Skip to main content

Advertisement

Log in

EGFRisopred: a machine learning-based classification model for identifying isoform-specific inhibitors against EGFR and HER2

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The EGFR kinase pathway is one of the most frequently activated signaling pathways in human cancers. EGFR and HER2 are the two significant members of this pathway, which are attractive drug targets of clinical relevance in lung and breast cancer. Therefore, identifying EGFR- and HER2-specific inhibitors is one of the important challenges in cancer drug discovery. To address this issue, a dataset of 519 compounds having inhibitory activity against both the isoforms, i.e., EGFR and HER2, was collected from the literature and developed a knowledge-based computational classification model for predicting the specificity of a molecule for an isoform (EGFR/HER2) with precision. A total of seventy-two classification models using nine fingerprint types, four classifiers (IBK, NB, SMO and RF) and two different datasets (EGFR and HER2 isoform specific) were developed. It was observed that the models developed using random forest and IBK performed better for EGFR- and HER2-specific datasets, respectively. Scaffold and functional group analysis led to the identification of prevalent core and fragments in each of the datasets. The accuracy of the selected best performing models was also evaluated using the decoy dataset. We have also developed an application EGFRisopred, which integrates the best performing models and permits the user to predict the specificity of a compound as an EGFR-/HER2-specific anticancer agent. It is expected that the tool’s availability as a free utility will allow researchers to identify new inhibitors against these targets important in cancer.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134. https://doi.org/10.1016/j.cell.2010.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zwick E, Bange J, Ullrich A (2001) Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocr Relat Cancer 8:161–173. https://doi.org/10.1677/erc.0.0080161

    Article  CAS  PubMed  Google Scholar 

  3. Baselga J, Swain SM (2009) Novel anticancer targets: Revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 9:463–475. https://doi.org/10.1038/nrc2656

    Article  CAS  PubMed  Google Scholar 

  4. De Castro DG, Clarke PA, Al-Lazikani B, Workman P (2013) Personalized cancer medicine: molecular diagnostics, predictive biomarkers, and drug resistance. Clin Pharmacol Ther 93:252–259. https://doi.org/10.1038/clpt.2012.237

    Article  CAS  Google Scholar 

  5. Yadav IS, Nandekar PP, Shrivastava S et al (2014) Ensemble docking and molecular dynamics identify knoevenagel curcumin derivatives with potent anti-EGFR activity. Gene 539:82–90. https://doi.org/10.1016/j.gene.2014.01.056

    Article  CAS  PubMed  Google Scholar 

  6. Sharma VK, Nandekar PP, Sangamwar A et al (2016) Structure guided design and binding analysis of EGFR inhibiting analogues of erlotinib and AEE788 using ensemble docking, molecular dynamics and MM-GBSA. RSC Adv 6:65725–65735. https://doi.org/10.1039/c6ra08517b

    Article  CAS  Google Scholar 

  7. Fatima S, Pal D, Agarwal SM (2019) QSAR of clinically important EGFR mutant L858R/T790M pyridinylimidazole inhibitors. Chem Biol Drug Des 94:1306–1315. https://doi.org/10.1111/cbdd.13505

    Article  CAS  PubMed  Google Scholar 

  8. Elmetwally SA, Saied KF, Eissa IH, Elkaeed EB (2019) Design, synthesis and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorg Chem 88:102944. https://doi.org/10.1016/j.bioorg.2019.102944

    Article  CAS  PubMed  Google Scholar 

  9. Gogoi D, Baruah VJ, Chaliha AK et al (2016) 3D pharmacophore-based virtual screening, docking and density functional theory approach towards the discovery of novel human epidermal growth factor receptor-2 (HER2) inhibitors. J Theor Biol 411:68–80. https://doi.org/10.1016/j.jtbi.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  10. Issa NT, Stathias V, Schürer S, Dakshanamurthy S (2021) Machine and deep learning approaches for cancer drug repurposing. Semin Cancer Biol 68:132–142. https://doi.org/10.1016/j.semcancer.2019.12.011

    Article  CAS  PubMed  Google Scholar 

  11. Miljković F, Rodríguez-Pérez R, Bajorath J (2020) Machine learning models for accurate prediction of kinase inhibitors with different binding modes. J Med Chem 63:8738–8748. https://doi.org/10.1021/acs.jmedchem.9b00867

    Article  CAS  PubMed  Google Scholar 

  12. Dhiman K, Agarwal SM (2016) NPred: QSAR classification model for identifying plant based naturally occurring anti-cancerous inhibitors. RSC Adv 6:49395–49400. https://doi.org/10.1039/c6ra02772e

    Article  CAS  Google Scholar 

  13. Saini R, Fatima S, Agarwal SM (2020) TMLRpred: A machine learning classification model to distinguish reversible EGFR double mutant inhibitors. Chem Biol Drug Des 96:921–930. https://doi.org/10.1111/cbdd.13697

    Article  CAS  PubMed  Google Scholar 

  14. Karpov P, Godin G, Tetko IV (2020) Transformer-CNN: Swiss knife for QSAR modeling and interpretation. J Cheminform 12:1–12. https://doi.org/10.1186/s13321-020-00423-w

    Article  Google Scholar 

  15. Singh H, Singh S, Singla D et al (2015) QSAR based model for discriminating EGFR inhibitors and non-inhibitors using Random forest. Biol Direct 10:1–12. https://doi.org/10.1186/s13062-015-0046-9

    Article  CAS  Google Scholar 

  16. Yadav I, Singh H, Khan M et al (2014) EGFRIndb: epidermal growth factor receptor inhibitor database. Anticancer Agents Med Chem 14:928–935. https://doi.org/10.2174/1871520614666140323203140

    Article  CAS  PubMed  Google Scholar 

  17. Tetko IV, Maran U, Tropsha A (2017) Public (Q)SAR services, integrated modeling environments, and model repositories on the web: state of the art and perspectives for future development. Mol Inform 36:1–14. https://doi.org/10.1002/minf.201600082

    Article  CAS  Google Scholar 

  18. Cw YAP (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474

    Article  Google Scholar 

  19. Danishuddin KA, Mobeen F, Khan AU (2018) Development of Ligand and Structure-based classification models to design novel inhibitors against antibiotic hydrolyzing enzymes: Integration of web server. J Biomol Struct Dyn 36:2966–2975. https://doi.org/10.1080/07391102.2017.1373034

    Article  CAS  PubMed  Google Scholar 

  20. Sander T, Freyss J, Von Korff M, Rufener C (2015) DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 55:460–473. https://doi.org/10.1021/ci500588j

    Article  CAS  PubMed  Google Scholar 

  21. Cao Y, Charisi A, Cheng LC et al (2008) ChemmineR: a compound mining framework for R. Bioinformatics 24:1733–1734. https://doi.org/10.1093/bioinformatics/btn307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Melagraki G, Afantitis A, Sarimveis H et al (2010) In silico exploration for identifying structure-activity relationship of MEK inhibition and oral bioavailability for isothiazole derivatives. Chem Biol Drug Des 76:397–406. https://doi.org/10.1111/j.1747-0285.2010.01029.x

    Article  CAS  PubMed  Google Scholar 

  23. Afantitis A, Melagraki G, Koutentis PA et al (2011) Ligand - Based virtual screening procedure for the prediction and the identification of novel β-amyloid aggregation inhibitors using Kohonen maps and counterpropagation artificial neural networks. Eur J Med Chem 46:497–508. https://doi.org/10.1016/j.ejmech.2010.11.029

    Article  CAS  PubMed  Google Scholar 

  24. Ishikawa T, Seto M, Banno H et al (2011) Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold. J Med Chem 54:8030–8050. https://doi.org/10.1021/jm2008634

    Article  CAS  PubMed  Google Scholar 

  25. Ducray R, Ballard P, Barlaam BC et al (2008) Novel 3-alkoxy-1H-pyrazolo[3,4-d]pyrimidines as EGFR and erbB2 receptor tyrosine kinase inhibitors. Bioorganic Med Chem Lett 18:959–962. https://doi.org/10.1016/j.bmcl.2007.12.035

    Article  CAS  Google Scholar 

  26. Stevens KL, Alligood KJ, Alberti JGB et al (2009) Synthesis and stereochemical effects of pyrrolidinyl-acetylenic thieno[3,2-d]pyrimidines as EGFR and ErbB-2 inhibitors. Bioorganic Med Chem Lett 19:21–26. https://doi.org/10.1016/j.bmcl.2008.11.023

    Article  CAS  Google Scholar 

  27. Wissner A, Overbeek E, Reich MF et al (2003) Synthesis and structure-activity relationships of 6,7-disubstituted 4-anilinoquinoline-3-carbonitriles. The design of an orally active, irreversible inhibitor of the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) and the human epi. J Med Chem 46:49–63. https://doi.org/10.1021/jm020241c

    Article  CAS  PubMed  Google Scholar 

  28. Denny WA (2001) The 4-anilinoquinazoline class of inhibitors of the erbB family of receptor tyrosine kinases. Farmaco 56:51–56. https://doi.org/10.1016/S0014-827X(01)01026-6

    Article  CAS  PubMed  Google Scholar 

  29. Yun CH, Boggon TJ, Li Y et al (2007) Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11:217–227. https://doi.org/10.1016/j.ccr.2006.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pawar VG, Sos ML, Rode HB et al (2010) Synthesis and biological evaluation of 4-anilinoquinolines as potent inhibitors of epidermal growth factor receptor. J Med Chem 53:2892–2901. https://doi.org/10.1021/jm901877j

    Article  CAS  PubMed  Google Scholar 

  31. Waterson AG, Stevens KL, Reno MJ et al (2006) Alkynyl pyrimidines as dual EGFR/ErbB2 kinase inhibitors. Bioorganic Med Chem Lett 16:2419–2422. https://doi.org/10.1016/j.bmcl.2006.01.111

    Article  CAS  Google Scholar 

  32. Gandin V, Ferrarese A, Dalla Via M et al (2015) Targeting kinases with anilinopyrimidines: discovery of N-phenyl-N’-[4-(pyrimidin-4-ylamino)phenyl]urea derivatives as selective inhibitors of class III receptor tyrosine kinase subfamily. Sci Rep 5:1–16. https://doi.org/10.1038/srep16750

    Article  CAS  Google Scholar 

  33. Fink BE, Norris D, Mastalerz H et al (2011) Novel pyrrolo[2,1-f][1,2,4]triazin-4-amines: dual inhibitors of EGFR and HER2 protein tyrosine kinases. Bioorganic Med Chem Lett 21:781–785. https://doi.org/10.1016/j.bmcl.2010.11.100

    Article  CAS  Google Scholar 

  34. Rheault TR, Caferro TR, Dickerson SH et al (2009) Thienopyrimidine-based dual EGFR/ErbB-2 inhibitors. Bioorganic Med Chem Lett 19:817–820. https://doi.org/10.1016/j.bmcl.2008.12.011

    Article  CAS  Google Scholar 

  35. Kawakita Y, Banno H, Ohashi T et al (2012) Design and synthesis of pyrrolo[3,2- d ]pyrimidine human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors: Exploration of novel back-pocket binders. J Med Chem 55:3975–3991. https://doi.org/10.1021/jm300185p

    Article  CAS  PubMed  Google Scholar 

  36. Milik SN, Abdel-Aziz AK, Lasheen DS et al (2018) Surmounting the resistance against EGFR inhibitors through the development of thieno[2,3-d]pyrimidine-based dual EGFR/HER2 inhibitors. Eur J Med Chem 155:316–336. https://doi.org/10.1016/j.ejmech.2018.06.011

    Article  CAS  PubMed  Google Scholar 

  37. Ballard P, Bradbury RH, Hennequin LFA et al (2005) 5-Substituted 4-anilinoquinazolines as potent, selective and orally active inhibitors of erbB2 receptor tyrosine kinase. Bioorganic Med Chem Lett 15:4226–4229. https://doi.org/10.1016/j.bmcl.2005.06.068

    Article  CAS  Google Scholar 

  38. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594. https://doi.org/10.1021/jm300687e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Mohan Agarwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ravi Saini: Work done at ICMR-National Institute of Cancer Prevention and Research.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, R., Agarwal, S.M. EGFRisopred: a machine learning-based classification model for identifying isoform-specific inhibitors against EGFR and HER2. Mol Divers 26, 1531–1543 (2022). https://doi.org/10.1007/s11030-021-10284-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10284-6

Keywords

Navigation