Skip to main content
Log in

Effect of Methanol and Mineral Nitrogen Compounds on the Composition of Methanotrophic Enrichments from the Sediments of a Lake Baikal Methane Seep

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Diversity of methano- and methylotrophic bacteria in enrichments from the oxidized sediment layer maintained at 10°C in mineral media with nitrogen compounds (\({\text{NO}}_{3}^{ - }\) and \({\text{NH}}_{4}^{ + }\)) and methanol was studied using high-throughput sequencing of the V2–V3 region of the 16S rRNA gene. Methanotrophs of the bottom sediment belonged to the order Methylococcales, with predominance of the genus Methylobacter (6.4 and 4.6% of the total number of sequences, respectively). Members of the methylotrophic community belonged to the genus Methylotenera (family Methylophilaceae). Enrichments in the medium with ammonium and methane were characterized by the highest diversity of methanotrophs, containing 22 OTUs of the family Methylococcaceae, nine of which were not detected under other cultivation conditions. Altogether, only six out of 28 OTUs of methanotrophic bacteria exhibited similarity to cultured members of Methylobacter, Metyloglobulus, and Methylomicrobium, while others showed different levels of similarity (94–99%) to uncultured members of the family Methylococcaceae. The presence of 0.01% methanol promoted preferential development of methylotrophic bacteria, while 0.5% methanol suppressed the growth of methanotrophic bacteria irrespective of the nitrogen source added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Beck, D.A.C., Kalyuzhnaya, M.G., Malfatti, S., Tringe, S.G., Glavina del Rio, T., Ivanova, N., Lidstrom, M.E., and Chistoserdova, L., A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae, PeerJ., 2013, vol. 1, e23–e23. https://doi.org/10.7717/peerj.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bodelier, P.L.E., Roslev, P., Henckel, T., and Frenzel, P., Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots, Nature, 2000, vol. 403, pp. 421–424. https://doi.org/10.1038/35000193

    Article  CAS  PubMed  Google Scholar 

  3. Bol’shakov, A.M. and Egorov, A.V., On the use of phase-equilibrium degassing technique during gasometry studies in water basins, Okeanologiya, 1987, vol. 37, pp. 861–862.

    Google Scholar 

  4. Bukin, S.V., Pavlova, O.N., Kalmychkov, G.V., Ivanov, V.G., Pogodaeva, T.V., Galachyants, Yu.P., Bukin, Yu.S., Khabuev, A.V., and Zemskaya, T.I., Substrate specificity of methanogenic communities from lake Baikal bottom sediments associated with hydrocarbon gas discharge, Microbiology (Moscow), 2018, vol. 87, pp. 549–558. https://doi.org/10.1134/S0026261718040045

  5. Cabello-Yeves, P.J., Zemskaya, T.I., Zakharenko, A.S., Sakirko, M.V., Ivanov, V.G., Ghai, R., and Rodriguez-Valera, F., Microbiome of the deep Lake Baikal, a unique oxic bathypelagic habitat, Limnol. Oceanogr., 2020, vol. 65, pp. 1471–1488. https://doi.org/10.1002/lno.11401

    Article  CAS  Google Scholar 

  6. Chernitsyna, S.M., Mamaeva, E.V., Lomakina, A.V., Pogodaeva, T.V., Galach’yants, Y.P., Bukin, S.V., Khlystov, O.M., Zemskaya, T.I., and Pimenov, N.V., Phylogenetic diversity of microbial communities of the Posolsk bank bottom sediment, Lake Baikal, Microbiology (Moscow), 2016, vol. 85, pp. 672–680. https://doi.org/10.1134/S0026261716060060

  7. Crevecoeur, S., Vincent, W.F, Comte, J., Matveev, A., and Lovejoy, C., Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds, PLoS One, 2017, vol. 12, pp. 1–22. https://doi.org/10.1371/journal.pone.0188223

    Article  CAS  Google Scholar 

  8. Dam, B., Dam, S., Kim, Y., and Liesack, W., Ammonium induces differential expression of methane and nitrogen metabolism-related genes in Methylocystis sp. strain SC2, Environ. Microbiol., 2014, vol. 16, pp. 3115–3127. https://doi.org/10.1111/1462-2920.12367

    Article  CAS  PubMed  Google Scholar 

  9. De Batist, M., Klerkx, J., Rensbergen, V., Vanneste, M., Poort, J., Golmshtok, A.Y., Kremlev, A., Khlystov, O.M., and Krinitsky, P., Active hydrate destabilisation in Lake Baikal, Siberia, Terra Nova, 2002, vol. 14, pp. 436–442. https://doi.org/10.1130/0091-7613(2002)030<0631:SMVAMS>2.0.CO;2

    Article  CAS  Google Scholar 

  10. Deutzmann, J.S., Hoppert, M., and Schink, B., Characterization and phylogeny of a novel methanotroph, Methyloglobulus morosus gen. nov., spec. nov., Syst. Appl. Microbiol., 2014, vol. 37, pp. 165–169. https://doi.org/10.1016/j.syapm.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  11. Dixon, J.L., Sargeant, S., Nightingale, P.D., and Murrell, J.C., Gradients in microbial methanol uptake: productive coastal upwelling waters to oligotrophic gyres in the Atlantic Ocean, Int. Soc. Microb. Ecol., 2013, vol. 7, pp. 568–580. https://doi.org/10.1038/ismej.2012.130

    Article  CAS  Google Scholar 

  12. Fox, B.G., Froland, J.E., Dege, J., and Lipscomb, J.D., Methane monooxygenase from Methylosimis trichosporiwn OB3b: purification and properties of a three component system with high specific activity from a type II methanotroph, J. Biol. Chem., 1989, vol. 264, pp. 10023–10033.

    Article  CAS  Google Scholar 

  13. Gal’chenko V.F., Metanotrofnye bakterii (Methanotrophic Bacteria), Moscow: GEOS, 2001.

  14. Golubev, V.A., Thermal structure and statistical stability of bottom waters of Lake Baikal, Vodnye Resursy, 1981, no. 6, pp. 75–89.

  15. Hanson, R. and Hanson, T., Methanotrophic bacteria, Microbiol Rev., 1996, vol. 60, pp. 439–471.

    Article  CAS  Google Scholar 

  16. He, R., Wooller, M., Pohlman, J., Catranis, C., Quensen, J., Tiedje, J., and Leigh, M., Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing, Environ. Microbiol., 2012, vol. 14, pp. 1403–1419. https://doi.org/10.1111/j.1462-2920.2012.02725.x

    Article  CAS  PubMed  Google Scholar 

  17. Kadnikov, V.V., Mardanov, A.B., Beletsky, A.V., Shubenkova, O.V., Pogodaeva, T.N., Zemskaya, T.I., Ravin, N.V., and Skryabin, K.G., Microbial community structure in methane hydrate-bearing sediments of freshwater Lake Baikal, FEMS Microbiol. Ecol., 2012, vol. 79, pp. 348–358. https://doi.org/10.1111/j.1574-6941.2011.01221.x

    Article  CAS  PubMed  Google Scholar 

  18. Kalyuzhnaya, M.G., Lapidus, A., Ivanova, N., Copeland, A.C., McHardy, A.C., Szeto, E., Salamov, A., Grigoriev, I.V., Suciu, D., Levine, S.R., Markowitz, V.M., Rigoutsos, I., Tringe, S.G., Bruce, D.C., Richard-son, P.M., et al., High-resolution metagenomics targets specific functional types in complex microbial communities, Nature Biotechnol., 2008, vol. 26, pp. 1029–1034.

    Article  CAS  Google Scholar 

  19. Kalyuzhnaya, M.G., and Xing, X.H., Methane Biocatalysis: Paving the Way to Sustainability, 2018. https://doi.org/10.1038/nbt.1488

  20. Khlystov, O., De Batist, M., Shoji, H., Hachikubo, A., Nishio, S., Naudts, L., Poort, J., Khabuev, A., Belousov, O., Manakov, A., and Kalmychkov, G., Gas hydrate of Lake Baikal: discovery and varieties, J. Asian Earth Sci., 2013, vol. 62, pp. 162–166. https://doi.org/10.1016/j.jseaes.2012.03.009

    Article  Google Scholar 

  21. Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K., and Schloss, P.D., Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform, Appl. Environ. Microbiol., 2013, vol. 79, pp. 5112–5120. https://doi.org/10.1128/AEM.01043-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuznetsov, S.I. and Dubinina, G.A., Metody izucheniya vodnykh mikroorganizmov (Methods of Studying Aquatic Microorganisms), Moscow: Nauka, 1989.

  23. Liikanen, A. and Martikainen, P.J., Effect of ammonium and oxygen on methane and nitrous oxide fluxes across sediment–water interface in a eutrophic lake, Chemosphere, 2003, vol. 52, pp. 1287–1293.

    Article  CAS  Google Scholar 

  24. Lomakina, A., Mamaeva, E., Pogodaeva, T., Kalmychkov, G., Khalzov, I., and Zemskaya, T., Anaerobic methane oxidation in enrichment cultures from deep sediments of a mud volcano Peschanka (South Baikal), Microbiology (Moscow), 2018, vol. 87, pp. 317–325. https://doi.org/10.1134/S0026261718030049

    Article  CAS  Google Scholar 

  25. Martin, P., Granina, L.Z., Martens, K., and Goddeeris, B., Oxygen concentration profiles in sediments of two ancient lakes: Lake Baikal (Siberia, Russia) and Lake Malawi (East Africa), Hydrobiologia, 1998, vol. 367, pp. 163–174.

    Article  CAS  Google Scholar 

  26. Muller, B., Maerki, M., Schmid, M., Vologina, E.G., Wehrli, B., Wuest, A., and Sturm, M., Internal carbon and nutrient cycling in Lake Baikal: sedimentation, upwelling, and early diagenesis, Global Planet. Change, 2005, vol. 46, pp. 101–124.

    Article  Google Scholar 

  27. Murase, J. and Sugimoto, A., Inhibitory effect of light on methane oxidation in the pelagic water column of a mesotrophic lake (Lake Biwa, Japan), Limnol. Oceanogr., 2005, vol. 50, pp. 1339–1343.

    Article  CAS  Google Scholar 

  28. Namsaraev, B.B. and Zemskaya, T.I., Mikrobiologicheskie protsessy krugovorota ugleroda v donnykh osadkakh ozera Baikal (Microbiological Processes of the Carbon Cycle in Bottom Sediments of Lake Baikal), Novosibirsk: GEO, 2000. Nyerges, G. and Stein, L.Y., Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria, FEMS Microbiol. Lett., 2009, vol. 297, pp. 131–136. https://doi.org/10.1111/j.1574-6968.2009.01674.x

    Article  CAS  Google Scholar 

  29. Op den Camp, H., Islam, T., Stott, M., Harhangi, H., Hynes, A., Schouten, S., Jetten, M., Birkeland, N., Pol, A., and Dunfield, P., Minireview: environmental, genomic, and taxonomic perspectives on methanotrophic Verrucomicrobia, Environ. Microbiol. Rep., 2009, vol. 1, pp. 293–306.

    Article  CAS  Google Scholar 

  30. Pogodaeva, T.V., Zemskaya, T.I., and Khlystov, O.M., Preliminary estimate of dissolved components flowing through water-bottom interface at sites of oil and gas discharge in Lake Baikal, Proc. 11th Conf. on Gas in Marine Sediments, Nice, 2012, p. 74.

  31. Pogodaeva, T.V., Lopatina, I.N., Khlystov, O.M., Egorov, A.V., and Zemskaya, T.I., Background composition of pore waters in Lake Baikal bottom sediments, J. Great Lakes Res., 2017, vol. 43, pp. 1030–1043. https://doi.org/10.1016/j.jglr.2017.09.003

    Article  CAS  Google Scholar 

  32. Pogodaeva, T.V., Sypachev, R.I., Akhmanov, G.G., and Khlystov, O.M., Geochemistry of gas-saturated fluids of mud volcanoes and methane seeps (Lake Baikal), VIII Mezhdunarodnaya nauchno-prakticheskaya konferenziya “Morskie issledovania i obrazovanie” (Proc. VIII Int. Conf. “Marine Research and Education. Maresedu-2019” (Moscow, Shirshov Institute of Oceanology, Russian Academy of Sciences), Tver: PoliPRESS, 2019, vol. 2, pp. 71–73.

  33. Reeburgh, W.S., Oceanic methane biogeochemistry, Chem. Rev., 2007, vol. 107, pp. 486–513.

    Article  CAS  Google Scholar 

  34. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R. A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J., and Weber, C.F., Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 2009, vol. 75, pp. 7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shubenkova, O.V., Zemskaia, T.I., Chernitsyna, S.M., Kh-lystov, O.M., and Triboĭ, T.I., The first results of an investigation into the phylogenetic diversity of microorganisms in Southern Baikal sediments in the region of subsurface discharge of methane hydrates, Microbiology (Moscow), 2005, vol. 74, pp. 370–377.

    Article  CAS  Google Scholar 

  36. Tays, C., Guarnieri, M.T., Sauvageau, D., and Stein, L.Y., Combined effects of carbon and nitrogen source to optimize growth of proteobacterial methanotrophs, Front. Microbiol., 2018, vol. 9, pp. 1–14. https://doi.org/10.3389/fmicb.2018.02239

    Article  Google Scholar 

  37. Trotsenko Yu.A. and Khmelenina V.N., Extremal’nye metanotrofy (Extremophilic Methanotrophs), Pushchino: Izd. Otd. Nanotechnol. Int. Technol., 2008.

  38. Vorob’ev, A.V. and Dedysh, S.N., Inadequacy of enrichment culture technique for assessing the structure of methanotrophic communities in peat soil, Microbiology (Moscow), 2008, vol. 77, pp. 504–507.

    Article  Google Scholar 

  39. Whittenbury, R., Philips, K., Wilkinson, J., Enrichment isolation and some properties of methane-utilizing bacteria, J. Gen. Microbiol., 1970, vol. 61, pp. 205–218.

    Article  CAS  Google Scholar 

  40. Yang, Y., Tong, T., Chen, J., Liu, Y., and Xie, S., Ammonium impacts methane oxidation and methanotrophic community in freshwater sediment, Front. Bioeng. Biotechnol., 2020, vol. 20, pp. 1–11. https://doi.org/10.3389/fbioe.2020.00250

    Article  CAS  Google Scholar 

  41. Zakharenko, A.S., Galachyants, Y.P., Morozov, I.V., Shubenkova, O.V., Morozov, A.A., Ivanov, V.G., Pimenov, N.V., Krasnopeev, A.Y., and Zemskaya, T.I., Bacterial communities in areas of oil and methane seeps in pelagic of Lake Baikal, Microb. Ecol., 2019, vol. 78, pp. 269–285. https://doi.org/10.1007/s00248-018-1299-5

    Article  CAS  PubMed  Google Scholar 

  42. Zemskaya, T.I., Khlystov, O.M., Egorov, A.V., Pogodaeva, T.V., Kalmychkov, G.V., Shubenkova, O.V., Chernitsina, S.M., Vorob’eva, S.S., and Grachev, M.A., Komplexnye issledovaniya proyavlenii gazovykh gidratov v osadkakh gryazevykh vukanov ozera Baikal. Izmenenie okruzhayushchei sredy i klimata i svyazannye s nimi prirodnye i technogennye katastrofy (Complex Research of Gas Hydrate Phenomena in Sediments of Mud Volcanoes of Lake Baikal. Environmental and Climate Changes and Associated Natural and Technogenic Catastrophes), Moscow: Inst. Physics Earth, 2008.

  43. Zemskaya, T.I., Pogodaeva, T.V., Shubenkova, O.V., Chernitsyna, S.M., Dagurova, O.P., Buryukhaev, S.P., Namsaraev, B.B., Khlystov, O.M., Egorov, A.V., Krylov, A.A., and Kalmychkov, G.V., Geochemical and microbiological characteristics of sediments near the Malenky mud volcano (Lake Baikal, Russia), with evidence of Archaea intermediate between the marine anaerobic methanotrophs ANME-2 and ANME-3, Geo-Mar. Lett., 2010, vol. 30, pp. 411–425. https://doi.org/10.1007/s00367-010-0199-6

    Article  CAS  Google Scholar 

  44. Zemskaya, T.I., Lomakina, A.V., Shubenkova, O.V., Pogodaeva, T.V., Morozov, I.V., Chernitsina, S.M., Sitnikova, T.Ya., Khlystov, O.M., and Egorov, A.V., Jelly-like microbial mats over subsurface fields of gas hydrates at the St. Petersburg methane seep (Central Baikal), Geomicrobiol. J., 2015, vol. 32, pp. 89–100. https://doi.org/10.1080/01400451.2014.910572

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Irkutsk Supercomputing Center of the Siberian Branch of the Russian Academy of Sciences for the provided access to the HPC cluster Academician V.M. Matrosov.

Funding

This work was conducted according to the State Assignment theme no. 0279-2021-0006 with financial support of the Russian Foundation for Basic Research, project no. ofi_m 17-29-05040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Shubenkova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shubenkova, O.V., Zakharenko, A.S., Galach’yants, Y.P. et al. Effect of Methanol and Mineral Nitrogen Compounds on the Composition of Methanotrophic Enrichments from the Sediments of a Lake Baikal Methane Seep. Microbiology 90, 443–454 (2021). https://doi.org/10.1134/S0026261721040123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721040123

Keywords:

Navigation