Skip to main content
Log in

Estimating the error in matrix function approximations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The need to compute matrix functions of the form f(A)v, where \(A\in {\mathbb {R}}^{N\times N}\) is a large symmetric matrix, f is a function such that f(A) is well defined, and v≠ 0 is a vector, arises in many applications. This paper is concerned with the situation when A is so large that the evaluation of f(A) is prohibitively expensive. Then, an approximation of f(A)v often is computed by applying a few, say 1 ≤ nN, steps of the symmetric Lanczos process to A with initial vector v to determine a symmetric tridiagonal matrix \(T_{n}\in {\mathbb {R}}^{n\times n}\) and a matrix \(V_{n}\in {\mathbb {R}}^{N\times n}\), whose orthonormal columns span a Krylov subspace. The expression Vnf(Tn)e1v∥ furnishes an approximation of f(A)v. The evaluation of f(Tn) is inexpensive, because the matrix Tn is small. It is important to be able to estimate the error in the computed approximation. This paper describes a novel approach that is based on a technique proposed by Spalević for estimating the error in Gauss quadrature rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ammar, G. S., Calvetti, D., Reichel, L.: Computation of Gauss–Kronrod quadrature rules with non-positive weights. Electron Trans. Numer. Anal. 9, 26–38 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Beckermann, B., Reichel, L.: Error estimation and evaluation of matrix functions via the Faber transform. SIAM J. Numer. Anal. 47, 3849–3883 (2009)

    Article  MathSciNet  Google Scholar 

  3. Benzi, M., Boito, P.: Matrix functions in network analysis. GAMM Mitteilungen, 43, Art. e202000012 (2020)

  4. Benzi, M., Klymko, C.: Total communicability as a centrality measure. J. Complex Networks 1, 1–26 (2013)

    Article  Google Scholar 

  5. Calvetti, D., Golub, G.H., Gragg, W.B., Reichel, L.: Computation of Gauss–Kronrod quadrature rules. Math. Comp. 69, 1035–1052 (2000)

    Article  MathSciNet  Google Scholar 

  6. Calvetti, D., Reichel, L.: Lanczos-based exponential filtering for discrete ill-posed problems. Numer. Algorithms 29, 45–65 (2002)

    Article  MathSciNet  Google Scholar 

  7. Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)

    Article  MathSciNet  Google Scholar 

  8. Djukić, D. LJ, Reichel, L., Spalević, MM: Truncated generalized averaged Gauss quadrature rules. J. Comput. Appl. Math. 308, 408–418 (2016)

    Article  MathSciNet  Google Scholar 

  9. Djukić, D.Lj., Reichel, L., Spalević, M.M., Tomanović, J.D.: Internality of generalized averaged Gaussian quadratures and their truncated variants with Bernstein–Szegő weights. Electron. Trans. Numer. Anal. 45, 405–419 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Djukić, D.Lj., Reichel, L., Spalević, M.M., Tomanović, J.D.: Internality of generalized averaged Gaussian quadrature rules and truncated variants for modified Chebyshev measures of the kind. J. Comput. Appl. Math. 345, 70–85 (2019)

    Article  MathSciNet  Google Scholar 

  11. Druskin, V.L., Knizhnerman, L.A.: Two polynomial methods for the computation of functions of symmetric matrices. USSR Comput. Math. Math. Phys. 29, 112–121 (1989)

    Article  Google Scholar 

  12. Druskin, V., Knizhnerman, L., Zaslavsky, M.: Solution of large scale evolutionary problems using rational Krylov subspaces with optimized shifts. SIAM J. Sci. Comput. 31, 3760–3780 (2009)

    Article  MathSciNet  Google Scholar 

  13. Estrada, E.: The Structure of Complex Networks: Theory and Applications. Oxford University Press, Oxford (2012)

    MATH  Google Scholar 

  14. Estrada, E., Higham, D.J.: Network properties revealed through matrix functions. SIAM Rev. 52, 696–714 (2010)

    Article  MathSciNet  Google Scholar 

  15. Eshghi, N., Mach, T., Reichel, L.: New matrix function approximations and quadrature rules based on the Arnoldi process. J. Comput. Appl. Math. 391, Art. 113442 (2021)

  16. Eshghi, N., Reichel, L., Spalević, M.M.: Enhanced matrix function approximation. Electron. Trans. Numer. Anal. 47, 197–205 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Frommer, A.: Monotone convergence of the Lanczos approximations to matrix functions of Hermitian matrices. Electron. Trans. Numer. Anal. 35, 118–128 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Frommer, A., Schweitzer, M.: Error bounds and estimates for Krylov subspace approximations of Stieltjes matrix functions. BIT Numer. Math. 56, 865–892 (2016)

    Article  MathSciNet  Google Scholar 

  19. Gautschi, W., Notaris, S.E.: Stieltjes polynomials and related quadrature formulae for a class of weight functions. Math. Comp. 65, 1257–1268 (1996)

    Article  MathSciNet  Google Scholar 

  20. Golub, G.H., Meurant, G.: Matrices, moments and quadrature II: How to compute the norm of the error in iterative methods. BIT Numer. Math. 37, 687–705 (1997)

    Article  MathSciNet  Google Scholar 

  21. Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton University Press, Princeton (2010)

    Book  Google Scholar 

  22. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  23. Higham, N.J.: Functions of Matrices. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  24. Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34, 1911–1925 (1997)

    Article  MathSciNet  Google Scholar 

  25. Laurie, D.P.: Calculation of Gauss–Kronrod quadrature rules. Math. Comp. 66, 1133–1145 (1997)

    Article  MathSciNet  Google Scholar 

  26. Meurant, G.: Numerical experiments in computing bounds for the norm of the error in the preconditioned conjugate gradient algorithm. Numer. Algorithms 22, 353–365 (1999)

    Article  MathSciNet  Google Scholar 

  27. Newman, M.E.J.: Networks: an Introduction. Oxford University Press , Oxford (2010)

    Book  Google Scholar 

  28. Notaris, S.E.: Gauss–kronrod quadrature formulae – a survey of fifty years of research. Electron. Trans. Numer. Anal. 45, 371–404 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Reichel, L., Spalević, M.M., Tang, T.: Generalized averaged Gauss quadrature rules for the approximation of matrix functionals. BIT Numer. Math. 56, 1045–1067 (2016)

    Article  MathSciNet  Google Scholar 

  30. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29, 209–228 (1992)

    Article  MathSciNet  Google Scholar 

  31. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  32. Spalević, M.M.: On generalized averaged Gaussian formulas. Math. Comp. 76, 1483–1492 (2007)

    Article  MathSciNet  Google Scholar 

  33. Spalević, M.M.: A note on generalized averaged Gaussian formulas. Numer. Algorithms 46, 253–264 (2007)

    Article  MathSciNet  Google Scholar 

  34. Spalević, M.M.: On generalized averaged Gaussian formulas, II. Math. Comp. 86, 1877–1885 (2017)

    Article  MathSciNet  Google Scholar 

  35. Sun, S., Ling, L., Zhang, N., Li, G., Chen, R.: Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Res. 31, 2443–2450 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for comments that lead to improvements of the presentation. Research by L.R. was supported in part by NSF grant DMS-1720259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Reichel.

Additional information

Communicated by: Valeria Simoncini

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshghi, N., Reichel, L. Estimating the error in matrix function approximations. Adv Comput Math 47, 57 (2021). https://doi.org/10.1007/s10444-021-09882-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-021-09882-7

Keywords

Mathematics Subject Classification (2010)

Navigation