Skip to main content
Log in

Magnetic Ganoderma Lucidum Spores (mGLS): A Novel Regulatable Targeted Drug Delivery System

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In the past decades, many materials have been studied as carriers for targeted drug delivery. However, there is a need for utilizable and selective carrier materials with few side effects. Here, the magnetic Ganoderma Lucidum Spores (mGLS) as a highly efficient targeted drug delivery carrier were explored. Then the regulatable targeted drug delivery system was verified by loading and releasing of the 5-Fluorouracil (5-FU). The results showed that the maximum of the loaded 5-FU reached 250.23 mg·g−1 in the mGLS. The cumulative release of the 5-FU for the drug delivery system could reach 80.11% and 67.14% in the PBS and HCl after 48 h, respectively. In addition, this system showed the good pharmacokinetic properties in vivo. After 12 h, the blood concentration in the 5-FU@mGLS group kept at 5.3 µg·mL−1 and was four times higher than that in the 5-FU group. In summary, the GLS as a natural microscale core-shell structures appears the striking application in carrier material for oral drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assa F, Jafarizadeh-Malmiri H, Ajamein H, Vaghari H, Anarjan N, Ahmadi O, Berenjian A. Chitosan magnetic nanoparticles for drug delivery systems. Critical Reviews in Biotechnology, 2017, 37, 492–509.

    Article  Google Scholar 

  2. Zhang Y X, Xiang J F, Liu Y, Zhang X F, Tang Y L. Constructing transferrin receptor targeted drug delivery system by using doxorubicin hydrochloride and vanadocene dichloride. Bioorganic & Medicinal Chemistry Letters, 2011, 21, 5982–5986.

    Article  Google Scholar 

  3. Paolino D, Cosco D, Cilurzo F, Fresta M. Innovative drug delivery systems for the administration of natural compounds. Current Bioactive Compounds, 2007, 3, 262–277.

    Article  Google Scholar 

  4. Leong K W, Brott B C, Langer R. Bioerodible polyanhydrides as drug — carrier matrices. I: characterization, degradation, and release characteristics. Journal of Biomedical Materials Research, 1985, 19, 941–955.

    Article  Google Scholar 

  5. Torchilin V P. Targeting of drugs and drug carriers within the cardiovascular system. Advanced Drug Delivery Reviews, 1995, 17, 75–101.

    Article  Google Scholar 

  6. Nishikawa M, Hashida M. Pharmacokinetics of anticancer drugs, plasmid DNA, and their delivery systems in tissue-isolated perfused tumors. Advanced Drug Delivery Reviews, 1999, 40, 19–37.

    Article  Google Scholar 

  7. Song Y H, Li Y H, Xu Q, Liu Z. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: Advances, challenges, and outlook. International Journal of Nanomedicine, 2016, 12, 87–110.

    Article  Google Scholar 

  8. Zhu Y, Li J, Li W X, Zhang Y, Yang X F, Chen N, Sun Y H, Zhao Y, Fan C H, Huang Q. The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics, 2012, 2, 302–312.

    Article  Google Scholar 

  9. Vaizoglu O, Speiser P. Intelligent drug delivery systems. Trends in Pharmacological Science, 1982, 3, 28–30.

    Article  Google Scholar 

  10. Wilczewska A Z, Niemirowicz K, Markiewicz K H, Car H. Nanoparticles as drug delivery systems. Pharmacological Reports, 2012, 64, 1020–1037.

    Article  Google Scholar 

  11. Goudoulas T B. Polymers and biopolymers as drug delivery systems in nanomedicine. Recent Patents on Nanomedicine, 2012, 2, 52–61.

    Article  Google Scholar 

  12. Zhou Z J, Shen Z Y, Chen X Y. Tale of two magnets: An advanced magnetic targeting system. ACS Nano, 2020, 14, 7–11.

    Article  Google Scholar 

  13. Le T A, Bui M P, Yoon J W. Electromagnetic actuation system for focused capturing of magnetic particles with a half of static saddle potential energy configuration. IEEE Transactions on Biomedical Engineering, 2021, 68, 869–880.

    Article  Google Scholar 

  14. Li L L, Chen D, Zhang Y Q, Deng Z T, Ren X L, Meng X W, Tang F Q, Ren J, Zhang L. Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system. Nanotechnology, 2007, 18, 405102.

    Article  Google Scholar 

  15. Yallapu M M, Othman S F, Curtis E T, Gupta B K, Jaggi M, Chauhan S C. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials, 2011, 32, 1890–1905.

    Article  Google Scholar 

  16. Chertok B, Moffat B A, David A E, Yu F Q, Bergemann C, Ross B D, Yang V C. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials, 2008, 29, 487–496.

    Article  Google Scholar 

  17. Chen F H, Zhang L M, Chen Q T, Zhang Y, Zhang Z J. Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell. Chemical Communications, 2010, 46, 8633–8635.

    Article  Google Scholar 

  18. Madani M, Sharifi-Sanjani N, Faride-Majidi R. Magnetic polystyrene nanocapsules with core-shell morphology obtained by emulsifier-free miniemulsion polymerization. Polymer Science Series A, 2011, 53, 143–148.

    Article  Google Scholar 

  19. Urbina M C, Zinoveva S, Miller T, Sabliov C M, Monroe W T, Kumar C S S R. Investigation of magnetic nanoparticle-polymer composites for multiple-controlled drug delivery. Journal of Physical Chemistry C, 2008, 112, 11102–11108.

    Article  Google Scholar 

  20. He Q, Tian Y, Cui Y, Moehwald H, Li J B. Layer-by-layer assembly of magnetic polypeptide nanotubes as a DNA carrier. Journal of Materials Chemistry, 2008, 18, 748–754.

    Article  Google Scholar 

  21. Cui M, Wang F J, Shao Z Q, Lu F S, Wang W J. Influence of DS of CMC on morphology and performance of magnetic microcapsules. Cellulose, 2011, 18, 1265–1271.

    Article  Google Scholar 

  22. Alshehri S M, Al-Lohedan H A, Al-Farraj E, Alhokbany N, Chaudhary A A, Ahamad T. Macroporous natural capsules extracted from Phoenix dactylifera L. spore and their application in oral drugs delivery. International Journal of Pharmaceutics, 2016, 504, 39–47.

    Article  Google Scholar 

  23. Paunov V N, Mackenzie G, Stoyanov S D. Sporopollenin micro-reactors for in-situ preparation, encapsulation and targeted delivery of active components. Journal of Materials Chemistry, 2007, 17, 609–612.

    Article  Google Scholar 

  24. Arizumi T, Toriyama K. Genetic regulation of sporopollenin synthesis and pollen exine development. Annual Review of Plant Biology, 2011, 62, 437–460.

    Article  Google Scholar 

  25. Mundargi R C, Potroz M G, Park S, Park J H, Shirahama H, Lee J H, Seo J, Cho N J. Lycopodium spores: A naturally manufactured, superrobust biomaterial for drug delivery. Advanced Functional Materials, 2016, 26, 487–497.

    Article  Google Scholar 

  26. Li S Y, Nguyen L, Xiong H R, Wang M Y, Hu T C C, She J X, Serkiz S M, Wicks G G, Dynan W S. Porous-wall hollow glass microspheres as novel potential nanocarriers for biomedical applications. Nanomedicine, 2010, 6, 127–136.

    Article  Google Scholar 

  27. Lin Z B. Modern Research of Ganoderma lucidum, 2nd ed, Beijing Medical University Press, Beijing, China, 2007.

    Google Scholar 

  28. Zhao D, Chang M W, Li J S, Suen W, Huang J. Investigation of ice-assisted sonication on the microstructure and chemical quality of Ganoderma lucidum spores. Journal of Food Science, 2014, 79, E2253–E2265.

    Article  Google Scholar 

  29. Mundargi R C, Tan E L, Seo J, Cho N J. Encapsulation and controlled release formulations of 5-fluorouracil from natural Lycopodium clavatum spores. Journal of Industrial Engineering Chemistry, 2016, 36, 102–108.

    Article  Google Scholar 

  30. Wang J X, Zhou G Q, Chen C Y, Yu H W, Wang T C, Ma Y M, Jia G, Gao Y X, Li B, Sun J, Li Y F, Jiao F, Zhao Y L, Chai Z F. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology Letters, 2007, 168, 176–185.

    Article  Google Scholar 

  31. Blackmore S, Knox R B. Microspores Evolution and Ontogeny, Academic Press, London, England, 1990.

    Google Scholar 

  32. Barrier S, Rigby A S, Diego-Taboada A, Thomasson M J, Mackenzie G, Atkin S L. Sporopollenin exines: A novel natural taste masking material. LWT-Food Science and Technology, 2010, 43, 73–76.

    Article  Google Scholar 

  33. Barrier S, Diego-Taboada A, Thomasson M J, Madden L, Pointon J C, Wadhawan J D, Beckett S T, Atkin S L, Mackenzie G. Viability of plant spore exine capsules for microencapsulation. Journal of Materials Chemistry, 2011, 21, 975–981.

    Article  Google Scholar 

  34. Thio B J R, Clark K K, Keller A A. Magnetic pollen grains as sorbents for facile removal of organic pollutants in aqueous media. Journal of Hazardous Materials, 2011, 194, 53–61.

    Article  Google Scholar 

  35. Fan L L, Wang Y, Zhao M, Song J Z, Wang J Y, Jin Z J. Magnetic Ganoderma lucidum spore microspheres: A novel material to immobilize CotA multicopper oxidase for dye decolorization. Journal of Hazardous Materials, 2016, 313, 122–129.

    Article  Google Scholar 

  36. Nigam S, Barick K C, Bahadur D. Development of citrate-stabilized Fe3O4 nanoparticles: Conjugation and release of doxorubicin for therapeutic applications. Journal of Magnetism and Magnetic Materials, 2011, 323, 237–243.

    Article  Google Scholar 

  37. Zhou H J, Lee J, Park T J, Lee S J, Park J Y, Lee J. Ultrasensitive DNA monitoring by Au-Fe3O4 nanocomplex. Sensors and Actuators B: Chemical, 2012, 163, 224–232.

    Article  Google Scholar 

  38. Zhang Y B, Zhang L, Yang L D, Vong C L, Chan K F, Wu W K K, Kwong T N Y, Lo N W S, Ip M, Wong S H, Sung J J Y, Chiu P W Y, Zhang L. Real-time tracking of fluorescent magnetic spore-based microrobots for remote detection of C. diff toxins. Science Advances, 2019, 5, eaau9650.

    Article  Google Scholar 

  39. Mogharabi M, Nassiri-Koopaei N, Bozorgi-Koushalshahi M, Nafissi-Varcheh N, Bagherzade G, Faramarzi M A. Immobilization of laccase in alginate-gelatin mixed gel and decolorization of synthetic dyes. Bioinorganic Chemistry and Applications, 2012, 2012, 823830.

    Article  Google Scholar 

  40. Qiu H J, Xu C X, Huang X R, Ding Y, Qu Y B, Gao P J. Immobilization of laccase on nanoporous gold: Comparative studies on the immobilization strategies and the particle size effects. Journal of Physical Chemistry C, 2009, 113, 2521–2525.

    Article  Google Scholar 

  41. Zheng X B, Wang Q, Jiang Y J, Gao J. Biomimetic synthesis of magnetic composite particles for laccase immobilization. Industrial & Engineering Chemistry Research, 2012, 51, 10140–10146.

    Article  Google Scholar 

  42. Nagarwal R C, Singh P N, Kant S, Maiti P, Pandit J K. Chitosan nanoparticles of 5-fluorouracil for ophthalmic delivery: Characterization, in-vitro and in-vivo study. Chemical & Pharmaceutical Bulletin, 2011, 59, 272–278.

    Article  Google Scholar 

  43. Longley D B, Harkin D P, Johnston P G. 5-fluorouracil: mechanisms of action and clinical strategies. Nature Reviews Cancer, 2003, 3, 330–338.

    Article  Google Scholar 

  44. Pardini B, Kumar R, Naccarati A, Novotny J, Prasad R B, Forsti A, Hemminki K, Vodicka P, Bermejo J L. 5-Fluorouracil-based chemotherapy for colorectal cancer and MTHFR/MTRR genotypes. British Journal of Clinical Pharmacology, 2011, 72, 162–163.

    Article  Google Scholar 

  45. Mühlen A Z, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery-drug release and release mechanism. European Journal of Pharmaceutics and Biopharmaceutics, 1998, 45, 149–155.

    Article  Google Scholar 

  46. Zhang J H, Lin X N, Liu J J, Zhao J Q, Dong H X, Deng L D, Liu J F, Dong A J. Sequential thermo-induced self-gelation and acid-triggered self-release process of drug-conjugated nanoparticles: A strategy for the sustained and controlled drug delivery to tumors. Journal of Materials Chemistry B, 2013, 1, 4667–4677.

    Article  Google Scholar 

  47. Hu X Y, Wang Y M, Zhang L L, Xu M, Zhang J F, Dong W. Design of a pH-sensitive magnetic composite hydrogel based on salecan graft copolymer and Fe3O4@SiO2 nanoparticles as drug carrier. International Journal of Biological Macromolecules, 2017, 107, 1811–1820.

    Article  Google Scholar 

  48. Wang L, Shi J J, Jia X, Liu R Y, Wang H H, Wang Z Z, Li L L, Zhang J, Zhang C F, Zhang Z Z. NIR-/pH-Responsive drug delivery of functionalized single-walled carbon nanotubes for potential application in cancer chemo-photothermal therapy. Pharmaceutical Research, 2013, 30, 2757–2771.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by National Key R&D Program of China (No. 2018YFB1105400), Jilin Provincial Science and Technology Program (Nos. 20190702002GH, 2020C022-1, and YDZJ202102CXJD 007), and Programme of Introducing Talents of Discipline to Universities (D17017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhankun Weng or Jingmei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Weng, Z., Wu, Y. et al. Magnetic Ganoderma Lucidum Spores (mGLS): A Novel Regulatable Targeted Drug Delivery System. J Bionic Eng 18, 915–926 (2021). https://doi.org/10.1007/s42235-021-0059-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-0059-2

Keywords

Navigation