Skip to main content

Advertisement

Log in

Autophagy in Xp11 translocation renal cell carcinoma: from bench to bedside

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Xp11 translocation renal cell carcinoma (tRCC) characterized by the rearrangement of the TFE3 is recently identified as a unique subtype of RCC that urgently requires effective prevention and treatment strategies. Therefore, determining suitable therapeutic targets and fully understanding the biological significance of tRCC is essential. The importance of autophagy is increasingly acknowledged because it shows carcinogenic activity or suppressor effect. Autophagy is a physiological cellular process critical to maintaining cell homeostasis, which is involved in the lysosomal degradation of cytoplasmic organelles and macromolecules via the lysosomal pathway, suggesting that targeting autophagy is a potential therapeutic approach for cancer therapies. However, the underlying mechanism of autophagy in tRCC is still ambiguous. In this review, we summarize the autophagy-related signaling pathways associated with tRCC. Moreover, we examine the roles of autophagy and the immune response in tumorigenesis and investigate how these factors interact to facilitate or prevent tumorigenesis. Besides, we review the findings regarding the treatment of tRCC via induction or inhibition of autophagy. Hopefully, this study will shed some light on the functions and implications of autophagy and emphasize its role as a potential molecular target for therapeutic intervention in tRCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

MiT:

Microphthalmia transcription factor

RCC:

Renal cell carcinoma

tRCC:

Translocation RCC

ccRCC:

Clear cell renal cell carcinomas

pRCC:

Papillary renal cell carcinomas;

MiT:

Microphthalmia transcription factor\

CMA:

Chaperon-mediated autophagy

AMPK:

AMP active protein kinase

LPS:

Lipopolysaccharide

HCQ:

Hydroxychloroquine

CQ:

Chloroquine

References

  1. Calio A, Segala D, Munari E, Brunelli M, Martignoni G (2019) MiT family translocation renal cell carcinoma: from the early descriptions to the current knowledge. Cancers (Basel) 11(8):1110

    Article  CAS  Google Scholar 

  2. Inamura K (2017) Translocation renal cell carcinoma: an update on clinicopathological and molecular features. Cancers (Basel) 9(9):111

    Article  CAS  Google Scholar 

  3. Cheng X, Gan W, Zhang G, Li X, Guo H (2016) Clinical characteristics of XP11.2 translocation/TFE3 gene fusion renal cell carcinoma: a systematic review and meta-analysis of observational studies. BMC Urol 16(1):40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Malouf GG, Monzon FA, Couturier J, Molinie V, Escudier B, Camparo P, Su X, Yao H, Tamboli P, Lopez-Terrada D et al (2013) Genomic heterogeneity of translocation renal cell carcinoma. Clin Cancer Res 19(17):4673–4684

    Article  CAS  PubMed  Google Scholar 

  5. Masago T, Kobayakawa S, Ohtani Y, Taniguchi K, Naka T, Kuroda N, Takahashi C, Isoyama T, Sejima T (2020) Xp11.2 translocation renal cell carcinoma with TFE3 gene fusion in the elderly: case report and literature review. Int Cancer Conf J 9(4):182–186

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang XT, Xia QY, Ye SB, Wang X, Li R, Fang R, Shi SS, Zhang RS, Tan X, Chen JY et al (2018) RNA sequencing of Xp11 translocation-associated cancers reveals novel gene fusions and distinctive clinicopathologic correlations. Mod Pathol 31(9):1346–1360

    Article  CAS  PubMed  Google Scholar 

  7. Gandhi JS, Malik F, Amin MB, Argani P, Bahrami A (2020) MiT family translocation renal cell carcinomas: a 15th anniversary update. Histol Histopathol 35(2):125–136

    CAS  PubMed  Google Scholar 

  8. Kauffman EC, Ricketts CJ, Rais-Bahrami S, Yang Y, Merino MJ, Bottaro DP, Srinivasan R, Linehan WM (2014) Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers. Nat Rev Urol 11(8):465–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ellis CL, Eble JN, Subhawong AP, Martignoni G, Zhong M, Ladanyi M, Epstein JI, Netto GJ, Argani P (2014) Clinical heterogeneity of Xp11 translocation renal cell carcinoma: impact of fusion subtype, age, and stage. Mod Pathol 27(6):875–886

    Article  CAS  PubMed  Google Scholar 

  10. Argani P, Zhong M, Reuter VE, Fallon JT, Epstein JI, Netto GJ, Antonescu CR (2016) TFE3-fusion variant analysis defines specific clinicopathologic associations among Xp11 translocation cancers. Am J Surg Pathol 40(6):723–737

    Article  PubMed  PubMed Central  Google Scholar 

  11. Calio A, Brunelli M, Segala D, Pedron S, Remo A, Ammendola S, Munari E, Pierconti F, Mosca A, Bollito E et al (2020) Comprehensive analysis of 34 MiT family translocation renal cell carcinomas and review of the literature: investigating prognostic markers and therapy targets. Pathology 52(3):297–309

    Article  CAS  PubMed  Google Scholar 

  12. Silva VR, Neves SP, Santos LS, Dias RB, Bezerra DP (2020) Challenges and therapeutic opportunities of autophagy in cancer therapy. Cancers (Basel) 12(11):3461

    Article  CAS  Google Scholar 

  13. Chavez-Dominguez R, Perez-Medina M, Lopez-Gonzalez JS, Galicia-Velasco M, Aguilar-Cazares D (2020) The double-edge sword of autophagy in cancer: from tumor suppression to pro-tumor activity. Front Oncol 10:578418

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yamazaki T, Bravo-San Pedro JM, Galluzzi L, Kroemer G, Pietrocola F (2021) Autophagy in the cancer-immunity dialogue. Adv Drug Deliv Rev 169:40–50

    Article  CAS  PubMed  Google Scholar 

  15. Yun CW, Lee SH (2018) The roles of autophagy in cancer. Int J Mol Sci 19(11):3466

    Article  PubMed Central  CAS  Google Scholar 

  16. Gerada C, Ryan KM (2020) Autophagy, the innate immune response and cancer. Mol Oncol 14(9):1913–1929

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ferraresi A, Girone C, Esposito A, Vidoni C, Vallino L, Secomandi E, Dhanasekaran DN, Isidoro C (2020) How autophagy shapes the tumor microenvironment in ovarian cancer. Front Oncol 10:599915

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cui J, Shen HM, Lim LHK (2020) The role of autophagy in liver cancer: crosstalk in signaling pathways and potential therapeutic targets. Pharmaceuticals (Basel) 13(12):432

    Article  CAS  Google Scholar 

  19. Markby GR, Sakamoto K (2020) Transcription factor EB and TFE3: new metabolic coordinators mediating adaptive responses to exercise in skeletal muscle? Am J Physiol Endocrinol Metab 319(4):E763–E768

    Article  CAS  PubMed  Google Scholar 

  20. Bustos SO, Antunes F, Rangel MC, Chammas R (2020) Emerging autophagy functions shape the tumor microenvironment and play a role in cancer progression - implications for cancer therapy. Front Oncol 10:606436

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pena-Oyarzun D, Reyes M, Hernandez-Caceres MP, Kretschmar C, Morselli E, Ramirez-Sarmiento CA, Lavandero S, Torres VA, Criollo A (2020) Role of autophagy in the microenvironment of oral squamous cell carcinoma. Front Oncol 10:602661

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li F, Guo H, Yang Y, Feng M, Liu B, Ren X, Zhou H (2019) Autophagy modulation in bladder cancer development and treatment (Review). Oncol Rep 42(5):1647–1655

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Khan I, Baig MH, Mahfooz S, Rahim M, Karacam B, Elbasan EB, Ulasov I, Dong JJ, Hatiboglu MA (2021) Deciphering the role of autophagy in treatment of resistance mechanisms in glioblastoma. Int J Mol Sci 22(3):1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kma L, Baruah TJ (2021) The interplay of ROS and the PI3K/Akt pathway in autophagy regulation. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.2104

    Article  PubMed  Google Scholar 

  25. Shi Y, Norberg E, Vakifahmetoglu-Norberg H (2020) Mutant p53 as a regulator and target of autophagy. Front Oncol 10:607149

    Article  PubMed  Google Scholar 

  26. Wang H, Wang N, Xu D, Ma Q, Chen Y, Xu S, Xia Q, Zhang Y, Prehn JHM, Wang G et al (2020) Oxidation of multiple MiT/TFE transcription factors links oxidative stress to transcriptional control of autophagy and lysosome biogenesis. Autophagy 16(9):1683–1696

    Article  CAS  PubMed  Google Scholar 

  27. Chu Y, Chang Y, Lu W, Sheng X, Wang S, Xu H, Ma J (2020) Regulation of autophagy by glycolysis in cancer. Cancer Manag Res 12:13259–13271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Devenport SN, Shah YM (2019) Functions and implications of autophagy in colon cancer. Cells 8(11):1349

    Article  CAS  PubMed Central  Google Scholar 

  29. Macher-Goeppinger S, Roth W, Wagener N, Hohenfellner M, Penzel R, Haferkamp A, Schirmacher P, Aulmann S (2012) Molecular heterogeneity of TFE3 activation in renal cell carcinomas. Mod Pathol 25(2):308–315

    Article  CAS  PubMed  Google Scholar 

  30. Yin X, Wang B, Gan W, Zhuang W, Xiang Z, Han X, Li D (2019) TFE3 fusions escape from controlling of mTOR signaling pathway and accumulate in the nucleus promoting genes expression in Xp11.2 translocation renal cell carcinomas. J Exp Clin Cancer Res 38(1):119

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333(1–2):169–174

    Article  CAS  PubMed  Google Scholar 

  32. Chung C, Seo W, Silwal P, Jo EK (2020) Crosstalks between inflammasome and autophagy in cancer. J Hematol Oncol 13(1):100

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lim J, Murthy A (2020) Targeting autophagy to treat cancer: challenges and opportunities. Front Pharmacol 11:590344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaushik S, Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19(6):365–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gomes LR, Menck CFM, Cuervo AM (2017) Chaperone-mediated autophagy prevents cellular transformation by regulating MYC proteasomal degradation. Autophagy 13(5):928–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alfaro IE, Albornoz A, Molina A, Moreno J, Cordero K, Criollo A, Budini M (2018) Chaperone mediated autophagy in the crosstalk of neurodegenerative diseases and metabolic disorders. Front Endocrinol (Lausanne) 9:778

    Article  Google Scholar 

  37. Zhao Q, Gao SM, Wang MC (2020) Molecular mechanisms of lysosome and nucleus communication. Trends Biochem Sci 45(11):978–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fernandez-Mosquera L, Yambire KF, Couto R, Pereyra L, Pabis K, Ponsford AH, Diogo CV, Stagi M, Milosevic I, Raimundo N (2019) Mitochondrial respiratory chain deficiency inhibits lysosomal hydrolysis. Autophagy 15(9):1572–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dossou AS, Basu A (2019) The emerging roles of mtorc1 in macromanaging autophagy. Cancers (Basel) 11(10):1422

    Article  CAS  Google Scholar 

  40. Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20(3):460–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaleagasioglu F, Ali DM, Berger MR (2020) Multiple facets of autophagy and the emerging role of alkylphosphocholines as autophagy modulators. Front Pharmacol 11:547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kageyama S, Gudmundsson SR, Sou YS, Ichimura Y, Tamura N, Kazuno S, Ueno T, Miura Y, Noshiro D, Abe M et al (2021) p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response. Nat Commun 12(1):16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Damayanti NP, Budka JA, Khella HWZ, Ferris MW, Ku SY, Kauffman E, Wood AC, Ahmed K, Chintala VN, Adelaiye-Ogala R et al (2018) Therapeutic targeting of TFE3/IRS-1/PI3K/mTOR axis in translocation renal cell carcinoma. Clin Cancer Res 24(23):5977–5989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zheng K, Ma J, Wang Y, He Z, Deng K (2020) Sulforaphane inhibits autophagy and induces exosome-mediated paracrine senescence via regulating mTOR/TFE3. Mol Nutr Food Res 64(14):e1901231

    Article  PubMed  CAS  Google Scholar 

  45. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li Y, Chen Y (2019) AMPK and autophagy. Adv Exp Med Biol 1206:85–108

    Article  CAS  PubMed  Google Scholar 

  47. Martina JA, Diab HI, Lishu L, Jeong AL, Patange S, Raben N, Puertollano R (2014) The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal 7(309):ra9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Brady OA, Jeong E, Martina JA, Pirooznia M, Tunc I, Puertollano R (2018) The transcription factors TFE3 and TFEB amplify p53 dependent transcriptional programs in response to DNA damage. Elife. https://doi.org/10.7554/eLife.40856

    Article  PubMed  PubMed Central  Google Scholar 

  49. Boone BA, Bahary N, Zureikat AH, Moser AJ, Normolle DP, Wu WC, Singhi AD, Bao P, Bartlett DL, Liotta LA et al (2015) Safety and biologic response of pre-operative autophagy inhibition in combination with gemcitabine in patients with pancreatic adenocarcinoma. Ann Surg Oncol 22(13):4402–4410

    Article  PubMed  PubMed Central  Google Scholar 

  50. Muller-Hocker J, Babaryka G, Schmid I, Jung A: Overexpression of cyclin D1, D3, and p21 in an infantile renal carcinoma with Xp11.2 TFE3-gene fusion. Pathol Res Pract 2008, 204(8):589–597.

  51. Nunez-Olvera SI, Gallardo-Rincon D, Puente-Rivera J, Salinas-Vera YM, Marchat LA, Morales-Villegas R, Lopez-Camarillo C (2019) Autophagy machinery as a promising therapeutic target in endometrial cancer. Front Oncol 9:1326

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13(9):1016–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ciccarese F, Zulato E, Indraccolo S (2019) LKB1/AMPK pathway and drug response in cancer: a therapeutic perspective. Oxid Med Cell Longev 2019:8730816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. El-Houjeiri L, Possik E, Vijayaraghavan T, Paquette M, Martina JA, Kazan JM, Ma EH, Jones R, Blanchette P, Puertollano R et al (2019) The Transcription factors TFEB and TFE3 Link the FLCN-AMPK signaling axis to innate immune response and pathogen resistance. Cell Rep 26(13):3613-3628.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li J, Chen H, Lou J, Bao G, Wu C, Lou Z, Wang X, Ding J, Li Z, Xiao J et al (2021) Exenatide improves random-pattern skin flap survival via TFE3 mediated autophagy augment. J Cell Physiol 236(5):3641–3659

    Article  CAS  PubMed  Google Scholar 

  56. Zhou K, Zheng Z, Li Y, Han W, Zhang J, Mao Y, Chen H, Zhang W, Liu M, Xie L et al (2020) TFE3, a potential therapeutic target for Spinal Cord Injury via augmenting autophagy flux and alleviating ER stress. Theranostics 10(20):9280–9302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lawrence RE, Fromm SA, Fu Y, Yokom AL, Kim DJ, Thelen AM, Young LN, Lim CY, Samelson AJ, Hurley JH et al (2019) Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex. Science 366(6468):971–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rahman MA, Saha SK, Rahman MS, Uddin MJ, Uddin MS, Pang MG, Rhim H, Cho SG (2020) Molecular insights into therapeutic potential of autophagy modulation by natural products for cancer stem cells. Front Cell Dev Biol 8:283

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yun CW, Jeon J, Go G, Lee JH, Lee SH (2020) The dual role of autophagy in cancer development and a therapeutic strategy for cancer by targeting autophagy. Int J Mol Sci 22(1):179

    Article  PubMed Central  CAS  Google Scholar 

  60. Ambrosio S, Majello B (2020) Autophagy roles in genome maintenance. Cancers (Basel) 12(7):1793

    Article  CAS  Google Scholar 

  61. Wang B, Yin X, Gan W, Pan F, Li S, Xiang Z, Han X, Li D (2020) PRCC-TFE3 fusion-mediated PRKN/parkin-dependent mitophagy promotes cell survival and proliferation in PRCC-TFE3 translocation renal cell carcinoma. Autophagy. https://doi.org/10.1080/15548627.2020.1831815

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pastore N, Brady OA, Diab HI, Martina JA, Sun L, Huynh T, Lim JA, Zare H, Raben N, Ballabio A et al (2016) TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy 12(8):1240–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Raben N, Puertollano R (2016) TFEB and TFE3: linking lysosomes to cellular adaptation to stress. Annu Rev Cell Dev Biol 32:255–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang S, Chen Y, Li X, Zhang W, Liu Z, Wu M, Pan Q, Liu H (2020) Emerging role of transcription factor EB in mitochondrial quality control. Biomed Pharmacother 128:110272

    Article  CAS  PubMed  Google Scholar 

  65. Irazoqui JE (2020) Key Roles of MiT transcription factors in innate immunity and inflammation. Trends Immunol 41(2):157–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Villegas F, Lehalle D, Mayer D, Rittirsch M, Stadler MB, Zinner M, Olivieri D, Vabres P, Duplomb-Jego L, De Bont E et al (2019) Lysosomal signaling licenses embryonic stem cell differentiation via inactivation of Tfe3. Cell Stem Cell 24(2):257-270 e258

    Article  CAS  PubMed  Google Scholar 

  67. Martina JA, Puertollano R (2018) Protein phosphatase 2A stimulates activation of TFEB and TFE3 transcription factors in response to oxidative stress. J Biol Chem 293(32):12525–12534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fan T, Pi H, Li M, Ren Z, He Z, Zhu F, Tian L, Tu M, Xie J, Liu M et al (2018) Inhibiting MT2-TFE3-dependent autophagy enhances melatonin-induced apoptosis in tongue squamous cell carcinoma. J Pineal Res 64(2):e12457

    Article  CAS  Google Scholar 

  69. Di Malta C, Siciliano D, Calcagni A, Monfregola J, Punzi S, Pastore N, Eastes AN, Davis O, De Cegli R, Zampelli A et al (2017) Transcriptional activation of RagD GTPase controls mTORC1 and promotes cancer growth. Science 356(6343):1188–1192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Perera RM, Di Malta C, Ballabio A (2019) MiT/TFE family of transcription factors, lysosomes, and cancer. Annu Rev Cancer Biol 3:203–222

    Article  PubMed  Google Scholar 

  71. Rabanal-Ruiz Y, Korolchuk VI (2018) mTORC1 and nutrient homeostasis: the central role of the lysosome. Int J Mol Sci 19(3):818

    Article  PubMed Central  CAS  Google Scholar 

  72. Pastore N, Vainshtein A, Klisch TJ, Armani A, Huynh T, Herz NJ, Polishchuk EV, Sandri M, Ballabio A (2017) TFE3 regulates whole-body energy metabolism in cooperation with TFEB. EMBO Mol Med 9(5):605–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. La Spina M, Contreras PS, Rissone A, Meena NK, Jeong E, Martina JA (2020) MiT/TFE family of transcription factors: an evolutionary perspective. Front Cell Dev Biol 8:609683

    Article  PubMed  Google Scholar 

  74. Yin Q, Jian Y, Xu M, Huang X, Wang N, Liu Z, Li Q, Li J, Zhou H, Xu L et al (2020) CDK4/6 regulate lysosome biogenesis through TFEB/TFE3. J Cell Biol. https://doi.org/10.1083/jcb.201911036

    Article  PubMed  PubMed Central  Google Scholar 

  75. Li L, Zhao S, Liu Z, Zhang N, Pang S, Liu J, Liu C, Fan Y (2021) Sunitinib treatment promotes metastasis of drug-resistant renal cell carcinoma via TFE3 signaling pathway. Cell Death Dis 12(2):220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zaarour RF, Azakir B, Hajam EY, Nawafleh H, Zeinelabdin NA, Engelsen AST, Thiery J, Jamora C, Chouaib S (2021) Role of hypoxia-mediated autophagy in tumor cell death and survival. Cancers (Basel) 13(3):533

    Article  CAS  Google Scholar 

  77. de Souza ASC, Goncalves LB, Lepique AP, de Araujo-Souza PS (2020) The role of autophagy in tumor immunology-complex mechanisms that may be explored therapeutically. Front Oncol 10:603661

    Article  PubMed  PubMed Central  Google Scholar 

  78. Diaz-Montero CM, Rini BI, Finke JH (2020) The immunology of renal cell carcinoma. Nat Rev Nephrol 16(12):721–735

    Article  PubMed  Google Scholar 

  79. Ishimwe N, Zhang W, Qian J, Zhang Y, Wen L (2020) Autophagy regulation as a promising approach for improving cancer immunotherapy. Cancer Lett 475:34–42

    Article  CAS  PubMed  Google Scholar 

  80. Jiang GM, Tan Y, Wang H, Peng L, Chen HT, Meng XJ, Li LL, Liu Y, Li WF, Shan H (2019) The relationship between autophagy and the immune system and its applications for tumor immunotherapy. Mol Cancer 18(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  81. Luo X, Qiu Y, Dinesh P, Gong W, Jiang L, Feng X, Li J, Jiang Y, Lei YL, Chen Q (2021) The functions of autophagy at the tumour-immune interface. J Cell Mol Med. https://doi.org/10.1111/jcmm.16331

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yagil Z, Hadad Erlich T, Ofir-Birin Y, Tshori S, Kay G, Yekhtin Z, Fisher DE, Cheng C, Wong WS, Hartmann K et al (2012) Transcription factor E3, a major regulator of mast cell-mediated allergic response. J Allergy Clin Immunol 129(5):1357-1366 e1355

    Article  CAS  PubMed  Google Scholar 

  83. Chen D, Xie J, Fiskesund R, Dong W, Liang X, Lv J, Jin X, Liu J, Mo S, Zhang T et al (2018) Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat Commun 9(1):873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Huan C, Kelly ML, Steele R, Shapira I, Gottesman SR, Roman CA (2006) Transcription factors TFE3 and TFEB are critical for CD40 ligand expression and thymus-dependent humoral immunity. Nat Immunol 7(10):1082–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Perera RM, Bardeesy N (2015) Pancreatic cancer metabolism: breaking it down to build it back up. Cancer Discov 5(12):1247–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. New M, Tooze S (2019) The role of autophagy in pancreatic cancer-recent advances. Biology (Basel) 9(1):7

    Google Scholar 

  87. Pecoraro A, Pagano M, Russo G, Russo A (2020) Role of autophagy in cancer cell response to nucleolar and endoplasmic reticulum stress. Int J Mol Sci 21(19):7334

    Article  CAS  PubMed Central  Google Scholar 

  88. Mizushima N, Levine B (2020) Autophagy in human diseases. N Engl J Med 383(16):1564–1576

    Article  CAS  PubMed  Google Scholar 

  89. Sanchez-Gastaldo A, Kempf E, Gonzalez Del Alba A, Duran I (2017) Systemic treatment of renal cell cancer: a comprehensive review. Cancer Treat Rev 60:77–89

    Article  CAS  PubMed  Google Scholar 

  90. Argani P, Hicks J, De Marzo AM, Albadine R, Illei PB, Ladanyi M, Reuter VE, Netto GJ (2010) Xp11 translocation renal cell carcinoma (RCC): extended immunohistochemical profile emphasizing novel RCC markers. Am J Surg Pathol 34(9):1295–1303

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kauffman EC, Lang M, Rais-Bahrami S, Gupta GN, Wei D, Yang Y, Sourbier C, Srinivasan R (2019) Preclinical efficacy of dual mTORC1/2 inhibitor AZD8055 in renal cell carcinoma harboring a TFE3 gene fusion. BMC Cancer 19(1):917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Rua Fernandez OR, Escala Cornejo R, Navarro Martin M, Garcia Munoz M, Antunez Plaza P, Garcia Dominguez AR, Cruz Hernandez JJ (2018) Renal cell carcinoma associated With Xp11.2 translocation/TFE3 gene-fusion: a long response to mammalian target of rapamycin (mTOR) inhibitors. Urology 117:41–43

    Article  PubMed  Google Scholar 

  93. Parikh J, Coleman T, Messias N, Brown J (2009) Temsirolimus in the treatment of renal cell carcinoma associated with Xp112 translocation/TFE gene fusion proteins: a case report and review of literature. Rare Tumors 1(2):e53

    PubMed  PubMed Central  Google Scholar 

  94. Meskawi M, Valdivieso R, Dell’Oglio P, Trudeau V, Larcher A, Karakiewicz PI (2015) The role of everolimus in renal cell carcinoma. J Kidney Cancer VHL 2(4):187–194

    Article  PubMed  PubMed Central  Google Scholar 

  95. Koh Y, Lim HY, Ahn JH, Lee JL, Rha SY, Kim YJ, Kim TM, Lee SH (2013) Phase II trial of everolimus for the treatment of nonclear-cell renal cell carcinoma. Ann Oncol 24(4):1026–1031

    Article  CAS  PubMed  Google Scholar 

  96. Voss MH, Molina AM, Chen YB, Woo KM, Chaim JL, Coskey DT, Redzematovic A, Wang P, Lee W, Selcuklu SD et al (2016) Phase II trial and correlative genomic analysis of everolimus plus bevacizumab in advanced non-clear cell renal cell carcinoma. J Clin Oncol 34(32):3846–3853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, Staroslawska E, Sosman J, McDermott D, Bodrogi I et al (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356(22):2271–2281

    Article  CAS  PubMed  Google Scholar 

  98. Dutcher JP, de Souza P, McDermott D, Figlin RA, Berkenblit A, Thiele A, Krygowski M, Strahs A, Feingold J, Hudes G (2009) Effect of temsirolimus versus interferon-alpha on outcome of patients with advanced renal cell carcinoma of different tumor histologies. Med Oncol 26(2):202–209

    Article  CAS  PubMed  Google Scholar 

  99. Xu R, Ji Z, Xu C, Zhu J (2018) The clinical value of using chloroquine or hydroxychloroquine as autophagy inhibitors in the treatment of cancers: a systematic review and meta-analysis. Medicine (Baltimore) 97(46):e12912

    Article  CAS  Google Scholar 

  100. Tian AL, Wu Q, Liu P, Zhao L, Martins I, Kepp O, Leduc M, Kroemer G (2021) Lysosomotropic agents including azithromycin, chloroquine and hydroxychloroquine activate the integrated stress response. Cell Death Dis 12(1):6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Arnaout A, Robertson SJ, Pond GR, Lee H, Jeong A, Ianni L, Kroeger L, Hilton J, Coupland S, Gottlieb C et al (2019) A randomized, double-blind, window of opportunity trial evaluating the effects of chloroquine in breast cancer patients. Breast Cancer Res Treat 178(2):327–335

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This present study was supported in part by the National Natural Science Foundation of China (grant numbers: 81660755), and the Science and Technology Project of Shenzhen of China (Grant Numbers: JCYJ20170307160524377 and JCYJ20190808162605484).

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Corresponding author

Correspondence to Changchun Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consent to the publication of this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Wei, X. & Zeng, C. Autophagy in Xp11 translocation renal cell carcinoma: from bench to bedside. Mol Cell Biochem 476, 4231–4244 (2021). https://doi.org/10.1007/s11010-021-04235-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04235-w

Keywords

Navigation