” Geol. Rudn. Mestorozhd., No. 2, 10–16 (1967).

  78. V. N. Sobolev, L. A. Taylor, G. A. Snyder, N. V. Sobolev, N. P. Pokhilenko, and A. D. Khar’kiv, “Unique metasomatized peridotite from the Mir kimberlite pipe (Yakutia),” Geol. Geofiz. 38 (1), 206–215 (1997).

    Google Scholar 

  79. T. Stachel and J. W. Harris, “Syngenetic inclusions in diamond from the Birim field (Ghana)—a deep peridotitic profile with a history of depletion and re-enrichment,” Contrib. Mineral. Petrol. 127 (2/3), 336–352 (1997a).

    Article  Google Scholar 

  80. T. Stachel and J. W. Harris, “Diamond precipitation and mantle metasomatism—evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia, Ghana,” Contrib. Mineral. Petrol. 129 (2–3), 143–154 (1997b).

    Article  Google Scholar 

  81. T. Stachel and J. W. Harris, “The origin of cratonic diamonds—constraints from mineral inclusions,” Ore Geol. Rev. 34 (1–2), 5–32 (2008).

    Article  Google Scholar 

  82. T. Stachel, K. S. Viljoen, G. P. Brey, and J. W. Harris “Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds,” Earth Planet. Sci. Lett. 159 (1–2), 1–12 (1998).

    Article  Google Scholar 

  83. C. Tiraboschi, S. Tumiati, D. Sverjensky, T. Pettke, P. Ulmer, and S. Poli, “Experimental determination of magnesia and silica solubilities in graphite–saturated and redox–buffered high–pressure COH fluids in equilibrium with forsterite + enstatite and magnesite + enstatite,” Contrib. Mineral. Petrol. 173 (1), 2 (2018).

    Article  Google Scholar 

  84. E. Yu. Tonkov and E. G. Ponyatovsky, Phase Transformations of Elements under High Pressure, Ed. by J. N. Fridlyander and D. G. Eskin (CRC Press, 2004).

    Google Scholar 

  85. A. I. Turkin, “Lead selenide as a continuous internal indicator of pressure in solid–media cells of high–pressure apparatus in the range of 4–6.8 GPa,” High Temperatures – High Pressures 35/36 (3), 371–376 (2003/2004).

    Article  Google Scholar 

  86. A. I. Turkin and N. V. Sobolev, “Pyrope–knorringite garnets: overview of experimental data and natural parageneses,” Russ. Geol. Geophys. 50 (12), 1169–1182 (2009).

    Article  Google Scholar 

  87. P. Ulmer and V. Trommsdorff, “Serpentine stability to mantle depths and subduction–related magmatism,” Science 268 (5212), 858–861 (1995).

    Article  Google Scholar 

  88. M. J. Walter, “Melt extraction and compositional variability in mantle lithosphere,” In Treatise on Geochemistry: The Mantle and Core. 2 Ed. by R. W. Carlson (Elsevier, Amsterdam, 2003), pp. 363–394.

    Google Scholar 

  89. E. B. Watson and D. A. Wark, “Diffusion of dissolved SiO2 in H2O at 1 GPa, with implications for mass transport in the crust and upper mantle,” Contrib. Mineral. Petrol. 130 (1), 66–80 (1997).

    Article  Google Scholar 

  90. W. M. White, Geochemistry, First Edition. (Wiley–Blackwell, Oxford, 2013).

    Google Scholar 

  91. P. J. Wyllie and I. D. Ryabchikov, “Volatile components, magmas, and critical fluids in upwelling mantle,” J. Petrol. 41 (7), 1195–1206 (2000).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank A.V. Bobrov for inviting us to contribute to the special issue of The Geochemistry International. We also thank two anonymous reviewers for valuable and constructive criticism. The analytical part of this study, which was aimed at analyzing the chemical composition of phases, was carried out at the Center for Collective Use for Multielemental and Isotopic Studies of the Siberian Branch, Russian Academy of Sciences.

Funding

The high-pressure experiments were conducted according to the state assignment of the institute of geology and mineralogy of the Siberian Branch, Russian Academy of Sciences. Garnet crystallization was modeled by N.V. Sobolev under project 19-17-00128 of the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Turkin.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkin, A.I., Chepurov, A.A., Zhimulev, E.I. et al. Experimental Modeling of the Formation of Zoned Magnesian Garnet at Various Starting Ca, Al, and Cr Concentrations Controlled by H2O-Rich Fluid. Geochem. Int. 59, 778–790 (2021). https://doi.org/10.1134/S0016702921080097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921080097

Keywords:

Navigation