Skip to main content

Advertisement

Log in

EPR Oxygen Imaging Workflow with MATLAB Image Registration Toolbox

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Electron paramagnetic resonance oxygen imaging, EPROI, is established as a method for quantitative oxygen imaging. For tissue identification, in vivo oxygen images need to be paired with higher tissue contrast images such as MRI, CT, or ultrasound. All these images are acquired using different instruments and a method to represent them in a common coordinate frame, image registration, is required. Registered EPROI can be used for directing cancer treatment or validation of other oxygen-related imaging methods such as PET or histological staining. We present an image registration and analysis system comprised of two components: an animal bed with registration guides and an ArbuzGUI MATLAB toolbox developed in our laboratory. The toolbox includes components for image registration, segmentation, and oxygen analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.W. Severinghaus, Crediting six discoverers of oxygen. Adv. Exp. Med. Biol. 812, 9–17 (2014)

    Article  Google Scholar 

  2. G. Schwarz, Uber Desnssibilisierung gegen Roentgen- und Radium-strahlen. Munchener Medizinsche Wochenschriff 24, 1218–1219 (1909)

    Google Scholar 

  3. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    Article  Google Scholar 

  4. R.H. Thomlinson, L.H. Gray, The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Radiol. 9, 539–563 (1955)

    Google Scholar 

  5. J.M. Henk, P.B. Kunkler, C.W. Smith, Radiotherapy and hyperbaric oxygen in head and neck cancer. Final report of first controlled clinical trial. Lancet 2, 101–103 (1977)

    Article  Google Scholar 

  6. J.M. Henk, C.W. Smith, Radiotherapy and hyperbaric oxygen in head and neck cancer. Interim report of second clinical trial. Lancet 2, 104–105 (1977)

    Article  Google Scholar 

  7. C.N. Coleman, J.B. Mitchell, Clinical radiosensitization: why it does and does not work. J. Clin. Oncol. 17, 1–3 (1999)

    Article  Google Scholar 

  8. J. Overgaard, Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck–a systematic review and meta-analysis. Radiother. Oncol. 100, 22–32 (2011)

    Article  Google Scholar 

  9. A. Dasu, J. Denekamp, New insights into factors influencing the clinically relevant oxygen enhancement ratio. Radiother. Oncol. 46, 269–277 (1998)

    Article  Google Scholar 

  10. N. Lee, H. Schoder, B. Beattie et al., Strategy of using intratreatment hypoxia imaging to selectively and safely guide radiation dose de-escalation concurrent with chemotherapy for locoregionally advanced human papillomavirus-related oropharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 96, 9–17 (2016)

    Article  Google Scholar 

  11. B. Epel, H.J. Halpern, Imaging. Emagres 6, 149–160 (2017)

    Article  ADS  Google Scholar 

  12. B. Epel, H. Halpern, Electron paramagnetic resonance oxygen imaging in vivo. Electron. Paramag. Res. 23, 180–208 (2013)

    Article  Google Scholar 

  13. M. Kotecha, B. Epel, S. Ravindran, D. Dorcemus, S. Nukavarapu, H. Halpern, Noninvasive absolute electron paramagnetic resonance oxygen imaging for the assessment of tissue graft oxygenation. Tissue Eng. Part C-Methods 24, 14–19 (2018)

    Article  Google Scholar 

  14. H.J. Halpern, C. Yu, M. Peric, E. Barth, D.J. Grdina, B.A. Teicher, Oxymetry deep in tissues with low-frequency electron-paramagnetic-resonance. Proc. Natl. Acad. Sci. USA 91, 13047–13051 (1994)

    Article  ADS  Google Scholar 

  15. B. Epel, M.K. Bowman, C. Mailer, H.J. Halpern, Absolute oxygen R1e imaging in vivo with pulse electron paramagnetic resonance. Magnet. Reson. Med. 72, 362–368 (2014)

    Article  Google Scholar 

  16. D.J. Lurie, H.H. Li, S. Petryakov, J.L. Zweier, Development of a PEDRI free-radical imager using a 0.38 T clinical MRI system. Magnet. Reson. Med. 47, 181–186 (2002)

    Article  Google Scholar 

  17. A. Fedorov, R. Beichel, J. Kalpathy-Cramer et al., 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30, 1323–1341 (2012)

    Article  Google Scholar 

  18. D. Stalling, M. Westerhoff, H-C. Hege, in The Visualization Handbook, vol. 38, eds. by C.D. Hansen, C.R. Johnson (Elsevier, Amsterdam, 2005), pp. 749–767

  19. A.A. Goshtasby, Image Registration. Principles, Tools and Methods, 2012th edn. (Springer-Verlag, London, 2012)

    Book  Google Scholar 

  20. C.R. Haney, X. Fan, A.D. Parasca, G.S. Karczmar, H.J. Halpern, C.A. Pelizzari, Immobilization using dental material casts facilitates accurate serial and multimodality small animal imaging. Conc. Magn. Reson. B 33B, 138–144 (2008)

    Article  Google Scholar 

  21. M. Gonet, B. Epel, H.J. Halpern, M. Elas, Merging preclinical EPR tomography with other imaging techniques. Cell Biochem. Biophys. 77, 187–196 (2019)

    Article  Google Scholar 

  22. M. Gonet, B. Epel, M. Elas, Data processing of 3D and 4D in-vivo electron paramagnetic resonance imaging co-registered with ultrasound. 3D printing as a registration tool. Comput. Electr. Eng. 74, 130–137 (2019)

    Article  Google Scholar 

  23. G.L. He, Y.M. Deng, H.H. Li, P. Kuppusamy, J.L. Zweier, EPR/NMR co-imaging for anatomic registration of free-radical images. Magnet Reson Med 47, 571–578 (2002)

    Article  Google Scholar 

  24. S. Subramanian, N. Devasahayam, A. McMillan et al., Reporting of quantitative oxygen mapping in EPR imaging. J. Magn. Reson. 214, 244–251 (2012)

    Article  ADS  Google Scholar 

  25. M. Ohfuchi, J. Goodwin, H. Fujii, H. Hirata, Three-dimensional EPR/NMR image coregistration using a MATLAB-based software. Conc. Magn. Reson. B 39B, 180–190 (2011)

    Article  Google Scholar 

  26. EPR-IT. https://github.com/o2mdev/eprit. Accessed 17 May 2021

  27. B. Epel, M.C. Maggio, E.D. Barth et al., Oxygen-guided radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 103, 977–984 (2019)

    Article  Google Scholar 

  28. B. Epel, S.V. Sundramoorthy, C. Mailer, H.J. Halpern, A versatile high speed 250-MHz pulse imager for biomedical applications. Conc. Magn. Reson. B 33B, 163–176 (2008)

    Article  Google Scholar 

  29. J.A. Ramos-Vara, M.A. Miller, When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry-the red, brown, and blue technique. Vet. Pathol. 51, 42–87 (2014)

    Article  Google Scholar 

  30. K.I. Wijffels, J.H. Kaanders, P.F. Rijken et al., Vascular architecture and hypoxic profiles in human head and neck squamous cell carcinomas. Br. J. Cancer 83, 674–683 (2000)

    Article  Google Scholar 

Download references

Funding

Work described in this publication was supported by NIH research grants R50 CA211408, R01 EB029948, P41 EB002034, R01 CA098575, and R01 CA236385. Dr. B. Epel and Prof. H. Halpern are associated with O2M Technologies, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Epel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epel, B., Halpern, H.J. EPR Oxygen Imaging Workflow with MATLAB Image Registration Toolbox. Appl Magn Reson 52, 1311–1319 (2021). https://doi.org/10.1007/s00723-021-01381-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01381-8

Navigation