Skip to main content

Advertisement

Log in

Structure-based discovery of new polo-like kinase 1 (PLK1) inhibitors as potential anticancer agents via docking-based comparative intermolecular contacts analysis (dbCICA)

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Polo-like kinase 1 (PLK1) plays vital roles in mitotic activities including G2/M transition, mitotic entry, and cytokinesis. PLK1 overexpression was observed in cancers and associated with poor prognosis. PLK1 inhibition was proven to hamper cancer hallmarks. In this research, a computational workflow named Docking-based Comparative Intermolecular Contacts Analysis (dbCICA) was employed to discover new PLK1 inhibitors. Eighty-two reported PLK1 inhibitors were fitted into the binding-pocket of a PLK1 crystallographic structure to specify their finest possible docking configurations. Optimal dbCICA models were utilized to create pharmacophores that were assessed by receiver operating characteristic (ROC) analysis and were employed for in-silico virtual screening of the National Cancer Institute database. The bioactivities of captured hits were evaluated via fluorescence-based kinase bioassay. Two promising hits were identified; 89 (NCI 37190) and 103 (NCI 1012) scored IC50 values of 6.30 and 19.1 μM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sunkel CE, Glover DM. polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J Cell Sci. 1988;89:25–38.

    Article  PubMed  Google Scholar 

  2. Zitouni S, Nabais C, Jana SC, Guerrero A, Bettencourt-Dias M. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol. 2014;15:433–52.

    Article  CAS  PubMed  Google Scholar 

  3. Archambault V, Glover DM. Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol. 2009;10:265–75.

    Article  CAS  PubMed  Google Scholar 

  4. Lens SM, Voest EE, Medema RH. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer. 2010;10:825–41.

    Article  CAS  PubMed  Google Scholar 

  5. van de Weerdt BC, Medema RH. Polo-like kinases: a team in control of the division. Cell Cycle. 2006;5:853–64.

    Article  PubMed  Google Scholar 

  6. Seong YS, Kamijo K, Lee JS, Fernandez E, Kuriyama R, Miki T, et al. A spindle checkpoint arrest and a cytokinesis failure by the dominant-negative polo-box domain of Plk1 in U-2 OS cells. J Biol Chem. 2002;277:32282–93.

    Article  CAS  PubMed  Google Scholar 

  7. Murray AW. Recycling the cell cycle: cyclins revisited. Cell. 2004;116:221–34.

    Article  CAS  PubMed  Google Scholar 

  8. Mundt KE, Golsteyn RM, Lane HA, Nigg EA. On the regulation and function of human polo-like kinase 1 (PLK1): effects of overexpression on cell cycle progression. Biochem Biophys Res Commun. 1997;239:377–85.

    Article  CAS  PubMed  Google Scholar 

  9. Liu Z, Sun Q, Wang X. PLK1, a potential target for cancer therapy. Transl Oncol. 2017;10:22–32.

    Article  PubMed  Google Scholar 

  10. Yang L, Zhou Y, Li Y, Zhou J, Wu Y, Cui Y, et al. Mutations of p53 and KRAS activate NF-κB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells. Cancer Lett. 2015;357:520–6.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng MW, Wang BC, Weng ZQ, Zhu XW. Clinicopathological significance of Polo-like kinase 1 (PLK1) expression in human malignant glioma. Acta Histochem. 2012;114:503–9.

    Article  CAS  PubMed  Google Scholar 

  12. Knecht R, Elez R, Oechler M, Solbach C, von Ilberg C, Strebhardt K. Prognostic significance of polo-like kinase (PLK) expression in squamous cell carcinomas of the head and neck. Cancer Res. 1999;59:2794–7.

    CAS  PubMed  Google Scholar 

  13. Kneisel L, Strebhardt K, Bernd A, Wolter M, Binder A, Kaufmann R. Expression of polo-like kinase (PLK1) in thin melanomas: a novel marker of metastatic disease. J Cutan Pathol. 2002;29:354–8.

    Article  PubMed  Google Scholar 

  14. Tokumitsu Y, Mori M, Tanaka S, Akazawa K, Nakano S, Niho Y. Prognostic significance of polo-like kinase expression in esophageal carcinoma. Int J Oncol. 1999;15:687–92.

    CAS  PubMed  Google Scholar 

  15. Takahashi T, Sano B, Nagata T, Kato H, Sugiyama Y, Kunieda K, et al. Polo-like kinase 1 (PLK1) is overexpressed in primary colorectal cancers. Cancer Sci. 2003;94:148–52.

    Article  CAS  PubMed  Google Scholar 

  16. Weichert W, Denkert C, Schmidt M, Gekeler V, Wolf G, Köbel M, et al. Polo-like kinase isoform expression is a prognostic factor in ovarian carcinoma. Br J Cancer. 2004;90:815–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weichert W, Kristiansen G, Winzer KJ, Schmidt M, Gekeler V, Noske A, et al. Polo-like kinase isoforms in breast cancer: expression patterns and prognostic implications. Virchows Arch. 2005;446:442–50.

    Article  CAS  PubMed  Google Scholar 

  18. Weichert W, Schmidt M, Gekeler V, Denkert C, Stephan C, Jung K, et al. Polo-like kinase 1 is overexpressed in prostate cancer and linked to higher tumor grades. Prostate. 2004;60:240–5.

    Article  CAS  PubMed  Google Scholar 

  19. Steegmaier M, Hoffmann M, Baum A, Lénárt P, Petronczki M, Krssák M, et al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol. 2007;17:316–22.

    Article  CAS  PubMed  Google Scholar 

  20. Rudolph D, Steegmaier M, Hoffmann M, Grauert M, Baum A, Quant J, et al. BI 6727, a Polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity. Clin Cancer Res. 2009;15:3094–102.

    Article  CAS  PubMed  Google Scholar 

  21. Emmitte KA, Adjabeng GM, Andrews CW, Alberti JG, Bambal R, Chamberlain SD, et al. Design of potent thiophene inhibitors of polo-like kinase 1 with improved solubility and reduced protein binding. Bioorg Med Chem Lett. 2009;19:1694–7.

    Article  CAS  PubMed  Google Scholar 

  22. Beria I, Ballinari D, Bertrand JA, Borghi D, Bossi RT, Brasca MG, et al. Identification of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as a new class of orally and selective Polo-like kinase 1 inhibitors. J Med Chem. 2010;53:3532–51.

    Article  CAS  PubMed  Google Scholar 

  23. Gleixner KV, Ferenc V, Peter B, Gruze A, Meyer RA, Hadzijusufovic E, et al. Polo-like kinase 1 (Plk1) as a novel drug target in chronic myeloid leukemia: overriding imatinib resistance with the Plk1 inhibitor BI 2536. Cancer Res. 2010;70:1513–23.

    Article  CAS  PubMed  Google Scholar 

  24. Gutteridge RE, Ndiaye MA, Liu X, Ahmad N. Plk1 Inhibitors in Cancer Therapy: From Laboratory to Clinics. Mol Cancer Ther. 2016;15:1427–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Degenhardt Y, Lampkin T. Targeting Polo-like kinase in cancer therapy. Clin Cancer Res. 2010;16:384–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3:935–49.

    Article  CAS  PubMed  Google Scholar 

  27. Taha MO, Habash M, Al-Hadidi Z, Al-Bakri A, Younis K, Sisan S. Docking-based comparative intermolecular contacts analysis as new 3-D QSAR concept for validating docking studies and in silico screening: NMT and GP inhibitors as case studies. J Chem Inf Model. 2011;51:647–69.

    Article  CAS  PubMed  Google Scholar 

  28. Kuntz ID, Meng EC, Shoichet BK. Structure-based molecular design. Acc Chem Res. 1994;27:117–23.

    Article  CAS  Google Scholar 

  29. Al-Sha’er MA, Taha MO. Application of docking-based comparative intermolecular contacts analysis to validate Hsp90α docking studies and subsequent in silico screening for inhibitors. J Mol Model. 2012;18:4843–63.

    Article  PubMed  CAS  Google Scholar 

  30. Steuber H, Zentgraf M, Gerlach C, Sotriffer CA, Heine A, Klebe G. Expect the unexpected or caveat for drug designers: multiple structure determinations using aldose reductase crystals treated under varying soaking and co-crystallisation conditions. J Mol Biol. 2006;363:174–87.

    Article  CAS  PubMed  Google Scholar 

  31. Gilson MK, Given JA, Bush BL, McCammon JA. The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J. 1997;72:1047–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, et al. Automated docking using a Lamarckian genetic algorithm and and empirical binding free energy function. J. Comput. Chem. 1998;19:1639–62.

    Article  CAS  Google Scholar 

  33. Sutherland JJ, Nandigam RK, Erickson JA, Vieth M. Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy. J Chem Inf Model. 2007;47:2293–302.

    Article  CAS  PubMed  Google Scholar 

  34. Bissantz C, Folkers G, Rognan D. Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem.2000;43:4759–67.

    Article  CAS  PubMed  Google Scholar 

  35. Taha MO, Habash M, Khanfar MA. The use of docking-based comparative intermolecular contacts analysis to identify optimal docking conditions within glucokinase and to discover of new GK activators. J Comput Aided Mol Des. 2014;28:509–47.

    Article  CAS  PubMed  Google Scholar 

  36. Jaradat NJ, Khanfar MA, Habash M, Taha MO. Combining docking-based comparative intermolecular contacts analysis and k-nearest neighbor correlation for the discovery of new check point kinase 1 inhibitors. J Comput Aided Mol Des. 2015;29:561–81.

    Article  CAS  PubMed  Google Scholar 

  37. Abuhammad A, Al-Aqtash RA, Anson BJ, Mesecar AD, Taha MO. Computational modeling of the bat HKU4 coronavirus 3CLpro inhibitors as a tool for the development of antivirals against the emerging Middle East respiratory syndrome (MERS) coronavirus. J Mol Recognit. 2017;30:e2644.

    Article  PubMed Central  CAS  Google Scholar 

  38. Habash M, Abuhamdah S, Younis K, Taha MO. Docking-based comparative intermolecular contacts analysis and in silico screening reveal new potent acetylcholinesterase inhibitors. Med Chem Res. 2017;26:2768–84.

    Article  CAS  Google Scholar 

  39. Al-Nadaf AH, Salah SA, Taha MO. Discovery of new Gyrase β inhibitors via structure based modeling. Comput Biol Chem. 2018;74:263–72.

    Article  CAS  PubMed  Google Scholar 

  40. Abutayeh RF, Taha MO. Discovery of novel Flt3 inhibitory chemotypes through extensive ligand-based and new structure-based pharmacophore modelling methods. J Mol Graph Model. 2019;88:128–51. https://doi.org/10.1016/j.jmgm.2019.01.011.

    Article  CAS  PubMed  Google Scholar 

  41. Tuffaha GO, Hatmal MM, Taha MO. Discovery of new JNK3 inhibitory chemotypes via QSAR-Guided selection of docking-based pharmacophores and comparison with other structure-based pharmacophore modeling methods. J Mol Graph Model. 2019;91:30–51.

    Article  CAS  PubMed  Google Scholar 

  42. Hijjawi MS, Abutayeh RF, Taha MO. Structure-based discovery and bioactivity evaluation of novel aurora-A kinase inhibitors as anticancer agents via docking-based comparative intermolecular contacts analysis (dbCICA). Molecules. 2020;25:6003.

    Article  CAS  PubMed Central  Google Scholar 

  43. Diller DJ, Merz KM Jr. High throughput docking for library design and library prioritization. Proteins. 2001;43:113–24.

    Article  CAS  PubMed  Google Scholar 

  44. Triballeau N, Acher F, Brabet I, Pin JP, Bertrand HO. Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem. 2005;48:2534–47.

    Article  CAS  PubMed  Google Scholar 

  45. Triballeau N, Bertrand H, Acher F. Are You Sure You Have a Good Model?. Mannhold R, Kubinyi H, Folkers G, editors. Methods and Principles in Medicinal Chemistry. Wiley‐VCH Verlag GmbH & Co. Weinheim, Germany; 2006.

  46. Alabed SJ, Khanfar M, Taha MO. Computer-aided discovery of new FGFR-1 inhibitors followed by in vitro validation. Future Med Chem. 2016;8:1841–69.

    Article  CAS  PubMed  Google Scholar 

  47. Wang HY, Cao ZX, Li LL, Jiang PD, Zhao YL, Luo SD, et al. Pharmacophore modeling and virtual screening for designing potential PLK1 inhibitors. Bioorg Med Chem Lett. 2008;18:4972–7.

    Article  CAS  PubMed  Google Scholar 

  48. Lu S, Liu HC, Chen YD, Yuan HL, Sun SL, Gao YP, et al. Combined pharmacophore modeling, docking, and 3D-QSAR studies of PLK1 inhibitors. Int J Mol Sci. 2011;12:8713–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shafique S, Bibi N, Rashid S. In silico identification of putative bifunctional Plk1 inhibitors by integrative virtual screening and structural dynamics approach. J Theor Biol. 2016;388:72–84.

    Article  CAS  PubMed  Google Scholar 

  50. Emmitte KA, Andrews CW, Badiang JG, Davis-Ward RG, Dickson HD, Drewry DH, et al. Discovery of thiophene inhibitors of polo-like kinase. Bioorg Med Chem Lett. 2009;19:1018–21.

    Article  CAS  PubMed  Google Scholar 

  51. Sato Y, Onozaki Y, Sugimoto T, Kurihara H, Kamijo K, Kadowaki C, et al. Imidazopyridine derivatives as potent and selective Polo-like kinase (PLK) inhibitors. Bioorg Med Chem Lett. 2009;19:4673–8.

    Article  CAS  PubMed  Google Scholar 

  52. Accelrys Software. Discovery Studio User Guide. Biovea Inc. San Diego, CA, USA; 2005.

  53. Wu G, Robertson DH, Brooks CL, Vieth M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER-A CHARMm-based MD docking algorithm. J Comput Chem. 2003;24:1549–62.

    Article  CAS  PubMed  Google Scholar 

  54. McGann M. FRED pose prediction and virtual screening accuracy. J Chem Inf Model. 2011;51:578–96.

    Article  CAS  PubMed  Google Scholar 

  55. Jain AN. Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities. J Comput Aided Mol Des. 1996;10:427–40.

    Article  CAS  PubMed  Google Scholar 

  56. Venkatachalam CM, Jiang X, Oldfield T, Waldman M. LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model. 2003;21:289–307.

    Article  CAS  PubMed  Google Scholar 

  57. Gehlhaar DK, Bouzida D, Rejto P Reduced Dimensionality in Ligand—Protein Structure Prediction: Covalent Inhibitors of Serine Proteases and Design of Site-Directed Combinatorial Libraries. Parrill AL, Reddy MR, editors. Rational Drug Design, 1st ed. American Chemical Society; Newyork, USA; 1999. p. 292–311.

  58. Muegge I, Martin YC. A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J Med Chem. 1999;42:791–804.

    Article  CAS  PubMed  Google Scholar 

  59. Muegge I. A knowledge-based scoring function for protein-ligand interactions: probing the reference state. Perspect Drug Discov Des. 2000;20:99–114. https://doi.org/10.1023/A:1008729005958

    Article  CAS  Google Scholar 

  60. Fawcett T. An introduction to ROC analysis. Pattern Recogn. Lett. 2006;27:861–74.

    Article  Google Scholar 

  61. Taha MO. Mixing Pharmacophore Modeling and Classical QSAR Analysis as Powerful Tool for Lead Discovery. Taha MO, (eds). Virtual Screening. IntechOpen. 2012;1:3–16.

    Google Scholar 

  62. Kirchmair J, Markt P, Distinto S, Wolber G, Langer T. Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection–what can we learn from earlier mistakes? J Comput Aided Mol Des. 2008;22:213–28.

    Article  CAS  PubMed  Google Scholar 

  63. Hahn M. Three-dimensional shape-based searching of conformationally flexible compounds. J Chem Inform Comput Sci. 1997;37:80–6.

    Article  CAS  Google Scholar 

  64. Khanfar MA, Taha MO. Elaborate ligand-based modeling coupled with multiple linear regression and k nearest neighbor QSAR analyses unveiled new nanomolar mTOR inhibitors. J Chem Inf Model. 2013;53:2587–612.

    Article  CAS  PubMed  Google Scholar 

  65. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.

    Article  CAS  PubMed  Google Scholar 

  66. Thermo Fisher Scientific. Z′-LYTE™ Screening Protocol and Assay Conditions. 2018. https://www.thermofisher.com/jo/en/home/industrial/pharma-biopharma/drug-discovery-development/target-and-lead-identification-and-validation/kinasebiology/kinase-activity-assays/z-lyte.html. Accessed 4 Mar 2021

  67. Ma H, Deacon S, Horiuchi K. The challenge of selecting protein kinase assays for lead discovery optimization. Expert Opin Drug Discov. 2008;3:607–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Homans SW. Water, water everywhere—except where it matters. Drug Discov Today. 2007;12:534–9.

    Article  CAS  PubMed  Google Scholar 

  69. Poornima CS, Dean PM. Hydration in drug design. 1. Multiple hydrogen- bonding features of water molecules in mediating protein-ligand interactions. J Comput Aided Mol Des. 1995;9:500–12.

    Article  CAS  PubMed  Google Scholar 

  70. Poornima CS, Dean PM. Hydration in drug design. 2. Influence of local site surface shape on water binding. J Comput Aided Mol Des. 1995;9:513–20.

    Article  CAS  PubMed  Google Scholar 

  71. Poornima CS, Dean PM. Hydration in drug design. 3. Conserved water molecules at the ligand-binding sites of homologous proteins. J Comput Aided Mol Des. 1995;9:521–31.

    Article  CAS  PubMed  Google Scholar 

  72. Pastor M, Cruciani G, Watson K. A Strategy for the incorporation of water molecules present in a ligand binding site into a three-dimensional quantitative structure-activity relationship analysis. J. Med. Chem. 1997;40:4089–102.

    Article  CAS  PubMed  Google Scholar 

  73. Koehler KF, Rao SN, Snyder JP. Modeling drug-receptor interactions. In Guidebook on Molecular Modeling in Drug Design. CohenNC, editors. Academic Press; Basel, Switzerland, 1996. p. 235–336.

  74. Silverman RA. The Organic Chemistry of Drug Design and Drug Action; San Diego Academic Press; San Diego, USA; 1991. p. 62–65.

  75. Bas DC, Rogers DM, Jensen JH. Very fast prediction and rationalization of pKa values for protein–ligand complexes. Proteins. 2008;73:765–83.

    Article  CAS  PubMed  Google Scholar 

  76. Onufriev AV, Alexov E. Protonation and pK changes in protein–ligand binding. Q Rev Biophys. 2013;46:181–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Banerjee R, Desiraju GR, Mondal R, Howard JA. Organic chlorine as a hydrogen-bridge acceptor: evidence for the existence of intramolecular O–H…Cl–C interactions in some gem-alkynols. Chemistry. 2004;10:3373–83.

    Article  CAS  PubMed  Google Scholar 

  78. Harder M, Kuhn B, Diederich F. Efficient stacking on protein amide fragments. ChemMedChem. 2013;8:397–404.

    Article  CAS  PubMed  Google Scholar 

  79. Shoichet BK. Interpreting steep dose-response curves in early inhibitor discovery. J Med Chem. 2006;49:7274–7.

    Article  CAS  PubMed  Google Scholar 

  80. Walters WP, Namchuk M. Designing screens: how to make your hits a hit. Nat Rev Drug Discov. 2003;2:259–66.

    Article  CAS  PubMed  Google Scholar 

  81. Mahajan UM, Teller S, Sendler M, Palankar R, van den Brandt C, Schwaiger T, et al. Tumour-specific delivery of siRNA-coupled superparamagnetic iron oxide nanoparticles, targeted against PLK1, stops progression of pancreatic cancer. Gut. 2016;65:1838–49.

    Article  CAS  PubMed  Google Scholar 

  82. Bu Y, Yang Z, Li Q, Song F. Silencing of polo-like kinase (Plk) 1 via siRNA causes inhibition of growth and induction of apoptosis in human esophageal cancer cells. Oncology. 2008;74:198–206.

    Article  CAS  PubMed  Google Scholar 

  83. Weiß L, Efferth T. Polo-like kinase 1 as target for cancer therapy. Exp Hematol Oncol. 2012;1:38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Reagan-Shaw S, Ahmad N. Silencing of polo-like kinase (Plk) 1 via siRNA causes induction of apoptosis and impairment of mitosis machinery in human prostate cancer cells: implications for the treatment of prostate cancer. FASEB J. 2005;19:611–3.

    Article  CAS  PubMed  Google Scholar 

  85. Zhao CL, Ju JY, Gao W, Yu WJ, Gao ZQ, Li WT. Downregulation of PLK1 by RNAi attenuates the tumorigenicity of esophageal squamous cell carcinoma cells via promoting apoptosis and inhibiting angiogenesis. Neoplasma. 2015;62:748–55.

    Article  CAS  PubMed  Google Scholar 

  86. Chou YS, Yen CC, Chen WM, Lin YC, Wen YS, Ke WT, et al. Cytotoxic mechanism of PLK1 inhibitor GSK461364 against osteosarcoma: Mitotic arrest, apoptosis, cellular senescence, and synergistic effect with paclitaxel. Int J Oncol. 2016;48:1187–94.

    Article  CAS  PubMed  Google Scholar 

  87. Kothe M, Kohls D, Low S, Coli R, Rennie GR, Feru F, et al. Selectivity-determining residues in Plk1. Chem Biol Drug Des. 2007;70:540–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Deanship of Scientific Research at the University of Jordan for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutasem O. Taha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alassaf, S.A., Hijjawi, M.S., Abuhammad, A. et al. Structure-based discovery of new polo-like kinase 1 (PLK1) inhibitors as potential anticancer agents via docking-based comparative intermolecular contacts analysis (dbCICA). Med Chem Res 30, 1747–1766 (2021). https://doi.org/10.1007/s00044-021-02774-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02774-x

Keywords

Navigation