Skip to main content
Log in

Antibiosis of Commensal Bacteria Harboring the Gut of Estuarine Water Fish ‘Chelon parsia’

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Screening of gut flora of the estuarine water fish ‘Chelon parsia’ for the presence of potential antibiotic producers resulted in finding a new strain Bacillus subtilis PP2. Further investigations focused on the active principle deduced that the molecule is a peptide class of antimicrobial agent with m/z of 1006.66. The culture condition optimization with improved combination and concentration of nitrogen and carbon sources had profound effect on bacterial growth as well as peptide production. In the preliminary stage of drug intervention, the partially characterized peptide antibiotic was found to be a broad-spectrum antifungal agent that can act against a number of fungal pathogens. The efficacy measurement indicated that the minimum inhibitory concentration (MIC) range of the peptide against various fungal pathogens ranges from 8.5 to 14.5 μg/mL. In terms of antibacterial activity, the molecule exhibits high efficacy, only in the narrow spectrum range. Antibacterial activity was observed against few bacterial pathogens with significantly pleasing MIC range (2.5 to 4.5 μg/mL) when compared with standard antibacterial drugs. The powerful surfactant property of the molecule opens up extended application into various fields. The novelty of the molecule is under investigation where the unique mass range (m/z 1006.66) of the molecule among the other peptide antibiotics produced by Bacillus subtilis is the key highlight. The findings of the present study suggest that the molecule can be proposed as a lead for the development of a multipurpose antimicrobial agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Ajesh, K., Sudarslal, S., Arunan, C., and Sreejith, K., Kannurin, a novel lipopeptide from Bacillus cereus strain AK1: isolation, structural evaluation and antifungal activities, J. Appl. Microbiol., 2013, vol. 115, no. 6, pp. 1287–1296. https://doi.org/10.1111/jam.12324Atlas of Oral Microbiology, Zhou, X. and Li, Y., Eds., Oxford: Academic, 2015, pp. 15–40.

    Article  CAS  PubMed  Google Scholar 

  2. Bairagi, A., Ghosh, K.S., Sen, S.K., and Ray, A.K., Enzyme producing bacterial flora isolated from fish digestive tracts, Aquacult. Int., 2002, vol. 10, no. 2, pp. 109–121. https://doi.org/10.1023/A:1021355406412

    Article  CAS  Google Scholar 

  3. Bano, N., DeRae Smith, A., Bennett, W., Vasquez, L., and Hollibaugh, J.T., Dominance of Mycoplasma in the guts of the Long-Jawed Mudsucker, Gillichthys mirabilis, from five California salt marshes, Environ. Microbiol., 2007, vol. 9, no. 10, pp. 2636–2641. https://doi.org/10.1111/j.1462-2920.2007.01381.x

  4. Bauer, A.W., Kirby, W.M.M., Sherris, J.C., and Turck, M., Antibiotic susceptibility testing by a standardized single disk method, Amer. J. Clin. Pathol., 1966, vol. 45, no. 4, pp. 493–496. https://doi.org/10.1093/ajcp/45.4_ts.493

    Article  CAS  Google Scholar 

  5. Bosshard, P.P., Abels, S., Zbinden, R., Böttger, E.C., and Altwegg, M., Ribosomal DNA sequencing for identification of aerobic gram-positive rods in the clinical laboratory (an 18-month evaluation), J. Clin. Microbiol., 2003, vol. 41, no. 9, pp. 4134–4140. https://doi.org/10.1128/JCM.41.9.4134-4140.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chapter 2 − Techniques for oral microbiology, in Atlas of Oral Microbiology, Zhou, X. and Li, Y., Eds., Oxford: Academic, 2015, pp. 15–40.

    Google Scholar 

  7. Chen, X.H., Lou, W.Y., Zong, M.H., and Smith, T.J., Optimization of culture conditions to produce high yields of active Acetobacter sp. CCTCC M209061 cells for anti-Pre-log reduction of prochiral ketones, BMC Biotechnol., 2011, vol. 11, p. 110. https://doi.org/10.1186/1472-6750-11-110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clements, K.D., Raubenheimer, D., and Choat, J.H., Nutritional ecology of marine herbivorous fishes: ten years on, Func. Ecol., 2009, vol. 23, no. 1, pp. 79–92.

    Article  Google Scholar 

  9. Cordero, H., Guardiola, F.A., Tapia-Paniagua, S.T., Cuesta, A., Meseguer, J., Balebona, M. C., and Esteban, M.A., Modulation of immunity and gut microbiota after dietary administration of alginate encapsulated Shewanella putrefaciens Pdp11 to gilthead seabream (Sparus aurata L.), Fish Shellfish Immunol., 2015, vol. 45, no. 2, pp. 608–618.

    Article  CAS  Google Scholar 

  10. Dhanasiri, A.K., Brunvold, L., Brinchmann, M.F., Korsnes, K., Bergh, O., and Kiron, V., Changes in the intestinal microbiota of wild Atlantic cod Gadus morhua L. upon captive rearing, Microb. Ecol., 2011, vol. 61, no. 1, pp. 20–30.

    Article  Google Scholar 

  11. Donaldson, G.P., Lee, S.M., and Mazmanian, S.K., Gut biogeography of the bacterial microbiota, Nat. Rev. Microbiol., 2016, vol. 14, no. 1, pp. 20–32. https://doi.org/10.1038/nrmicro3552

    Article  CAS  PubMed  Google Scholar 

  12. Dunlap, C.A., Bowman, M.J., and Rooney, A.P., Iturinic lipopeptide diversity in the Bacillus subtilis species group— important antifungals for plant disease biocontrol applications, Front. Microbiol., 2019, vol. 10, p. 1794.

    Article  Google Scholar 

  13. Garcia-Gutierrez, E., Mayer, M.J., Cotter, P.D., and Narbad, A., Gut microbiota as a source of novel antimicrobials, Gut Microbes, 2019, vol. 10, no. 1, pp. 1–21. https://doi.org/10.1080/19490976.2018.1455790

    Article  CAS  PubMed  Google Scholar 

  14. Geissler, M., Heravi, K.M., Henkel, M., and Hausmann, R., Lipopeptide biosurfactants from Bacillus species, in Biobased Surfactants, Hayes, D.G., Solaiman, D.K.Y., and Ashby R.D., Eds., AOCS Press, 2019, 2nd ed., Chapter 6, pp. 205–240.

    Google Scholar 

  15. Goldfarb, A.R., Saidel, L.J., and Mosovich, E., The ultraviolet absorption spectra of proteins, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 397–404.

    Article  CAS  Google Scholar 

  16. Hansen, G.H., Strom, E., and Olafsen, J.A., Effect of different holding regimens on the intestinal microflora of herring (Clupea harengus) larvae, Appl. Environ. Microbiol., 1992, vol. 58, no. 2, pp. 461–470.

    Article  CAS  Google Scholar 

  17. Hovda, M.B., Lunestad, B.T., Fontanillas, R., and Rosnes, J.T., Molecular characterisation of the intestinal microbiota of farmed Atlantic salmon (Salmo salar L.), Aquaculture., 2007, vol. 272, no. 1, pp. 581–588.

    Article  CAS  Google Scholar 

  18. Jain, D.K., Collins-Thompson, D.L., Lee, H., and Trevors, J.T., A drop-collapsing test for screening surfactant-producing microorganisms, J. Microbiol. Methods, 1991, vol. 13, no. 4, pp. 271–279.

    Article  Google Scholar 

  19. Ktari, N., Jridi, M., Bkhairia, I., Sayari, N., Ben Salah, R., and Nasri, M., Functionalities and antioxidant properties of protein hydrolysates from muscle of zebra blenny (Salaria basilisca) obtained with different crude protease extracts, Food Res. Int., 2012, vol. 49, no. 2, pp. 747–756.

    Article  CAS  Google Scholar 

  20. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem.,1951, vol. 193, no. 1, pp. 265–275.

    Article  CAS  Google Scholar 

  21. Mannanov, R. and Sattarova, R., Antibiotics produced by Bacillus bacteria, Chem. Nat. Compd., 2001, vol. 37, pp. 117–123. https://doi.org/10.1023/A:1012314516354

    Article  CAS  Google Scholar 

  22. Meena, K.R. and Kanwar, S.S., Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics, BioMed Res. Int., 2015. https://doi.org/10.1155/2015/473050

  23. Meyer, H., The ninhydrin reaction and its analytical applications, Biochem. J., 1957, vol. 67, no. 2, pp. 333–340.

    Article  CAS  Google Scholar 

  24. Mihalache, G., Balaes, T., Gostin, I., Stefan, M., Coutte, F., and Krier, F., Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants, Environ. Sci. Pollut. Res., 2018, vol. 25, no. 30, pp. 29784–29793.

    Article  CAS  Google Scholar 

  25. Miyake, S., Ngugi, D.K., and Stingl, U., Diet strongly influences the gut microbiota of surgeon fishes, Mol. Ecol., 2015, vol. 24, no. 3, pp. 656–672.

    Article  Google Scholar 

  26. Morikawa, M., Hirata, Y., and Imanaka, T., A study on the structure-function relationship of lipopeptide biosurfactants, Biochim. Biophys. Acta, 2000, vol. 1488, no. 3, pp. 211–218.

    Article  CAS  Google Scholar 

  27. Mulligan, C.N., Cooper, D.G., and Neufeld, R.J., Selection of microbes producing biosurfactants in media without hydrocarbons, J. Ferm. Technol.,1984, vol. 62, no. 4, pp. 311–314.

    CAS  Google Scholar 

  28. Pedersen, P.B., Bjornvad, M.E., Rasmussen, M.D., and Petersen, J.N., Cytotoxic potential of industrial strains of Bacillus sp., Regul. Toxicol. Pharmacol., 2002, vol. 36, no. 2, pp. 155–161.

    Article  CAS  Google Scholar 

  29. Pirri, G., Giuliani, A., Nicoletto, S.F., Pizzuto, L., and Rinaldi, A.C., Lipopeptides as anti-infectives: a practical perspective, Cent. Eur. J. Biol., 2009, vol. 4, no. 3, pp. 258–273. https://doi.org/10.2478/s11535-009-0031-3

    Article  CAS  Google Scholar 

  30. Sambrook, J. and Russel, D.W., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press, 2011, 3rd ed.

    Google Scholar 

  31. Shabeer Ali, H., Ajesh, K., Dileep, K.V., Prajosh, P., and Sreejith, K., Structural characterization of Kannurin isoforms and evaluation of the role of β-hydroxy fatty acid tail length in functional specificity, Sci. Rep., 2020, vol. 10, no. 1, p. 2839.

    Article  CAS  Google Scholar 

  32. Spanggaard, B., Huber, I., Nielsen, J., Nielsen, T., Appel, K.F., and Gram, L., The microflora of rainbow trout intestine: a comparison of traditional and molecular identification. Aquaculture, 2000, vol. 182, pp. 1–15.

    Article  CAS  Google Scholar 

  33. Teixeira, M.L., Cladera-Olivera, F., dos Santos, J., and Brandelli, A., Purification and characterization of a peptide from Bacillus licheniformis showing dual antimicrobial and emulsifying activities, Food Res. Int., 2009, vol. 42, no. 1, pp. 63–68.

    Article  CAS  Google Scholar 

  34. Vijayalakshmi, T.M. and Murali, R., Isolation and screening of Bacillus subtilis isolated from the dairy effluent for the production of protease, Int. J. Curr. Microbiol. App. Sci., 2015, vol. 4, no. 12, pp. 820–827.

    CAS  Google Scholar 

  35. Weisheng, F., Meng, L., Zhiyou, H., and Jingke, Z., Analytical methods of isolation and identification, in Phytochemicals in Human Health, Rao, V., Mans, D., and Rao, L., Eds., IntechOpen, 2019. https://doi.org/10.5772/intechopen.88122

    Book  Google Scholar 

  36. Witebsky, F.G., Maclowry, J.D., and French, S.S., Broth dilution minimum inhibitory concentrations: rationale for use of selected antimicrobial concentrations, J. Clin. Microbiol., 1979, vol. 9, no. 5, pp. 589–595.

    Article  CAS  Google Scholar 

  37. Zhang, L. and Sun, C., Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation, Appl. Environ. Microbiol., 2018, vol. 84, no. 18, e00445-18. https://doi.org/10.1128/AEM.00445-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zipperer, A., Konnerth, M.C., Laux, C., Berscheid, A., Janek, D., Weidenmaier, C., and Krismer, B., Human commensals producing a novel antibiotic impair pathogen colonization, Nature, 2016, vol. 535, no. 7613, pp. 511–516. https://doi.org/10.1038/nature18634

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the UGC-RGNF, Govt. of India for the financial support in the form of fellowship. We are expressing our gratitude to Dr. A. Bijukumar, Professor, Department of Aquatic Biology & Fisheries University of Kerala, Thiruvananthapuram, Kerala, India for helping in the identification of the fish used in this study.

Funding

No applicable funding sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sreejith.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

AUTHOR’S CONTRIBUTIONS

P. Prajosh —has planned and executed the work. Collected the fish, bacterial strains were screened, isolated and subjected to molecular characterization. Carried out the antifungal experiments and evaluated the surfactant property.

Ali H. Shabeer—has interpreted the results and contributed to write the manuscript.

P. Akhila—carried out the antibacterial studies.

K. Sreejith—overall supervision, supervised manuscript final editing, data interpretation and validation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajosh, P., Shabeer Ali, H., Akhila, P. et al. Antibiosis of Commensal Bacteria Harboring the Gut of Estuarine Water Fish ‘Chelon parsia’. Microbiology 90, 512–526 (2021). https://doi.org/10.1134/S0026261721040111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721040111

Keywords:

Navigation