Skip to main content
Log in

UWB Multilayer Patch Antenna with EBG Structure for IEEE-C, X, Ku and K Band Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this article, a dual-layered ultra-wideband hexagonal-shaped patch antenna with an EBG structure is presented for IEEE C, X, Ku and K band applications. Parametric analysis of slots, notches, substrate height, substrate stacking, and EBG structures demonstrates the intermediate and finally optimized results. The proposed antenna (A9) is considered for desired specifications after a systematic investigation of ten different antennas (A0–A9). Experimental ultra-wideband (5.1–19.7 GHz) with an impedance bandwidth (S11 <  − 10 dB) of 117.7% and 5.7dBi peak gain is observed for the proposed antenna. A constant group delay in the entire frequency range with a maximum group delay of 0.85 ns at resonating peaks is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Singh, V., & Mishra, B. (2019). Dual-wideband semi-circular patch antenna for Ku/K band applications. Microwave and Optical Technology Letters, 61, 323–329. https://doi.org/10.1002/mop.31592

    Article  Google Scholar 

  2. Mishra, B., Singh, V., Singh, R. K., Singh, N., & Singh, R. A. (2018). Compact UWB patch antenna with defected ground for Ku/K band applications. Microwave and Optical Technology Letters., 60, 1–6. https://doi.org/10.1002/mop.30911

    Article  Google Scholar 

  3. Xu, H., Xu, K. D., Nie, W., & Liu, Y. H. (2018). A coplanar waveguide fed UWB antenna using embedded E-shaped structure with WLAN Band-rejection. Frequenz, 72, 325–332. https://doi.org/10.1515/freq-2017-0083

    Article  Google Scholar 

  4. Shinde, P. N., & Mishra, B. K. (2013). Compact thin ground plane UWB antenna with dual band stop characteristics. Microwave and Optical Technology Letters, 55(5), 1045–1049.

    Article  Google Scholar 

  5. Mouhouche, F., Azrar, A., Dehmas, M., & Djafri, K. (2018). Design a compact UWB monopole antenna with triple band-notched characteristics using EBG structures. Frequenz, 72, 479–487. https://doi.org/10.1515/freq-2018-0069

    Article  Google Scholar 

  6. Qiu, J., Du, Z., Lu, J., & Gong, K. A. (2005). A band-notched UWB antenna. Microwave and Optical Technology Letters, 45, 152–154. https://doi.org/10.1002/mop.20753.

    Article  Google Scholar 

  7. Federal Communications Commission (FCC), Revision of Part 15 of the Commission’s rules regarding Ultra-wideband transmission systems, First Report and Order, FCC 02–48, 2002.

  8. Zheng, Q. R., Ren, X. S., Zeng, Y. Y., Su, L. H., & Gong, B. (2014). Compact slot antenna for ultra-wideband applications. IET Microwaves, Antennas & Propagation., 8, 200–205. https://doi.org/10.1049/iet-map.2013.0067

    Article  Google Scholar 

  9. Oraizi, H., & Valizade Shahmirzadi, N. (2017). Frequency‐ and time‐domain analysis of a novel UWB reconfigurable microstrip slot antenna with switchable notched bands. IET Microwaves, Antennas & Propagation, 11(8), 1127–1132.

    Article  Google Scholar 

  10. Wu C.-M., Chen, Y.-L., & W.-C. Liu. (2012). A compact ultrawideband slotted patch antenna for wireless USB dongle application. IEEE Antennas and Wireless Propagation Letters, 11, 596–599.

    Article  Google Scholar 

  11. Liang, J., Chiau, C. C., Chen, X., & Parini, C. G. (2005). Study of a printed circular disc monopole antenna for UWB systems. IEEE Transactions on Antennas and Propagation, 53(11), 3500–3504.

    Article  Google Scholar 

  12. Molisch, B. A. F. (2009). Ultra-wide-band propagation channels. Proceedings of the IEEE, 97, 353–371.

    Article  Google Scholar 

  13. Zaker, R., Ghobadi, C., & Nourinia, J. (2007). A modified microstrip-FED two-step tapered monopole antenna for UWB and WLAN applications. Progress in Electromagnetics Research, 77, 137–148.

    Article  Google Scholar 

  14. Zheng, F. (2014). An overview of ultra-wide-band systems with MIMO multiple input and output antennas used in ultra-wideband systems can. Proceedings of the IEEE, 97, 285–312. https://doi.org/10.1109/JPROC.2008.2008784

    Article  Google Scholar 

  15. Chiu, C. Y., Wong, H., & Chan, C. H. (2007). Study of small wideband folded-patch-feed antennas. IET Microwaves Antennas & Propagation., 1, 501. https://doi.org/10.1049/iet-map:20050255

    Article  Google Scholar 

  16. Mak, K. M., Lai, H. W., & Luk, K. M. (2018). A 5G wideband patch antenna with antisymmetric L-shaped probe feeds. IEEE Transactions on Antennas and Propagation, 66, 957–961. https://doi.org/10.1109/TAP.2017.2776973

    Article  Google Scholar 

  17. Kartikeyan, M. V., Prajapati, P. R., Murthy, G. G. K., & Patnaik, A. (2015). Design and testing of a compact circularly polarised microstrip antenna with fractal defected ground structure for L-band applications. IET Microwaves, Antennas & Propagation., 9, 1179–1185. https://doi.org/10.1049/iet-map.2014.0596

    Article  Google Scholar 

  18. Kokotoff, D. M., Waterhouse, R. B., & Aberle, J. T. (1997). An annular ring coupled to a shorted patch. IEEE Transactions on Antennas and Propagation., 45, 913–914. https://doi.org/10.1109/8.575650

    Article  Google Scholar 

  19. Sheikh, S. I. M., Abu-Al-Saud, W., & Numan, A. B. (1997). Directive stacked patch antenna for UWB applications. International Journal of Antennas and Propagation, 2013, 1–6. https://doi.org/10.1155/2013/389571

    Article  Google Scholar 

  20. Vishwakarma, R. K., & Tiwari, S. (2010). Experimental study of stacked rectangular microstrip antenna for dual-band. Engineering, 02, 85–90. https://doi.org/10.4236/eng.2010.22011.

    Article  Google Scholar 

  21. Mishra, B., Singh, V., & Singh, R. (2017). Dual and wide-band slot loaded stacked microstrip patch antenna for WLAN/WiMAX applications. Microsystem Technologies, 23, 3467–3475. https://doi.org/10.1007/s00542-016-3120-z

    Article  Google Scholar 

  22. Lu, H., Liu, F., Su, M., & Liu, Y. A. (2018). Design and analysis of wideband U-slot patch antenna with U-shaped parasitic elements. International Journal of RF and Microwave Computer-Aided Engineering, 28, 1–11. https://doi.org/10.1002/mmce.21202

    Article  Google Scholar 

  23. Wi, S., Lee, Y., & Yook, J. (2007). Wideband microstrip patch antenna with u-shaped parasitic elements. IEEE Transactions on Antennas and Propagation, 55, 1196–1199. https://doi.org/10.1109/TAP.2007.893427

    Article  Google Scholar 

  24. Elwi, T. A. (2017). Electromagnetic band gap structures based on ultra-wideband microstrip antenna. Microwave and Optical Technology Letters, 59, 827–834. https://doi.org/10.1002/mop.30397

    Article  Google Scholar 

  25. Xu, H., Lv, Y., Luo, X., & Du, C. (2007). Method for identifying the surface wave frequency band-gap of EBG structures. Microwave and Optical Technology Letters, 49, 2668–2672.

    Article  Google Scholar 

  26. Guo, Z., Tian, H., Wang, X., Luo, Q., & Ji, Y. (2013). Bandwidth enhancement of monopole uwb antenna with new slots and EBG structures. IEEE Antennas and Wireless Propagation Letters, 12, 1550–1553. https://doi.org/10.1109/LAWP.2013.2292063

    Article  Google Scholar 

  27. Ray, K. P., & Pandey, M. D. (2009). Resonance frequency of hexagonal and half hexagonal microstrip antennas. Microwave and Optical Technology Letters, 51, 448–452. https://doi.org/10.1002/mop.24087

    Article  Google Scholar 

  28. Joshi, A., & Singhal, R. (2020). Probe-fed hexagonal ultra wideband antenna using flangeless SMA connector. Wireless Personal Communications, 110, 973–982. https://doi.org/10.1007/s11277-019-06768-2

    Article  Google Scholar 

  29. Singhal, S., Goel, T., & Singh, A. K. (2017). Hexagonal tree shaped ultra-wideband fractal antenna. International Journal of Electronics Letters, 5, 335–348. https://doi.org/10.1080/21681724.2016.1218056

    Article  Google Scholar 

  30. Dhakad, S. K., & Bhandari, T. (2017). A hexagonal broadband compact microstrip monopole antenna for C band, X band and Ku band applications. In 2017 International Conference on Computing, Communication and Automation (ICCCA). 1532–1536. IEEE. https://doi.org/10.1109/CCAA.2017.8230045

  31. Kumar, R., Kushwaha, N., & Ram Krishna, R. V. S. (2014). Design of ultra wideband hexagonal patch slot antenna for high-gain wireless applications. Journal of Electromagnetic Waves and Applications, 28, 2034–2048. https://doi.org/10.1080/09205071.2014.954678

    Article  Google Scholar 

  32. Roy, B., Chowdhury, S. K., & Bhattacharjee, A. K. (2019). Symmetrical hexagonal monopole antenna with bandwidth enhancement under UWB operations. Wireless Personal Communications, 108, 853–863. https://doi.org/10.1007/s11277-019-06433-8

    Article  Google Scholar 

  33. Zhao, D., Yang, C., Zhu, M., & Chen, Z. (2016). Design of WLAN/LTE/UWB Antenna with improved pattern uniformity using ground—cooperative radiating structure. IEEE Transactions on Antennas and Propagation, 64, 271–276. https://doi.org/10.1109/TAP.2015.2498939

    Article  MathSciNet  MATH  Google Scholar 

  34. Saxena, S., Kanaujia, B. K., Dwari, S., Kumar, S., & Tiwari, R. (2018). Compact ultra-wideband microstrip antenna with dual polarisation/multi-notch characteristics. IET Microwaves, Antennas & Propagation, 12, 1546–1553. https://doi.org/10.1049/iet-map.2017.0219

    Article  Google Scholar 

  35. Ghaderi, M. R., & Mohajeri, F. (2011). A compact hexagonal wide-slot antenna with microstrip-fed monopole for UWB application. IEEE Antennas and Wireless Propagation Letters, 10, 682–685. https://doi.org/10.1109/LAWP.2011.2158629

    Article  Google Scholar 

  36. Levis, C. A. (1999). Friis Free-Space Transmission Formula. In J. G. Webstar (Ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/047134608X.W1262

Download references

Acknowledgment

The authors wish to thank Prof. Rajeev Singh, Department of Electronics and Communication, University of Allahabad, Prayagraj, India for his valuable comments and guidance that greatly improved the manuscript. The precious time he spared during the course of this work is immeasurable and this is one of the foremost reasons that the manuscript is accepted for publication.

Funding

No funding was received for this work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brijesh Mishra.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, A.K., Yadav, S., Narayaswamy, N.K. et al. UWB Multilayer Patch Antenna with EBG Structure for IEEE-C, X, Ku and K Band Applications. Wireless Pers Commun 121, 1405–1422 (2021). https://doi.org/10.1007/s11277-021-08676-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08676-w

Keywords

Navigation