Skip to main content
Log in

Variations in Lipopolysaccharide Synthesis Affect Formation of Azospirillum baldaniorum Biofilms in planta at Elevated Copper Content

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

At an elevated copper content, the viability of Azospirillum baldaniorum on wheat seedling roots and the number of cells colonizing the roots and forming biofilms depended on the physicochemical properties of the lipopolysaccharides ( LPSs) synthesized by these bacteria. Compared to the strain Cal+ LpsI LpsII A. baldaniorum strain Sp245, its mutants Cal LpsI KM252, Lps II KM139, and Cal LpsII Mot KM018 colonized the roots less efficiently and formed thinner biofilms. Changes in the polysaccharide synthesis in KM252, KM139, and KM018 mediated increased copper accumulation by the cells and decreased the resistance of bacterial cultures to the negative effect of copper ions. Copper excess in planta and/or on the model polystyrene surface resulted in higher levels of the polysaccharide antigens in the biofilms of strain Sp245 and of its mutants with altered glycopolymer composition. Inoculation with strain Sp245 had a positive effect on the growth of wheat stems and leaves both at copper concentrations which had no noticeable effect on the growth of any of the partners (0.001 mM) and at elevated concentrations of copper ions (up to 0.5 mM). Strains КМ018, КМ139, and КМ252 had a positive effect on the seedlings only at high copper concentrations in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Abd El-Samad, H.M., The biphasic role of copper and counteraction with Azospirillum brasilense application on growth, metabolities, osmotic pressure and mineral of wheat plant, Amer. J. Plant Sci., 2017, vol. 8, pp. 1182–1195.

    Article  CAS  Google Scholar 

  2. Baldani, V.L.D., Baldani, J.I., and Döbereiner, J., Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat, Can. J. Microbiol., 1983, vol. 29, pp. 924–929.

    Article  Google Scholar 

  3. Burdman, S., Jurkevitch, E., Schwartsburd, B., Hampel, M., and Okon, Y., Aggregation in Azospirillum brasilense: effects of chemical and physical factors and involvement of extracellular components, Microbiology (SGM), 1998, vol. 144, pp. 1989–1999.

    Article  CAS  Google Scholar 

  4. Chang, W.C., Hu, G.S., Chiang, S.M., and Su, M.C., Heavy metal removal from aqueous solution by wasted biomass from a combined AS-biofilm process, Bioresour. Technol., 2006, vol. 97, pp. 1503–1508.

    Article  CAS  Google Scholar 

  5. Döbereiner, J. and Day, J.M., Associative symbiosis in tropical grass: characterization of microorganisms and dinitrogen fixing sites, in Symposium on Nitrogen Fixation, Newton, W.E. and Nijmans, C.J., Eds., Pullman: Washington State Univ. Press, 1976, pp. 518–538.

  6. Dos Santos Ferreira, N., Sant’Anna, F.H., Reis, V.M., Ambrosini, A., Volpiano, C.G., Rothballer, M., Schwab, S., Baura, V.A., Balsanelli, E., de Oliveira Pedrosa, F., Pereira Passaglia, L.M., de Souza, E.M., Hartmann, A., Cassan, F., and Zilli, J.E., Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov., Int. J. Syst. Evol. Microbiol., 2020, vol. 70, pp. 6203–6212. https://doi.org/10.1099/ijsem.0.004517

    Article  CAS  PubMed  Google Scholar 

  7. Fedonenko, Yu.P., Zatonsky, G.V., Konnova, S.A., Zdorovenko, E.L., and Ignatov, V.V., Structure of the O-specific polysaccharide of the lipopolysaccharide of Azospirillum brasilense Sp245, Carbohydr. Res., 2002, vol. 337, pp. 869–872.

    Article  CAS  Google Scholar 

  8. Fendrihan, S., Constantinescu, F., Sicuia, O., and Dinu, S., Azospirillum strains as biofertilizers and and biocontrol agents—a practical review, J. Adv. Agricult., 2017, vol. 7, pp. 1096–1108.

    Article  Google Scholar 

  9. Fibach-Paldi, S., Burdman, S., and Okon, Y., Key physiological properties contributing to rhizosphere adaptation and plant growth promoting abilities of Azospirillum brasilense, FEMS Microbiol. Lett., 2012, vol. 326, pp. 99–108.

    Article  CAS  Google Scholar 

  10. Flemming, H.-C. and Wingender, J., The biofilm matrix, Nat. Rev. Microbiol., 2010, vol. 8, pp. 623–633.

    Article  CAS  Google Scholar 

  11. Jing, Y., He, Z., and Yang, X., Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils, J. Zhejiang Univ. Sci. B., 2007, vol. 8, pp. 192–207.

    Article  CAS  Google Scholar 

  12. Kamnev, A.A., Tugarova, A.V., Antonyuk, L.P., Tarantilis, P.A., Polissiou, M.G., and Gardiner, P.H.Y., Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of Azospirillum brasilense, J. Trace Elem. Med. Biol., 2005, vol. 19, pp. 91–95.

    Article  CAS  Google Scholar 

  13. Katsy, E.I. and Prilipov, A.G., Insertional mutation in the AZOBR_p60120 gene is accompanied by defects in the synthesis of lipopolysaccharide and calcofluor-binding polysaccharides in the bacterium Azospirillum brasilense Sp245, Russ. J. Genet., 2015, vol. 51, pp. 306–311.

    CAS  Google Scholar 

  14. Lino, A.R., Farinha, C.R., Pereira, S., and Bursakov, S.A., Desulfovibrio gigas: toxicity of copper and molybdenum, in Metal Ions in Biology and Medicine, Alpoim, M.C., Ed., Lisbon: John Libbey Eurotext, 2006, vol. 9, pp. 231–235.

    Google Scholar 

  15. Lugtenberg, B. and Kamilova, F., Plant-growth-promoting rhizobacteria, Annu. Rev. Microbiol., 2009, vol. 63, pp. 541–556.

    Article  CAS  Google Scholar 

  16. Matora, L.Yu. and Shchegolev, S.Yu., Antigenic identity of the capsule lipopolysaccharides, exopolysaccharides, and O-specific polysaccharides in Azospirillum brasilense, Microbiology (Moscow), 2008, vol. 71, pp. 178–181.

    Article  Google Scholar 

  17. Nies, D.H., Microbial heavy-metal resistance, Appl. Microbiol. Biotechnol., 1999, vol. 51, pp. 730–750.

    Article  CAS  Google Scholar 

  18. Nocelli, N., Bogino, P.C., Banchio, E., and Giordano, W., Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of rhizobia, Materials, 2016, vol. 9, p. 418. https://doi.org/10.3390/ma9060418

    Article  CAS  PubMed Central  Google Scholar 

  19. O’Toole, G.A. and Kolter, R., Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Mol. Microbiol., 1998, vol. 28, pp. 449–461.

    Article  Google Scholar 

  20. Petrova, L.P., Yevstigneeva, S.S., Borisov, I.V., Shelud’ko, A.V., Burygin, G.L, and Katsy, E.I., Plasmid gene AZOBR_p60126 impacts biosynthesis of lipopolysaccharide II and swarming motility in Azospirillum brasilense Sp245, J. Basic Microbiol., 2020b, vol. 60, pp. 613–623.

    Article  CAS  Google Scholar 

  21. Petrova, L.P., Yevstigneeva, S.S., Filip’echeva, Yu.A., Shelud’ko, A.V., Burygin, G.L, and Katsy, E.I., Plasmid gene for putative integral membrane protein affects formation of lipopolysaccharide and motility in Azospirillum brasilense Sp245, Folia Microbiol., 2020a, vol. 65, pp. 963–972.

    Article  Google Scholar 

  22. Shelud’ko, A.V., Filip’echeva, Y.A., Telesheva, E.M., Burov, A.M., Evstigneeva, S.S., Burygin, G.L., and Petrova, L.P., Characterization of carbohydrate-containing components of Azospirillum brasilense Sp245 biofilms, Microbiology (Moscow), 2018, vol. 87, pp. 610–620.

    Article  Google Scholar 

  23. Sheludko, A.V., Kulibyakina, O.V., Shirokov, A.A., Petrova, L.P., Matora, L.Yu., and Katsy, E.I., The effect of mutations affecting synthesis of lipopolysaccharides and calcofluor-binding polysaccharides on biofilm formation by Azospirillum brasilense, Microbiology (Moscow), 2008, vol. 77, pp. 313–317.

    Article  CAS  Google Scholar 

  24. Shelud’ko, A.V., Mokeev, D.I., Evstigneeva, S.S., Filip’echeva, Yu.A., Burov, A.M., Petrova, L.P., Ponomareva, E.G., and Katsy, E.I., Cell ultrastructure in biofilms of Azospirillum brasilense, Microbiology (Moscow), 2020, vol. 89, pp. 50–63.

    Article  Google Scholar 

  25. Shelud’ko, A.V., Shirokov, A.A., Sokolova, M.K., Sokolov, O.I., Petrova, L.P., Matora, L.Yu., and Katsy, E.I., Wheat root colonization by Azospirillum brasilense strains with different motility, Microbiology (Moscow), 2010, vol. 79, pp. 688–695.

    Article  Google Scholar 

  26. Shelud’ko, A.V., Varshalomidze, O.E., Petrova, L.P., and Katsy, E.I., Effect of genomic rearrangement on heavy metal tolerance in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245, Folia Microbiol., 2012, vol. 57, pp. 5–10.

    Article  Google Scholar 

  27. Stoderegger, K. and Herndl, G.J., Production and release of bacterial capsular material and its subsequent utilization by marine bacterioplankton, Limnol. Oceanogr., 1998, vol. 43, pp. 877–884.

    Article  CAS  Google Scholar 

  28. Tak, H.I., Ahmad, F., and Babalola, O.O., Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals, Rev. Environ. Contam. Toxicol., 2013, vol. 223, pp. 33–52.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the IBPPM RAS Collection of Rhizosphere Microorganisms for A. brasilense strain Sp245 (IBPPM 219) and the Simbioz Center for the Collective Use of Research Equipment in the Field of Physical–Chemical Biology and Nanobiotechnology (IBPPM RAS, Saratov, Russia).

Funding

This study was supported in part by the Russian Foundation for Basic Research, project no. 20-04-00006-a. The assessment of the respiratory activity of cells was supported in part by the Razumovsky Saratov State Medical University, project no. SSMU-2021-001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. P. Petrova or A. V. Shelud’ko.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Panyushkina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, L.P., Filip’echeva, Y.A., Telesheva, E.M. et al. Variations in Lipopolysaccharide Synthesis Affect Formation of Azospirillum baldaniorum Biofilms in planta at Elevated Copper Content. Microbiology 90, 470–480 (2021). https://doi.org/10.1134/S002626172104010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626172104010X

Keywords:

Navigation