Skip to main content
Log in

Energy Absorption and Stiffness Balance in Modified and Conventional Syntactic Foams

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The paper presents the method of analysis and a comparison of the effectiveness of modified and conventional syntactic foams. The method employs the two-phase superposition approach recently developed for composite materials consisting of several concentric phases. Conventional syntactic foams consisting of spherical voids surrounded by thin glass shells embedded in the matrix are compared to modified foams with cylindrical or spheroidal voids. Modified syntactic foams analyzed in the paper include foams with cylindrical voids aligned along the applied stress or perpendicular to the stress and foams with randomly oriented cylindrical voids. It is demonstrated that while conventional syntactic foams with spherical voids absorb more energy than their modified counterparts, the stiffness of such foams is compromised due to the presence of voids to a larger degree than in modified foams. Accordingly, modified syntactic foams may appear a better compromise if a high energy absorption has to be combined with a prescribed large stiffness of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Shutov F. A.: Syntactic polymer foams. Adv. Polym. Sci. 63–123 (1986)

  2. Marur, P.R.: Effective elastic moduli of syntactic foams. Mater. Lett. 59(14–15), 1954–1957 (2005). https://doi.org/10.1016/j.matlet.2005.02.034

    Article  CAS  Google Scholar 

  3. Lee, K.J., Westmann, R.A.: Elastic properties of hollow-sphere-reinforced composites. J. Compos. Mater. 4(2), 242–252 (1970). https://doi.org/10.1177/002199837000400209

    Article  Google Scholar 

  4. Lanhong, D., Zhuping, H., Reri, W.: An explicit expression of the effective moduli for composite materials filled with coated inclusions. Acta Mech. Sin./Lixue Xuebao 14(1), 37–52 (1998). https://doi.org/10.1007/bf02486829

    Article  Google Scholar 

  5. Yu, M., Zhu, P., Ma, Y.: Identification of the interface properties of hollow spheres filled syntactic foams: An inverse strategy combining microstructural modeling with Kriging metamodel. Compos. Sci. Technol. 74, 179–185 (2013). https://doi.org/10.1016/j.compscitech.2012.11.002

    Article  CAS  Google Scholar 

  6. Carolan, D., Mayall, A., Dear, J. P., Fergusson, A. D.: Micromechanical modelling of syntactic foam. Compos. Part B Eng. 183, 107701 (2020). https://doi.org/10.1016/j.compositesb.2019.107701

  7. Dai, L.H., Ling, Z., Bai, Y.L.: Size-dependent inelastic behavior of particle-reinforced metal-matrix composites. Compos. Sci. Technol. 61(8), 1057–1063 (2001). https://doi.org/10.1016/S0266-3538(00)00235-9

    Article  CAS  Google Scholar 

  8. Orbulov, I. N., Szlancsik, A.: On the mechanical properties of aluminum matrix syntactic foams. Adv. Eng. Mater. Rev. 20(5), 1700980 (2018). https://doi.org/10.1002/adem.201700980.

  9. Orbulov, I. N., Szlancsik, A., Kemény, A., Kincses, D.: Compressive mechanical properties of low-cost, aluminium matrix syntactic foams. Compos. Part A Appl. Sci. Manuf. 135, 105923 (2020). https://doi.org/10.1016/j.compositesa.2020.105923

  10. Hariharan, G., Khare, D., Upadhyaya, P.: A micromechanical model to predict the viscoelastic response of syntactic foams. Mater. Today: Proc. 28, 1200–1204 (2019). https://doi.org/10.1016/j.matpr.2020.01.216. [Online]. Available: https://www.semanticscholar.org/paper/A-micromechanical-model-to-predict-the-viscoelastic-Hariharan-Khare/4be4a40c6c53f371002c80a03efcdf359a70d92b

  11. Bardella, L., Sfreddo, A., Ventura, C., Porfiri, M., Gupta, N.: A critical evaluation of micromechanical models for syntactic foams. Mech. Mater. 50, 53–69 (2012). https://doi.org/10.1016/j.mechmat.2012.02.008

    Article  Google Scholar 

  12. Pham, T.M., Chen, W., Kingston, J., Hao, H.: Impact response and energy absorption of single phase syntactic foam. Compos. Part B Eng. 150, 226–233 (2018). https://doi.org/10.1016/j.compositesb.2018.05.057

    Article  CAS  Google Scholar 

  13. Sahu, S., Ansari, M.Z., Mondal, D.P., Cho, C.: Quasi-static compressive behaviour of aluminium cenosphere syntactic foams. Mater. Sci. Technol. 35(7), 856–864 (2019). https://doi.org/10.1080/02670836.2019.1593670

    Article  CAS  Google Scholar 

  14. Zhang, B., Lin, Y., Li, S., Zhai, D., Wu, G.: Quasi-static and high strain rates compressive behavior of aluminum matrix syntactic foams. Compos. Part B: Eng. 98, 288–296 (2016). https://doi.org/10.1016/j.compositesb.2016.05.034

    Article  CAS  Google Scholar 

  15. Meng, J., Liu, T. W., Wang, H. Y., Dai, L. H.: Ultra-high energy absorption high-entropy alloy syntactic foam. Compos. Part B Eng. 2007, 108563 (2021). https://doi.org/10.1016/j.compositesb.2020.108563

  16. Wei, X., Chen, J.H., Dai, L.H.: Energy absorption mechanism of open-cell Zr-based bulk metallic glass foam. Scr. Mater. 66(10), 721–724 (2012). https://doi.org/10.1016/j.scriptamat.2012.01.039

    Article  CAS  Google Scholar 

  17. Szlancsik, A., Katona, B., Bobor, K., Májlinger, K., Orbulov, I.N.: Compressive behaviour of aluminium matrix syntactic foams reinforced by iron hollow spheres. Mater. Des. 83, 230–237 (2015). https://doi.org/10.1016/j.matdes.2015.06.011

    Article  CAS  Google Scholar 

  18. Lin, H., Wang, H.Y., Lu, C., Dai, L.H.: A metallic glass syntactic foam with enhanced energy absorption performance. Scr. Mater. 119, 47–50 (2016). https://doi.org/10.1016/j.scriptamat.2016.03.034

    Article  CAS  Google Scholar 

  19. Pan, L., et al.: Zn-matrix syntactic foams: Effect of heat treatment on microstructure and compressive properties. Mater. Sci. Eng. A 731, 413–422 (2018). https://doi.org/10.1016/j.msea.2018.06.072

    Article  CAS  Google Scholar 

  20. Shams, A., Panteghini, A., Bardella, L., Porfiri, M.: A micromechanical model to study failure of polymer-glass syntactic foams at high strain rates. Comput. Mater. Sci. 135, 189–204 (2017). https://doi.org/10.1016/j.commatsci.2017.04.007

    Article  CAS  Google Scholar 

  21. Benveniste, Y., Dvorak, G.J., Chen, T.: Stress fields in composites with coated inclusions. Mech. Mater. 7(4), 305–317 (1989). https://doi.org/10.1016/0167-6636(89)90021-5

    Article  Google Scholar 

  22. Luo, H. A. Weng, G. J.: On eshelby's s-tensor in a three-phase cylindrically concentric solid, and the elastic moduli of fiber-reinforced composites. Mech. Mater. 8(2), 77–88 (1989). https://doi.org/10.1016/0167-6636(89)90008-2

  23. Wang, Z., Oelkers, R.J., Lee, K.C., Fisher, F.T.: Annular Coated Inclusion model and applications for polymer nanocomposites – Part I: Spherical inclusions. Mech. Mater. 101, 170–184 (2016). https://doi.org/10.1016/j.mechmat.2016.07.004

    Article  Google Scholar 

  24. Birman, V.: Stiffness of three-phase concentric composite solids. Glob. J. Eng. Sci. 6 (2020)

  25. Birman, V.: Stiffness of composites with coated inclusions. Compos. Commun. 100604 (2020)

  26. Benveniste, Y.: A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater. 6(2), 147–157 (1987)

    Article  Google Scholar 

  27. Yin, H. M. Sun, L. Z. Paulino G. H.: Micromechanics-based elastic model for functionally graded materials with particle interactions. Acta Mater. 52(12), 3535–3543 (2004). https://doi.org/10.1016/j.actamat.2004.04.007

  28. Luo, H.A., Weng, G.J.: On Eshelby’s inclusion problem in a three-phase spherically concentric solid, and a modification of Mori-Tanaka’s method. Mech. Mater. 6(4), 347–361 (1987). https://doi.org/10.1016/0167-6636(87)90032-9

    Article  Google Scholar 

  29. Tandon, G.P., Weng, G.J.: The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym. Compos. 5(4), 327–333 (1984). https://doi.org/10.1002/pc.750050413

    Article  Google Scholar 

  30. Tsai, S. W., Pagano N. J.: Invariant properties of composite materials. Air Force Materials Lab Wright-Patterson AFB, Ohio (1968)

  31. Nielsen, L. E., Chen, P.E.: Young modulus of composites with randomly oriented fibers. J. Mater. 352–358 (1968)

  32. Christensen, R.M., Waals, F.M.: Effective stiffness of randomly oriented fibre composites. J. Compos. Mater. 6(4), 518–532 (1972). https://doi.org/10.1177/002199837200600407

    Article  Google Scholar 

  33. Christensen, R.M.: Asymptotic modulus results for composites containing randomly oriented fibers. Int. J. Solids Struct. 12(7), 537–544 (1976)

    Article  Google Scholar 

  34. Gibson, L.J., Ashby, M.F.: Cellular solids, structure and properties, 2nd edn. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  35. Hu, Y., Birman, V., Deymier-Black, A., Schwartz, A.G., Thomopoulos, S., Genin, G.M.: Stochastic interdigitation as a toughening mechanism at the interface between tendon and bone. Biophys. J . 108(2), 431–437 (2015)

    Article  CAS  Google Scholar 

  36. Tandon, G. P. Weng, G.J.: Stress distribution in and around spheroidal inclusions and voids at finite concentrations. J. Appl. Mech. 53, 511–518 (1986)

  37. Paul, D., Velmurugan, R., Gupta, N.K.: Experimental and analytical studies of syntactic foam core composites for impact loading. Int. J. Crashworthiness (2020). https://doi.org/10.1080/13588265.2020.1797346

    Article  Google Scholar 

  38. Omar, M. Y., Xiang, C., Gupta, N., Strbik III, O. M., Cho, K.: Syntactic foam core metal matrix sandwich composite: Compressive properties and strain rate effects. Mat. Sci. Eng. A 643, 156–168 (2015). https://doi.org/10.1016/j.msea.2015.07.033

  39. Huang, R., Li, P.: Elastic behaviour and failure mechanism in epoxy syntactic foams: The effect of glass microballoon volume fractions. Compos. Part B Eng. 78, 401–408 (2015). https://doi.org/10.1016/j.compositesb.2015.04.002

    Article  CAS  Google Scholar 

  40. Pettermann, H.E., Plankensteiner, A.F., Böhm, H.J., Rammerstorfer, F.G.: Thermo-elasto-plastic constitutive law for inhomogeneous materials based on an incremental Mori-Tanaka approach. Comput. Struct. 71(2), 197–214 (1999). https://doi.org/10.1016/S0045-7949(98)00208-9

    Article  Google Scholar 

  41. Doghri, I., Ouaar, A.: Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms. Int. J. Solids Struct. 40(7), 1681–1712 (2003). https://doi.org/10.1016/S0020-7683(03)00013-1

  42. Czarnota, C., Kowalczyk-Gajewska, K., Salahouelhadj, A., Martiny, M., Mercier, S.: Modeling of the cyclic behavior of elastic-viscoplastic composites by the additive tangent Mori-Tanaka approach and validation by finite element calculations. Int. J. Solids Struct. 56, 96–117 (2015). https://doi.org/10.1016/j.ijsolstr.2014.12.002

    Article  Google Scholar 

  43. Sadowski, P., Kowalczyk-Gajewska, K., Stupkiewicz, S.: Consistent treatment and automation of the incremental Mori-Tanaka scheme for elasto-plastic composites. Comput. Mech. 60(3), 493–511 (2017). https://doi.org/10.1007/s00466-017-1418-z

    Article  Google Scholar 

  44. Qiu, Y.P., Weng, G.J.: A theory of plasticity for porous materials and particle-reinforced composites. J. Appl. Mech. T. ASME 59(2), 261–268 (1992). https://doi.org/10.1115/1.2899515

    Article  Google Scholar 

  45. Hu, G.: A method of plasticity for general aligned spheroidal void or fiber-reinforced composites. Int. J. Plast. 12(4), 439–449 (1996). https://doi.org/10.1016/S0749-6419(96)00015-0

    Article  CAS  Google Scholar 

  46. Tandon, G.P., Weng, G.J.: A theory of particle-reinforced plasticity. J. Appl. Mech. T. ASME 55(1), 126–135 (1988). https://doi.org/10.1115/1.3173618

    Article  CAS  Google Scholar 

  47. Donev, A., et al.: Improving the density of jammed disordered packings using ellipsoids. Science 303(5660), 990–993 (2004). https://doi.org/10.1126/science.1093010

    Article  CAS  Google Scholar 

  48. Freeman, J. O., Peterson, S., Cao, C., Wang, Y., Franklin, S. V., Weeks, E. R.: Random packing of rods in small containers. Granul. Matter 21(4), 84 (2019). https://doi.org/10.1007/s10035-019-0939-x

Download references

Acknowledgements

Discussions with Drs. Ajey Dambal and Salvatore Torquato are warmly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Birman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birman, V. Energy Absorption and Stiffness Balance in Modified and Conventional Syntactic Foams. Appl Compos Mater 28, 1829–1843 (2021). https://doi.org/10.1007/s10443-021-09928-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09928-5

Keywords

Navigation